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Abstract

Data assimilation is the process by which observational data are fused with scientific information. The Bayesian paradigm provides
a coherent probabilistic approach for combining information, and thus is an appropriate framework for data assimilation. Viewing data
assimilation as a problem in Bayesian statistics is not new. However, the field of Bayesian statistics is rapidly evolving and new approaches
for model construction and sampling have been utilized recently in a wide variety of disciplines to combine information. This article includes
a brief introduction to Bayesian methods. Paying particular attention to data assimilation, we review linkages to optimal interpolation,
kriging, Kalman filtering, smoothing, and variational analysis. Discussion is provided concerning Monte Carlo methods for implementing
Bayesian analysis, including importance sampling, particle filtering, ensemble Kalman filtering, and Markov chain Monte Carlo sampling.
Finally, hierarchical Bayesian modeling is reviewed. We indicate how this approach can be used to incorporate significant physically based
prior information into statistical models, thereby accounting for uncertainty. The approach is illustrated in a simplified advection–diffusion
model.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

What is data assimilation (DA)? In some sense, the defi-
nition is a “work in progress” depending on the application
and background of those who define it. For example, Bennett
[3, p. xvi] states that data assimilation involves “. . . interpolating
fields at one time, for subsequent use as initial data in a model
integration which may even be a genuine forecast”. Kalnay [29,
p. 136] states that DA is a “. . . statistical combination of ob-
servations and short-range forecasts”. Talagrand [37, p. 191]
writes that DA is “. . . the process through which all the avail-
able information is used to estimate as accurately as possible
the state of the atmospheric or oceanic flow”. These defini-
tions suggest our working definition, from a statistical perspec-
tive, that DA is an approach for fusing data (observations) with
prior knowledge (e.g., mathematical representations of physical
laws; model output) to obtain an estimate of the distribution of
the true state of a process. From this perspective, one needs
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the following components to perform DA: a statistical model
for observations (i.e., a data or measurement model), and an a
priori statistical model for the state process (i.e., a state or pro-
cess model). Issues related to DA involve choices of these two
components as well as the choice for how such information is
combined.

Several monographs and review papers describe various
methods and approaches to DA (e.g., [39,21,12,37,3,29]). We
explore the topic from a Bayesian perspective. Epstein [14]
was one of the first to seriously consider Bayesian methods
in the atmospheric sciences. Lorenc [30] and Tarantola [38]
were among the first to write about this perspective on DA. As
Lorenc showed, one of the advantages of thinking about DA
from this perspective is that it provides a common methodology
that links many of the seemingly disparate approaches to the
subject. One might ask what is the point of our paper given
that the Bayesian approach to DA is well-established. The
short answer is that the field of applied Bayesian statistics
in general, and the use of Monte Carlo methods specifically,
has seen dramatic developments since the early 1990s. Many
of these developments have found their way into the DA
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literature (e.g., [1]), and some have not. Our purpose is to
give an overview of the Bayesian perspective and then discuss
current approaches from this perspective, as well as potential
extensions based on recent developments in statistics.

2. Bayesian inference

Gelman et al. [20, p. 2] define Bayesian inference as

“. . . the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on
the parameters of the model and on unobserved quantities
such as predictions for new observations”.

Bayesian inference consists of three steps. In the first, one
formulates a “full probability model”. This is simply the joint
probability distribution of all observable and unobservable
components of interest (e.g., data, process, and parameters).
The formulation of such models should be consistent with the
knowledge of the underlying scientific processes as well as how
the data were collected. The next step in this process is to find
the conditional distribution of the unobservable quantities of
interest given the observed data. This is formally accomplished
by application of Bayes’ Theorem, though, in many cases,
there is no analytical solution for this step. Finally, as with all
modeling, one should evaluate the fit of the model and its ability
to adequately characterize the processes of interest. For more
detail, see [20], and the classic texts by Berger [4] and Bernardo
and Smith [9]; also see [15].

For illustration, let X denote unobservable quantities of
interest and Y our data. The full probability model can always
be factored into components: p(x, y) = p(y|x)p(x) =

p(x |y)p(y). Applying Bayes’ Rule, we obtain

p(x |y) =
p(y|x)p(x)

p(y)
,

provided 0 < p(y) < ∞. It is illustrative to examine each
component of Bayes’ rule separately.

Before we begin, a few words are in order regarding
notation. Random variables will be denoted by capital letters,
and fixed or observed quantities will be denoted by lower-
case letters. Greek letters will also refer to random variables,
typically parameters. In addition, we will use p( ) to refer to a
probability density function, and will use lower-case arguments
in this context. Finally, bold quantities will refer to vectors or
matrices.

Data distribution, p(y|x): Statisticians often refer to this as a
“sampling distribution” or “measurement model”. It is simply
the distribution of the data, given the unobservables. When
viewed as a function of X for fixed y, it is known as a
likelihood function, L(x |y), as in classical maximum likelihood
estimation. A key is that one thinks of the data conditioned
on x . For example, if Y represents imperfect observations of
temperature, and X the true (unobservable) temperature, then
p(y|x) quantifies the distribution of measurement errors in
observing temperature, reflecting possible biases as well as
instrument error.
Prior distribution, p(x): This distribution quantifies our a
priori understanding of the unobservable quantities of interest.
For example, if X corresponds to temperature, then one
might base this prior distribution on historical information
(climatology) or perhaps from a forecast model. In general,
prior distributions can be informative or non-informative,
“subjective” or “objective”. The choice of such distributions is
an integral part of Bayesian inference.

Marginal distribution, p(y) =
∫

p(y|x)p(x)dx : We assume
continuous X but note that there are analogous forms (sums)
for discrete X . This distribution is also known as the prior
predictive distribution. Alternatively, for the observations Y ,
p(y) can be thought of as the “normalizing constant” in Bayes’
rule. Unfortunately, it is only for very specific choices of
the data and prior distribution that we can solve this integral
analytically.

Posterior distribution, p(x |y): This distribution of the
unobservables given the data is our primary interest for
inference. It is proportional to the product of the data model
and the prior. The posterior is the update of our prior knowledge
about X as summarized in p(x) given the actual observations y.
In this sense, the Bayesian approach is inherently “scientific” in
that it is analogous to the scientific method: one has prior belief
(information), collects data, and then updates that belief given
the new data (information).

2.1. Simple univariate example: Normal data, normal prior

Say we are interested in the univariate state variable, X
(e.g., u-component of wind at some location). Assume we
have the prior distribution (e.g., from a forecast model): X ∼

N (µ, τ 2), where “∼” is read “is distributed as” and N (a, b)

refers to a normal (or Gaussian) distribution with mean a and
variance b. Conditioned on the true value of the state process,
X = x , assume we have n independent (given x) but noisy
observations Y = (Y1, . . . , Yn)′ and thus the data model:
Yi |X = x ∼ N (x, σ 2). Then,

p(y|x) =

n∏
i=1

(1/
√

2πσ 2) exp{−0.5(yi − x)2/σ 2
}

∝ exp

{
−0.5

n∑
i=1

(yi − x)2/σ 2

}
,

and Bayes’ rule gives

p(x |y) ∝ exp

{
−0.5

[
n∑

i=1

(yi − x)2/σ 2
+ (x − µ)2/τ 2

]}
∝ exp

{
−0.5

[
x2(n/σ 2

+ 1/τ 2) − 2
(∑

yi/σ
2
+ µ/τ 2

)
x
]}

.

We note that this is just the product of two Gaussian
distributions. It can be shown (by completing the square) that
the normalized product is also Gaussian with the following
mean and variance:

X |y ∼ N
(
(n/σ 2

+ 1/τ 2)−1
(∑

yi/σ
2
+ µ/τ 2

)
,

(n/σ 2
+ 1/τ 2)−1

)
.
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We can write the posterior mean as

E(X |y) =
σ 2τ 2

σ 2 + nτ 2 (n ȳ/σ 2
+ µ/τ 2) (1)

= wy ȳ + wµµ, (2)

where ȳ =
∑

i yi/n, wy = nτ 2/(nτ 2
+ σ 2), and wµ =

σ 2/(nτ 2
+ σ 2). Note that wy + wµ = 1. That is, the posterior

mean is a weighted average of the prior mean (µ) and the
natural, data based estimate of X , ȳ. Note that as τ 2

→ ∞, the
data model overwhelms the prior and p(x |y) → N (ȳ, σ 2/n).
Alternatively, for fixed τ 2, but very large amounts of data
(i.e., n → ∞) the data model again dominates the posterior
density. On the other hand, if τ 2 is very small, the prior is
critical for comparatively small n. Though these properties are
shown for the normal data, normal prior case, it is generally
true that for very large datasets, the data model is the major
controller of the posterior.

For purposes of DA, we note from (2) that the posterior mean
can also be written as

E(X |y) = µ +

(
nτ 2

σ 2 + nτ 2

)
(ȳ − µ)

= µ + K (ȳ − µ). (3)

That is, the prior mean (µ) is adjusted toward the sample
estimate (ȳ) according to the “gain”, K = (nτ 2)/(σ 2

+ nτ 2).
Analogously, the posterior variance can be rewritten:

var(X |y) = (1 − K )τ 2, (4)

where the posterior variance is updated from the prior variance
according to the gain, K . Eqs. (3) and (4) are critical for
understanding data assimilation as will be seen throughout this
overview.

2.1.1. Numerical examples
Assume the prior distribution is X ∼ N (20, 3), and the

data model is Yi |x ∼ N (x, 1). We have two observations
y = (19, 23)′. The posterior mean is 20 + (6/7)(21 − 20) =

20.86 and the posterior variance is (1 − 6/7)3 = 0.43.
Fig. 1 shows these distributions graphically. Since the data
are relatively precise compared to the prior, we see that the
posterior distribution is “closer” to the likelihood than the prior.
Another way to look at this is that the gain (K = 6/7) is close
to one, so that the data model is weighted more than the prior.

Next, assume the same observations and prior distribution,
but change the data model to Yi |x ∼ N (x, 10). The gain is K =

6/16 and the posterior distribution is X |y ∼ N (20.375, 1.875).
This is illustrated in Fig. 2. In this case, the gain is closer to
zero (since the measurement error variance is relatively large
compared to the prior variance) and thus the prior is given more
weight.

2.1.2. Posterior predictive distribution
Often, one is interested in obtaining the distribution of a new

observation Ỹ based on the observed data y. Such a distribution
is known as the posterior predictive distribution and is given
Fig. 1. Posterior distribution with normal prior and normal likelihood;
relatively precise data.

Fig. 2. Posterior distribution with normal prior and normal likelihood;
relatively uncertain data.

by:

p(ỹ|y) =

∫
p(ỹ|x)p(x |y)dx

and in the normal case:

∝

∫
exp{−0.5(ỹ − x)2/σ 2

} exp{−0.5(x − xa)2/τ 2
a },

where xa and τ 2
a are the posterior mean and variance,

respectively (where we have made use of the conditional
independence assumption that p(ỹ|x, y) = p(ỹ|x)). In this
case we have Ỹ |y ∼ N (xa, σ 2

+ τ 2
a ). Thus, the predictive

mean is the posterior mean, and the predictive distribution is
necessarily less precise than the posterior distribution.

2.2. Prior distributions

To many, Bayesian analysis is predicated on a belief in
subjective probability. That is, the quantification of beliefs
(however vague) about X before the data are considered. The
choice of prior distributions has been the subject of much
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debate and study. In fact, subjective probability may or may
not be consistent with the classical long-run frequency notion
of probability, which for some, is philosophically unappealing.
Thus, a major historical impediment to the use of Bayesian
techniques was the specification of the appropriate form of the
prior. It should be noted that the choice of likelihood function
in classical statistics is in many ways also subjective.

As outlined in [4] and [9], there are a variety of techniques
for developing priors in practice. Priors can be obtained from
past studies, from subject area “expert opinion” or scientific
first principles, though compromises are typically made for
mathematical simplicity. For example, conjugate prior and data
model pairs of distributions lead to posterior distributions of
the same functional form as the prior, as with the normal data,
normal prior examples above. In other words, in such cases, one
knows the normalizing constant in Bayes’ rule.

There is also a significant literature on the notion of non-
informative or objective priors. There are typically a variety
of non-informative priors in a given problem, indicating that
they do not represent total ignorance about the problem at hand.
However, they serve as reference or default priors, to use when
prior information is lacking or very vague. They also often yield
results which match or nearly match those of traditional non-
Bayesian approaches, thereby providing them with Bayesian
interpretations.

2.2.1. Mixture priors
A very flexible class of priors can be constructed by

forming mixtures of tractable (e.g., conjugate) priors. This has
implications for some modern approaches in DA. Suppose
we have data model p(yi |x) and p1(x) and p2(x) are both
densities that give rise to the posteriors p1(x |y) and p2(x |y),
respectively. Let w1 and w2 be any non-negative real numbers
such that w1 + w2 = 1, and write the mixture prior

p(x) = w1 p1(x) + w2 p2(x).

Then, it is easy to show that the posterior distribution
corresponding to p(x) is:

p(x |y) = w∗

1 p1(x |y) + w∗

2 p2(x |y),

where

w∗

i ∝ wi

∫
p(y|x)pi (x)dx, i = 1, 2,

and w∗

1 + w∗

2 = 1. Mixtures of two or more priors can be used
to approximate a variety of prior information while maintaining
mathematical tractability.

2.3. Multivariate normal–normal case

Assume we are interested in an n × 1 vector process X
(e.g., u-wind components at several locations), that has prior
distribution, X ∼ N (µ, P), where for now we assume that the
mean µ and covariance matrix P are known. In addition, we
observe the p × 1 data vector Y and assume the following data
model, Y|x ∼ N (Hx, R), where the p × n observation matrix
H and the observation error covariance matrix, R, are assumed
to be known.

The posterior distribution of X|y is given by p(x|y) ∝

p(y|x)p(x). As with the univariate case, the posterior
distribution is also Gaussian:

X|y ∼ N ((H′R−1H + P−1)−1(H′R−1y + P−1µ),

(H′R−1H + P−1)−1). (5)

Applying some basic linear algebra, we can rewrite the
posterior mean as

E(X|y) = µ + K(y − Hµ), (6)

where K = PH′(R + HPH′)−1 is the “gain” matrix. Similarly,
the posterior covariance matrix can be written as

var(X|y) = (I − KH)P. (7)

Formulas (6) and (7) are the core of the so-called analysis
step of DA based on linear and Gaussian assumptions.
Typically, in a DA problem, µ is the forecast from some
deterministic model or long term averages based on previously
collected data (e.g., climatology) and P is the forecast error
covariance matrix. One updates the prior (forecast) mean µ

based on deviations from the observations according to the
“gain” K, which is a function of the prior and data error
covariance matrices. Similarly, the prior (forecast) covariance
matrix is updated according to the gain, although notably, this
update is not a function of the observations, but only their
location and covariance structure. This latter property relies
heavily on the linear, Gaussian assumptions.

2.3.1. Relationship to kriging/optimal interpolation
We consider the relationship to Kriging (geostatis-

tics)/Optimal Interpolation (meteorology, oceanography) by a
simple example. Assume X = [x(s1), x(s2), x(s3)]

′ at spatial
locations si , i = 1, 2, 3. Also, assume we have observations at
s2 and s3 but not s1: y = [y(s2), y(s3)]

′ and thus H is defined
as:

H =

[
0 1 0
0 0 1

]
.

Assume the prior covariance matrix that describes the (forecast)
error covariance matrix is given by:

P =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 .

Note that even though we only have observations for locations
2 and 3, it is critical that we have the covariance information
between all state locations of interest (e.g., 1, 2 and 3). In this
case, the “gain” is given by:

K = PH′(R + HPH′)−1
=

c12 c13
c22 c23
c32 c33


×

(
R +

(
c22 c23
c32 c33

))−1

.
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For simplicity, assume R = σ 2I (i.e., independent
measurement errors). Then, the posterior mean of x(s1) is given
by:

E(x(s1)|y) = µ(s1) + w12(y(s2) − µ(s2))

+ w13(y(s3) − µ(s3)),

where the interpolation weights, w1 = [w12, w13]
′, are given

by elements from the gain matrix:

w′

1 =
(
c12 c13

) (c22 + σ 2 c23

c32 c33 + σ 2

)−1

.

Thus, the prior mean is adjusted by a weighted combination of
the anomalies (difference between observation and prior mean)
at each data location.

The mean-squared prediction error (posterior variance) at
x(s1) is given by

var(x(s1)|y) = c11

−
(
c12 c13

) (c22 + σ 2 c23

c32 c33 + σ 2

)−1 (
c12
c13

)
.

Such spatial prediction (interpolation) is the optimal (best linear
unbiased) prediction assuming the parameters, R, P are known.
In spatial statistics this is known as simple kriging [31,11] and
in atmospheric/oceanographic science this is known as optimal
interpolation [18]. See [11] for details.

It is relatively simple to accommodate more complicated,
unknown prior means (ordinary kriging if mean is constant
but unknown; universal kriging if mean is a linear function of
covariates; e.g., see [11]). These methods are easily expressed
in the framework of linear mixed models in statistics or as
variational (optimization) problems (e.g., [10]).

Numerical example: Assume we have two observations y2 =

16, y3 = 23 and we are interested predicting the true process
xi at these locations and a third location x1. Our prior mean is
µi = 18, i = 1, 2, 3 and our prior covariance matrix is:

P =

 1 0.61 0.22
0.61 1 0.37
0.22 0.37 1

 .

Our measurement error covariance matrix is R = 0.5I. In this
case, our gain (interpolation weights) is (are):

K =

0.3914 0.0528
0.6453 0.0870
0.0870 0.6453


and the posterior mean is:

E(X|y) =

17.4810
17.1442
21.0527


with posterior covariance:

var(X|y) =

0.7508 0.1957 0.0264
0.1957 0.3227 0.0435
0.0264 0.0435 0.3227

 .
Thus, the optimal prediction at location 1 gives more weight to
the observation at location 2 than the observation at location 3
(since it is more highly correlated (i.e., closer)). In addition, the
prediction variance at location 1 is greater than location 2 and
3 since there are no data for location 1.

Now, if we let P = I, so that there is no correlation a priori,
then the posterior mean and variance are:

E(X|y) =

18.0000
16.6667
21.3333


and

var(X|y) =

1.0000 0 0
0 0.3333 0
0 0 0.3333

 .

Thus, the posterior mean and variance at location 1 (no data)
are just the prior mean and variance in this case.

2.4. Connections to variational approaches

It is well-known (e.g., [30,37]) that the optimal interpolation
problem can be posed equivalently as a variational problem.
In particular, the posterior mode (and mean) corresponding to
the multivariate normal data and prior model is also found by
minimizing the objective function:

J (x) = (y − Hx)′R−1(y − Hx) + (x − µ)′P−1(x − µ). (8)

That is, (8) is proportional to the negative of the logarithm of the
posterior density given in (5). The interpretation of the solution
to this objective function as a Bayesian posterior mode applies
more generally to cases in which the prior on X is not Gaussian.

Although formally equivalent to the Bayes formulation, for
high-dimensional processes it is often more computationally
efficient to approach the problem from this variational
perspective. Furthermore, in non-linear/non-Gaussian settings,
the objective function may have multiple modes so a
single solution need not summarize the posterior distribution
adequately. It is also typically difficult to provide uncertainty
measures for the state estimates.

3. Sequential approaches

We define the following notation. Let, Y1:t ≡ {Y1, . . . , Yt }

and X0:t ≡ {X0, . . . , Xt }, and similarly for the non-random
equivalents y1:t and x0:t . The posterior distribution of the states
X0:t given the observed data y1:t is then

p(x0:t |y1:t ) ∝ p(y1:t |x0:t )p(x0:t ) (9)

where p(x0:t ) represents our prior knowledge of the state
process, and p(y1:t |x0:t ) represents our data or measurement
distribution. Typically, a Markov assumption is applied to the
prior, so that the state at time t , when conditioned on all
previous states only depends on the state at time t − 1:

p(x0:T ) = p(x0)

T∏
t=1

p(xt |xt−1), (10)
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where p(xt |xt−1) is the evolution distribution, p(x0) is the
distribution for the “initial state”, and T indicates the length
of the analysis period of interest. Another critical assumption is
that the observations are independent given that one knows the
true state. That is,

p(y1:T |x0:T ) =

T∏
t=1

p(yt |xt ). (11)

The Markovian assumption for the evolution model (10)
and the conditional independence assumption in the data
distribution (11) allows one to write Bayes’ rule (9) as

p(x0:T |y1:T ) ∝ p(x0)

T∏
t=1

p(yt |xt )p(xt |xt−1). (12)

This form suggests that as new data becomes available, one
could update the previous (optimal) estimate of the state
process without having to start calculations from scratch. Such
sequential updating is the focus of this section.

Filtering

In filtering, we assume the density p(xt−1|y1:t−1) is
available and use it to find (i) the forecast distribution,
p(xt |y1:t−1), and (ii) the analysis distribution, p(xt |y1:t ). Due
to the Markov assumption, the forecast or posterior predictive
distribution is readily obtained from

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1. (13)

We then obtain the analysis distribution by Bayes’ rule:

p(xt |y1:t ) = p(xt |yt , y1:t−1)

∝ p(yt |xt , y1:t−1)p(xt |y1:t−1)

= p(yt |xt )p(xt |y1:t−1). (14)

Iterating between the forecast and analysis steps as new
data becomes available yields pairs of distributions p(x1|y1);
p(x2|y1), p(x2|y1:2); . . . ; p(xT |y1:T −1), p(xT |y1:T ).

Smoothing

The term smoothing refers to obtaining p(xt |y1:T ), the
distribution of the state at some time t , given all relevant data,
even data collected after time t . For t = T , the smoothing
distribution is just the final analysis (filter) distribution. We seek
to obtain the component marginal distributions of the posterior
p(x0:T |y1:T ) in a sequential fashion.

We can write the smoothing distribution as

p(xt |y1:T ) =

∫
p(xt |xt+1, y1:T )p(xt+1|y1:T )dxt+1. (15)

Note that

p(xt |xt+1, y1:T ) = p(xt |xt+1, y1:t ), (16)
since {yt+1, . . . , yT } are assumed to be independent of xt given
xt+1. Next, Bayes’ rule gives

p(xt |xt+1, y1:t ) ∝ p(xt+1|xt , y1:t )p(xt |y1:t )

= p(xt+1|xt )p(xt |y1:t ), (17)

where p(xt |y1:t ) is the analysis (filter) distribution for
time t . Thus, given the analysis distributions, a forward
filtering–backward smoothing algorithm can be constructed as
follows:

for t = T − 1 to 1

• obtain p(xt |xt+1, y1:t ) via (17), making use of the analysis
(filter) distribution p(xt |y1:t ) and p(xt+1|xt )

• obtain the smoothing distribution p(xt |y1:T ) from (15),
making use of the smoothing distribution for time t + 1,
p(xt+1|y1:T ), obtained at the previous iteration.

In general, one may not be able to obtain analytical
representations for the forecast, analysis and smoothing
distributions (13)–(15). However, in the case of normal
(Gaussian) distributions and linear observation and evolution
operators, one can obtain these distributions explicitly. This
gives the well-known Kalman filter and Kalman smoother
recursions.

3.1. Kalman filter

The Kalman filter is an ideal framework for sequential
updating with linear model operators and Gaussian error
distributions [28,27,22,21,42]. It can be derived from many
different perspectives. Here, we utilize the Bayesian formulas
presented previously (e.g., [32,42]).

Define the conditional expectations for “analysis” (filter) and
“forecast” as xt |t ≡ E(Xt |y1:t ) and xt |t−1 ≡ E(Xt |y1:t−1),
respectively. Similarly, define the conditional error covariance
matrices for analysis and forecast, respectively:

Pt |t = E((Xt − xt |t )(Xt − xt |t )
′
|y1:t ),

Pt |t−1 = E((Xt − xt |t−1)(Xt − xt |t−1)
′
|y1:t−1).

Consider the measurement (data) distribution p(yt |xt ) given
by the model:

Yt = Ht xt + εt , εt ∼ N (0, Rt ), (18)

where Ht is the observation operator that maps the process
to the observations, and Rt is the (potentially) time-varying
observation (measurement) error covariance matrix.

Also, consider the evolution (or process) distribution
p(xt |xt−1) given by the model:

Xt = Mt xt−1 + ηt , ηt ∼ N (0, Qt ), (19)

where Mt is the (linear) model operator or propagator that maps
the evolution of the process in time, and Qt is a noise covariance
matrix perhaps representing stochastic forcing or features not
resolved by the model. Typically, it is assumed that the
measurement and model noise processes are independent. We
have also assumed noise processes have zero mean, although
this need not be the case in general.
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Using conditional expectation and conditional variance ar-
guments, the forecast distribution xt |y1:t−1 ∼ N (xt |t−1, Pt |t−1)

with mean and variance are given, respectively, by:

xt |t−1 = E(Xt |y1:t−1) = E(E(Xt |xt−1)|y1:t−1)

= E(Mt Xt−1|y1:t−1) = Mt xt−1|t−1, (20)

and

Pt |t−1 = var(Xt |y1:t−1) = E(var(Xt |xt−1)|y1:t−1)

+ var(E(Xt |xt−1)|y1:t−1)

= E(Qt |y1:t−1) + var(Mt Xt−1|y1:t−1)

= Qt + Mt Pt−1|t−1M′
t . (21)

In addition, as with the derivation of the multivariate posterior
with normal prior and normal data model, the analysis
distribution is given by:

Xt |y1:t ∼ N ((H′
t R

−1
t Ht + P−1

t |t−1)
−1

× (H′
t R

−1
t yt + P−1

t |t−1xt |t−1), (H′
t R

−1
t Ht + P−1

t |t−1)
−1). (22)

Using the same matrix derivation as for the non-sequential case,
we can write equivalently the mean and variance of (22):

xt |t = xt |t−1 + Kt (yt − Ht xt |t−1) (23)

Pt |t = (I − Kt Ht )Pt |t−1, (24)

where the Kalman gain is given by

Kt = Pt |t−1H′
t (H

′
t Pt |t−1Ht + Rt )

−1. (25)

Given the parameter matrices Ht , Mt , Qt , Rt for t =

1, . . . , T and initial conditions (or background state) x0|0 ≡ xb,
P0|0 ≡ Pb, one can use the following Kalman filter algorithm
to obtain sequential estimates of the state and associated
covariance matrices:

for t = 1 to T

• get forecasts xt |t−1 and Pt |t−1 from (20) and (21),
respectively

• get gain Kt , and analysis xt |t , and Pt |t from (25), (23) and
(24), respectively.

Note, for time periods in which there are no observations,
one simply skips the analysis steps and lets xt |t = xt |t−1, and
Pt |t = Pt |t−1.

The statistics literature focuses on the formal treatment
of these models when parameters are unknown (especially,
Mt , Qt and Rt ). In cases where these are not time-varying,
and the dimensionality n is relatively low, one can use
the E–M algorithm [34] or numerical maximum likelihood
methods [25] to obtain estimates. In addition, fully-Bayesian
(i.e., hierarchical Bayesian) methods can be used for estimating
parameters as described in Section 5, as well as [42], and [35].

3.1.1. Kalman filter example
To illustrate the Kalman filter, we consider a simple

simulation experiment. Assume we have the univariate
measurement model,

Yt = xt + εt , εt ∼ N (0, 0.1), (26)
Fig. 3. First-order autoregressive process simulation and data.

Fig. 4. First-order autoregressive process simulation Kalman filter state
estimates, truth and data.

where clearly in this case R = 0.1 and H = 1 for all t . Also,
assume we have a forecast (or process) model that follows a
simple first-order autoregressive (AR(1)) process,

X t = 0.7xt−1 + ηt , ηt ∼ N (0, 0.5), (27)

where in this case Q = 0.5 and M = 0.7 for all t .
Given an initial condition x0 ∼ N (0, 1) we simulate xt
and yt for t = 1, . . . , 100. In addition, we let the data
at times t = 40, . . . , 43 and t = 80, . . . , 83 be missing.
Our objective is to obtain the filtered state estimate x̂t |t and
associated variances P̂t |t for all times, given the data yt , t =

1, . . . , 39, 44, . . . , 79, 84, . . . , 100.
Fig. 3 shows the truth xt and data yt for the simulation. The

Kalman filter state estimates x̂t |t are shown along with the data
and true (simulated) state process in Fig. 4. Note that the filter
estimates are typically between the noisy observations and the
true state, as expected. Also note that the filtered values are not
particularly close to the truth in areas of missing data. This is
illustrated more clearly in Fig. 5 which shows the estimate of
the filter variance P̂t |t for each time. There is a clear increase in
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Fig. 5. First-order autoregressive process simulation Kalman filter variance
estimates.

the variance as the number of consecutive missing data points
increases.

3.2. Kalman smoother

As mentioned previously, in situations where we are
interested in the distribution p(xt |y1:T ), t = 1, . . . , T , then
we are said to be interested in the smoothing distribution of
Xt . That is, the estimate of Xt at time t given all the data
(both before and after time t). This would be useful for a
retrospective analysis (i.e., re-analysis). As suggested by the
general algorithm given previously, one can utilize the Kalman
filter and associated backwards recursion formulas to obtain the
smoothing distributions. This procedure is sometimes known
as the Kalman Smoother. This result (and other types of
smoothers) can be derived from various perspectives. For
extensive development, we refer the reader to one of the
many excellent texts that discuss filtering and smoothing in
detail (e.g., see [27,2,35]). We take a Bayesian approach here
(e.g., see [42]).

As with the Kalman filter derivation, let xt |T ≡ E(Xt |y1:T )

and Pt |T ≡ var(Xt |y1:T ). We seek sequential formulas for
p(xt |y1:T ) and assume that we have access to the analysis
(filter) distributions Xt |y1:t ∼ N (xt |t , Pt |t ) and the forecast
distributions Xt+1|y1:t ∼ N (xt+1|t , Pt+1|t ) for t = 1, . . . , T .
These are available from the Kalman filter algorithm.

First, note that we can obtain p(xt |xt+1, y1:t ) from Bayes’
rule as suggested by (17). This distribution is then proportional
to the product of two Gaussian distributions. By completing
the square and using some matrix algebra, this distribution is
N (µt ,Σ t ) where

µt = xt |t + Jt (xt+1 − Mt+1xt |t ) (28)

and

Σ t = Pt |t − Jt Mt+1Pt |t , (29)

where

Jt ≡ Pt |t M′

t+1(Mt+1Pt |t M′

t+1 + Qt+1)
−1

= Pt |t M′

t+1P−1
t+1|t . (30)
Next, one obtains the smoother distribution from (15).
Specifically, Xt |y1:T ∼ N (xt |T , Pt |T ), where

xt |T = E(Xt |y1:T ) = E(E(Xt |xt+1, y1:t )|y1:T ) = E(µt |y1:T )

= xt |t + Jt (xt+1|T − xt+1|t ) (31)

and

Pt |T = var(Xt |y1:T ) = E(var(Xt |xt+1, y1:t )|y1:T )

+ var(E(Xt |xt+1, y1:t )|y1:T )

= E(Σ t |y1:T ) + var(µt |y1:T )

= Pt |t + Jt (Pt+1|T − Pt+1|t )J′
t . (32)

Thus, given that one has the forecast and analysis distributions
xt |t , Pt |t , xt+1|t , and Pt+1|t for t = 1, . . . , T , the smoother
algorithm can be implemented as follows:

For t = T − 1 to 1

• obtain Jt from (30)
• obtain xt |T from (31)
• obtain Pt |T from (32).

Note that this type of smoothing algorithm is known as a
fixed interval smoother. Other types of smoothing algorithms
(e.g., fixed-point and fixed-lag) can be implemented in “real
time” (e.g., see [24]) but are not considered here.

4. Monte Carlo sampling and data assimilation

The forecast and analysis distributions given in (13) and
(14), respectively, cannot be obtained explicitly for non-
Gaussian models and/or nonlinear dynamic operators. We also
assume that the dimensionalities of the relevant vectors prohibit
direct numerical integration. A traditional approach to handling
nonlinear observation and/or evolution models is local (tangent
linear) linearization of the model and evolution operators. In
the sequential case, this is known as extended Kalman filtering
(e.g., [24]). Additionally, some types of non-Gaussian error
structures can be accommodated by allowing error structures
to be convex mixtures of Gaussian distributions. Alternatively,
we may rely on Monte Carlo (MC) methods. This section
briefly considers several different MC approaches. For details
and theoretical discussion of MC methods, see [33].

4.1. Basic Monte Carlo sampling

Historically, the primary use of Monte Carlo (MC) is for
the estimation of integrals (or expectations for probability
models). As before, we let the data be represented by Y1:t ≡

{Y1, . . . , Yt } and use analogous notation for the state process
over time. Let f be a function of the state process and assume
a Bayesian context in which we observe data y1:t and are
interested in the conditional expectation of f (X0:t ) given the
data:

E( f (X0:t )|y1:t ) =

∫
f (x0:t )p(x0:t |y1:t )dx0:t

=

∫
f (x0:t )p(y1:t |x0:t )p(x0:t )dx0:t∫

p(y1:t |x0:t )p(x0:t )dx0:t
,
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(assuming the integrals exist). A MC estimate can be obtained
as follows:

1. generate m pseudo-random realizations, xi
0:t from p(x0:t |

y1:t ), i = 1, . . . , m
2. evaluate f for each realization and compute the arithmetic

average of the results, Ê( f (X0:t )|y1:t ) = (1/m)
∑m

i=1 f
(xi

0:t ).

Under independent sampling this average converges (almost
surely) to E( f (X0:t )|y1:t ) as m approaches infinity. This also
holds if realizations are stationary and ergodic though not
necessarily independent. We note that the rate of convergence is
independent of the dimensionality of the integrand (for details,
see [33]). We can also approximate the distribution p(x0:t |y1:t )

by:

p̂(x0:t |y1:t ) ≡ pm(x0:t |y1:t ) =
1
m

m∑
i=1

δxi
0:t

where δxi
0:t

is a Dirac-delta mass on the trajectory xi
0:t . In

practice, one typically considers kernel density estimates of the
posterior (e.g., [36,41]).

4.2. Importance sampling Monte Carlo

When direct simulation from p(x0:t |y1:t ) is very difficult,
Importance Sampling Monte Carlo (ISMC) is suggested. The
idea is that we consider another distribution, say g(x0:t |y1:t ),
that is comparatively easy to sample. We generate m samples
xi

0:t from g(x0:t |y1:t ) and evaluate f for each. A standard
procedure for estimating E( f (X0:t )|y1:t ) is to weight each
sample or ensemble member to adjust for the fact that they are
not from the target posterior as follows:

Ê( f (X0:t )|y1:t ) =

m∑
i=1

wi f (xi
0:t ),

where the weights wi are defined by

wi
=

p(xi
0:t |y1:t )/g(xi

0:t |y1:t )

m∑
j=1

p(x j
0:t |y1:t )/g(x j

0:t |y1:t )

. (33)

In this case, we can approximate the posterior distribution by

pm(x0:t |y1:t ) =

m∑
i=1

wiδxi
0:t

,

or, in practice, by a kernel-density approximation (e.g., [41]).
While efficient selection of the importance function g is

the subject of much research, we only consider the following
common approach. Assume that g is the prior or forward model
distribution:

g(x0:t |y1:t ) = p(x0:t ).

Thus, given a sample from p(x0), one obtains MC trajectories
by simulating from the forward model. Applying (33) for this
g, we obtain

wi
∝

p(xi
0:t |y1:t )

p(xi
0:t )

∝ p(y1:t |x
i
0:t ). (34)

Such an ensemble-based approach for obtaining samples from
the posterior is sometimes referred to as an ensemble smoother.
The crucial point to note here is that this approach can be
implemented even if we cannot find the normalizing constant
of the target posterior p(x0:t |y1:t ).

4.3. Sequential Monte Carlo

In principle, a general sequential MC algorithm follows from
the usual sequential update distributions (13) and (14).

As mentioned in the previous section, the choice of the
prior distribution as the importance distribution gives weights
proportional to the likelihood. We note that these weights can
be computed iteratively as follows. Let the weight on ensemble
member i at time t be denoted wi

t . Since the data are assumed
to be conditionally independent across time, it follows that

wi
t ∝ p(y1:t |x

i
0:t ) ∝ p(yt |x

i
t )w

i
t−1. (35)

Assume we have m samples (or “particles”) from the
analysis (posterior) distribution at time t − 1, p(xt−1|y1:t−1),
denoted by xi

t−1|t−1, i = 1, . . . , m. The analysis distribution at
time t − 1 can then be approximated by:

pm(xt−1|y1:t−1) =

m∑
i=1

δxi
t−1|t−1

wi
t−1,

where wi
t−1 are the normalized ISMC weights for time t − 1.

As with basic Monte Carlo, one often considers a kernel-density
estimate of this distribution in practice. This, can then be used
to estimate the forecast distribution as the following mixture:

pm(xt |y1:t−1) =

m∑
i=1

p(xt |xi
t−1|t−1)w

i
t−1.

Using the fact that the weights can be updated as in (35), the
analysis distribution at time t is then given by:

pm(xt |y1:t ) ∝ p(yt |xt )

m∑
i=1

p(xt |xi
t−1|t−1)w

i
t−1

=

m∑
i=1

p(xt |xi
t−1|t−1)w

i
t .

Unfortunately, when the state process or data vectors are
of relatively high dimension, the importance weights will
degenerate as t increases (i.e., only a few, or one, sample gets
all of the weight) and the posterior distribution is not adequately
represented by the sample. Various practical solutions to this
problem have been considered. We briefly (and generally)
discuss a few of these in the following subsections.

4.3.1. Particle filtering
A comprehensive overview of the particle filtering literature

can be found in [13]. As mentioned above, overcoming the
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degeneracy problem is crucial for practical implementation
of such approaches. One way to address this problem is to
eliminate the particles having low importance weights and to
multiply particles that have high weights (e.g., [23]). There are
many approaches to dealing with this degeneracy problem and
it is still an active area of research. For example, the Bootstrap
filter [13] is implemented as follows:

1. Initialization, t = 0
• for i = 1, . . . m sample xi

0|0 ∼ p(x0) and set t = 1
2. Importance sampling step

• for i = 1, . . . , m sample x̃i
t ∼ p(xt |xi

t−1) and set x̃i
t =

{xi
t−1, x̃i

t }

• for i = 1, . . . , m evaluate the importance weights w̃i
t =

p(yt |x̃
i
t ) (note: in this algorithm these weights are not

proportional to the weights at the previous time, t −1, due
to the resampling in Step 3, which induces equal weights
on the resample)

• normalize IS weights
3. Selection step

• resample with replacement m particles {xi
t : i = 1, . . . , m}

from the set {x̃i
t : i = 1, . . . , m} according to importance

weights.
• set t = t + 1 and go to step 2.

Although algorithms such as the Bootstrap filter help with
the degeneracy issue, experience has shown that in high
dimensional problems like those one would encounter in
practical atmospheric/oceanic DA problems, the degeneracy
issue is still problematic. A closely related idea is to use MC
in the context of the Kalman filter. Such methods are typically
referred to as ensemble Kalman filters.

4.3.2. Ensemble Kalman filter
The ensemble Kalman filter (EnKF) was originally

developed by Evensen [16], Evensen and van Leeuwen [17]
and Houtekamer and Mitchell [26]. The basic approach uses
Monte Carlo samples to approximate the forecast distribution
while, critically, still using the nonlinear forward model.
In particular, one estimates the prior (forecast) means and
variance/covariance matrices with the Monte Carlo samples
(ensembles). These are then used in the linear KF update
formulas to obtain the analysis distribution. There are many
different variants of this approach and it remains a very
active area of research. We will consider a very basic form
here. This “classical” EnKF approach can be considered
as an approximation to the sequential importance sampling
algorithm.

Assume one has m independent samples from the analysis
distribution at time t − 1, xi

t−1|t−1. Implicitly, we assume that

these samples are equally weighted, so wi
t−1 = 1/m. As we

have seen with ISMC, this assumption is not valid in general
and will lead to biased samples. Since it is assumed that we
have independent samples from the posterior at time t − 1, we
can use basic MC to represent the forecast distribution (again,
like sequential ISMC but with weights = 1/m):

pm(xt |y1:t−1) = (1/m)

m∑
i=1

p(xt |xi
t−1|t−1).
Next, we assume that the forecast distribution can be
characterized by its first two moments (or, equivalently, that it is
Gaussian with mean xi

t |t−1 and (estimated) variance/covariance

matrix P̂t |t−1). Then, the update (analysis distribution at time t)
is given by:

pm(xt |y1:t ) ∝ (1/m)p(yt |xt )

m∑
i=1

N (xi
t |t−1, P̂t |t−1).

Clearly, if we assume the measurement distribution is also
Gaussian, then this analysis distribution can be computed
analytically as usual for the Bayesian normal prior, normal data
model case by using the Kalman filter update equations.

Specifically, assume a linear (or linearized) observation
model yt = Ht xt + et , where the covariance of et is Rt .
Let xt |t−1 and Pt |t−1 denote the mean and covariance matrix,
respectively, of the predictive distribution p(xt |y1:t−1). We seek
to obtain a viable ensemble from the analysis distribution,
p(xt |y1:t ), or at least ensemble based estimates of its mean xt |t
and covariance matrix Pt |t . Thus, assuming one has available
independent samples xi

t−1|t−1, i = 1, . . . , m from the analysis
distribution at time t − 1, the following steps form the basic
algorithm.

• Forecast each of the samples xi
t−1|t−1 forward using the

evolution model:

xi
t |t−1 =M(xi

t−1|t−1) + ηi
t , ηi

t ∼ N (0, Q).

Note that in applications in which no model error is assumed,
one just evolves the sample forward using theM( ) model
evolution, but no additive noise.

• Use the forecast samples to calculate a sample forecast
covariance matrix, P̂t |t−1:

P̂t |t−1 =
1

m − 1

m∑
i=1

(xi
t |t−1 − x̂t |t−1)(xi

t |t−1 − x̂t |t−1)
′

where x̂t |t−1 = (1/m)
∑m

i=1 xi
t |t−1.

• Use the Kalman Filter update equations to update each
forecast sample given the sampled observations:

xi
t |t = xi

t |t−1 + Kt (yt + ei
t − Ht xi

t |t−1)

where

Kt = P̂t |t−1H′
t (Ht P̂t |t−1H′

t + R)−1

and

ei
t ∼ N (0, R), i = 1, . . . , m

give simulated observations yt + ei
t (necessary to ensure

that the analysis distribution has the appropriate spread). In
addition,

P̂t |t =
1

m − 1

m∑
i=1

(xi
t |t − x̂t |t )(xi

t |t − x̂t |t )
′

where x̂t |t = (1/m)
∑m

i=1 xi
t |t .

Critically, we note that unless M is linear, p(xt |y1:t−1)

cannot be Gaussian if p(xt−1|y1:t−1) is Gaussian. Hence,
the EnKF is analogous to a “best linear-in-the observations”



C.K. Wikle, L.M. Berliner / Physica D 230 (2007) 1–16 11
Bayesian procedure (e.g., [42]). It is often considered a
desirable feature of the EnKF that it yields the correct updating
if all distributions are Gaussian. However, in nonlinear cases,
since Gaussianity cannot hold for all time, the EnKF must yield
biased samples and estimates, even for unlimited sample sizes
(i.e., it corresponds to unweighted ISMC procedures).

There are several modifications to the EnKF algorithm
that are typically used in practice. First, because of the
dimensionality of the state process in most DA applications, it
is not possible to evolve the error covariance matrices according
to the Kalman filter equations. Rather, the forecast samples are
used to calculate a sample forecast covariance matrix as given
above. However, typically, m is relatively small because it is
too expensive to run the forward model. Thus, the covariance
estimates are not stable or not of full rank when the dimension
of Xt is larger than m. The standard solution is to consider the
Shur product (or Hadamard product). This is an “element-by-
element” multiplication of the ensemble estimated covariance
matrix by a correlation matrix S that has “compact support”.
That is, one uses Pt |t−1 ◦ S where ◦ is the Shur product and S
is a correlation matrix. We note that the product of a covariance
matrix and a correlation matrix is a covariance matrix.

In addition, it is computationally more efficient to calculate
the elements of Kt directly, rather than Pt |t−1:

P̂t |t−1H′
t =

1
m − 1

m∑
i=1

(xi
t |t−1 − xt |t−1)

× (Ht xi
t |t−1 − Ht xt |t−1)

′

Ht P̂t |t−1H′
t =

1
m − 1

m∑
i=1

(Ht xi
t |t−1 − Ht xt |t−1)

× (Ht xi
t |t−1 − Ht xt |t−1)

′,

where Ht xt |t−1 = (1/m)
∑m

i=1 Ht xi
t |t−1.

As might be expected, for situations where m is small
relative to the state dimension, effects from sampling variability
can be problematic. Some approaches to EnKF such as the
square-root filter [40] attempt to address this issue, more or less.

EnKF example: Consider again the AR(1) simulation discussed
in Section 3.1.1. Given these same simulated data, we
implement an EnKF with 10 ensemble members. Fig. 6 shows
the filter state estimates in this case, compared to the Kalman
filter estimate discussed in Section 3.1.1. In this simple case,
the EnKF is remarkably close to the Kalman filter estimates
even with only 10 ensemble members. However, as shown in
Fig. 7, the estimated state variances for the EnKF with 10
ensembles is quite variable when compared to the Kalman filter
variance. Also shown in this figure is the filter variance for a
100 member EnKF. This estimate is clearly more stable relative
to the Kalman filter variance than the 10 member ensemble.

5. Hierarchical models

Relatively recent computational advancements in Bayesian
statistics have led to increased use of hierarchical models for
complicated problems (e.g., see [20] for a general overview).
From a DA perspective, such models are ideal for retrospective
Fig. 6. First-order autoregressive process simulation Kalman filter state
estimates and EnKF filter state estimates based on 10 ensemble members.

Fig. 7. First-order autoregressive process simulation Kalman filter variance
estimates and EnKF variance estimates for 10 and 100 member ensembles.

analysis where there is significant uncertainty in the process
and parameters that control the model. The central idea of
hierarchical modeling is based on the notion of conditioning,
and that by factoring a complicated joint distribution into a
series of conditional distributions, one is better able to utilize
scientific knowledge and characterize uncertainty. Say we have
three random variables, a, b, c. Basic principles of probability
always allow one to factor the joint distribution of these
variables as, for example: p(a, b, c) = p(a|b, c)p(b|c)p(c).
It is typically the case that one can specify these component
distributions (i.e., p(a|b, c), p(b|c), and p(c)) more easily
than the full joint distribution. For environmental modeling, as
initially described in [5], it is convenient to consider a general
three-stage factorization of p(data, process, parameters). These
stages are given by:

Stage 1. Data model: p(data|process, parameters)
Stage 2. Process model: p(process|parameters)
Stage 3. Parameter model: p(parameters)
Note that the first two stages in this general hierarchy are

just the first two stages of the state–space formulation used
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in sequential updating (measurement distribution and state
evolution distribution). The difference is that here one considers
that there are parameters that should be considered as random
variables, and thus we must have a modeling stage for those
parameters. In a modeling context, one is interested in the
distribution of the process and parameters given the data. In
principle, this can be obtained by Bayes’ rule:

p(process, parameters|data) ∝ p(data|process, parameters)

p(process|parameters)p(parameters). (36)

For an overview of this framework in an atmospheric setting,
see [49] and [43], or for a more general overview in terms
of environmental modeling see [6] and [44]. Here, we outline
briefly these stages.

5.1. Component models

Although the factorization (36) seems simple, it is in fact
quite powerful in that one can accommodate various sources
of uncertainty in the component models. Furthermore, each
of these component models can often be further factorized
depending on the specific problem of interest.

5.1.1. Data models
Let Ya be data associated with a process X and let θa be

parameters associated with the data (measurement) model. As
in the usual state–space formulation presented previously, the
data model is written: p(ya |x, θa). This conditional distribution
is much simpler than the unconditional distribution of Ya since
most of the complicated structure in the data comes from
the process X . More generally, the power of the hierarchical
approach comes from the ability to accommodate multiple data
sets at various resolutions and alignments. For example, given
observations Yc, Ya for the same process, X , we often can write:

p(ya, yc|x, θa, θc) = p(ya |x, θa)p(yc|x, θc).

In other words, conditioned on the true process, the data are
often independent. Clearly, it is not typically the case that the
data sets would be unconditionally independent. In addition,
this framework presents a natural way to accommodate data at
differing resolutions or from distinct platforms (e.g., [46,19,44,
48]).

For multivariate processes xa, xc, we often can write:

p(ya, yc|xa, xc, θa, θc) = p(ya |xa, θa)p(yc|xc, θc),

where again, conditional on the true processes, it is often
reasonable to assume that the data are independent.

5.1.2. Process models
As with data models, process models are also often factored

into a series of conditional models. For example,

p(xa, xc|θx ) = p(xa |xc, θx )p(xc|θx ).

This is exactly the assumption that is made in the state–process
model used for the sequential analysis (in that case, the “a” and
“c” subscripts refer to time t and t − 1, respectively, etc.). Such
factorizations are also important for simplifying multivariate
processes as well. For example, Berliner et al. [8] consider such
a conditional framework for modeling the ocean conditional on
the atmosphere, which provides a unified probabilistic approach
for coupling processes.

5.1.3. Parameter models
Parameter models can also be factored into subcomponents.

For example, we might assume,

p(θa, θc, θx ) = p(θa)p(θc)p(θx ).

That is, we might assume parameter distributions are
independent (if justified) or we might be able to use previous
studies to facilitate the specification of these models. For
example, measurement error parameters can often be obtained
from previous studies which focus on such issues. Furthermore,
process parameters often carry scientific insight such as
spatially-dependent diffusion parameters [45] or turbulence
characteristics as in [46]. In other cases, we don’t know
much about the parameters and use vague or non-informative
distributions for parameters. Alternatively, we might use data-
based estimates for such parameters, although the use of such
estimates does not follow the traditional Bayesian paradigm.

5.2. Conceptual example

One of the strengths of the hierarchical approach is that
it can accommodate the knowledge that the “deterministic”
model for the process of interest is inherently inadequate
to describe the real-world process. For example, it is often
the case that relatively simple differential equation-based
models for the process, with random parameters (and possibly
complicated dependence structures) can model processes more
complicated than suggested by the original deterministic
differential equations.

For example, assume the true system follows the one-
dimensional Burgers Equation

∂u

∂t
= −u

∂u

∂x
+ A

∂2u

∂x2 .

As is the case in reality, assume our physical knowledge of the
system is incomplete and that we (naively) believe that linear
advection diffusion equation dynamics are appropriate for the
system,

∂u

∂t
= −α

∂u

∂x
+ A

∂2u

∂x2 .

Finite differencing suggests the following difference
equation representation for the u process at a location, s:

ut (s) = θ1ut−1(s) + θ2ut−1(s + δs) + θ3ut−1(s − δs),

where θi are functions of δs (spatial discretization), δt
(time discretization), A, and α. In vector form, for ut =

[ut (s1), . . . , ut (sn)]′:

ut = Mut−1 + Mbub
t−1,
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where M, Mb are functions of θ1, . . . , θ3; ub
t = [ut (s0)

ut (sn+1)]
′ corresponds to the boundary process. Specifically,

M =



θ1 θ2 0 · · · 0

θ3 θ1 θ2
...

0
. . .

. . .
. . . 0

... θ3 θ1 θ2
0 · · · 0 θ3 θ1

 and Mb
=


θ3 0
0 0
...

...

0 0
0 θ2

 .

It is important to note that we do not assume this is the correct
model, but rather let the state process (Ut ) be random, allow the
parameters be random, and add (possibly) correlated noise in
an attempt to allow the data to help modify our prior dynamical
model. In this case, given observations yt , we can write the
following hierarchical model:

• Data model:

yt |ut , Rt ∼ N (Ht ut , Rt ), t = 1, . . . , T

where yt is pt ×1, ut is n×1, Ht is an pt ×n matrix that maps
data to prediction locations, and Rt is a pt × pt observation
error covariance matrix.

• Process model:

ut |ut−1, θ , Q(γ ) ∼ N (M(θ)ut−1 + Mb(θ)ub
t−1, Q(γ )),

for t = 1, . . . , T where we have used notation to indicate
that the propagator matrices depend on the parameters θ .
In addition, we note that it is typically the case that the
error covariance matrix Q will be parameterized in the
hierarchical setting, and we denote those parameters by γ

(where these parameters are sometimes given distributions
at a lower stage of the model hierarchy). In some cases, one
might assume the boundary process ub

t is known. However,
this is often not realistic and one should model this process
as well. A significant advantage of the hierarchical approach
is that this is fairly easy to do by specifying a distribution
for this process at a lower stage of the model hierarchy
(e.g., [47]). That is, in the primary process stage, one is
modeling the interior process conditional on this boundary
process (assuming it is known), whereas the variability of the
boundary process is accounted for at the lower stage. We also
must specify the prior distribution for the initial condition,
u0 ∼ N (µ0,Σ0), where we give µ0 and Σ0 similarly to
the specification of background means and covariances in
traditional DA.

• Parameter models: Priors for θi are also needed. That is, we
must specify the joint distribution of θ1, θ2, and θ3. This may
be simplified if we take into consideration the relationships
suggested by the finite difference representation:

θ̃1 = 1 −
2δt A

δ2
s

,

θ̃2 =
δt A

δ2
s

−
δtα

δs
,

θ̃3 =
δt A

δ2
s

+
δtα

δs
,

where δs and δt are the spatial and temporal discretization
intervals. It might be reasonable to assume conditional
independence in this case, θi ∼ N (θ̃i , σ
2
i ), where σ 2

i are
specified to reflect ones prior belief in how closely the
system should follow the advection–diffusion dynamics.
Since the dependence of these parameters is most likely due
to the common parameters (e.g., A and α), if we condition
on these, then it might be a reasonable prior model to assume
independence of the θi . In that case, one must then specify
a prior distribution for A and α. In such a prior, one might
allow these parameters to vary spatially (e.g., [45]). In that
case, spatial dependence is built into the distributions of
these parameters to allow them to vary relatively smoothly
over the spatial domain, and to borrow strength from data
rich areas to data poor areas. Typically, since we are not
trying to solve the PDE explicitly, we do not specify values
for δs and δt . Rather, these are accounted for implicitly in
the random parameters θ̃i or absorbed in the distributions of
A and α.

Importantly, one may need to constrain these distributions
to ensure non-explosive (stable) growth. Depending on the
specific parameterization chosen, one might be able to work
out the appropriate analytical conditions on θi to guarantee
stability (i.e., so that the eigenvalues of M(θ) are less than
one in modulus). Alternatively, one might have to check these
conditions numerically as the θi parameters are sampled in the
estimation algorithm (e.g., MCMC as discussed in the next
section). However, experience has shown that such stability
considerations (e.g., CFL conditions) are not as important
in Bayesian hierarchical models as in traditional numerical
solutions to PDEs because data is available to naturally
constrain the solution if needed. It is important to remember
that we are not seeking numerical solutions to the PDE here,
but rather are using the discretized PDE to suggest the form
of the statistical model. This is a promising area of research in
hierarchical Bayesian physical/statistical modeling.

5.3. Bayesian computation for hierarchical models, MCMC

How does one do the Bayesian computation for hierarchical
models? In relatively low-dimensional problems, importance
sampling can be used (e.g., [8]). In higher dimensional
problems, one typically uses some form of Markov Chain
Monte Carlo (MCMC) algorithm. In MCMC simulation, one
constructs a Markov chain to have a stationary, ergodic
distribution which coincides with the posterior distribution
of interest. Simulations from the chain then converge to
realizations from the posterior. Asymptotically, the samples for
a given variable sampled in this way are identically distributed,
but dependent. For a more formal discussion of MCMC see, for
example, [33].

As it turns out, there are several relatively simple
algorithms that accomplish this. These include the Gibbs,
Metropolis-Hastings, and slice samplers. For illustration,
consider the Gibbs sampler. First, we must define the
necessary distributions. Assume that our data correspond
to y and our variables of interest (including process and
parameters) are denoted by θ i , i = 1, . . . , p. Then, our
target posterior, for which we would like to draw samples



14 C.K. Wikle, L.M. Berliner / Physica D 230 (2007) 1–16
is given by: p(θ1, . . . , θ p|y). To implement the sampler, for
each θ i one needs the so-called full conditional distribution:
p(θ i |all other θ j , y); we abbreviate this p(θ i |·). Then, the
Gibbs sampling algorithm is given by:

• Initialize: θ
(0)
1 , . . . , θ (0)

p

• Iterate: given θ
(i)
1 , . . . , θ (i)

p , generate θ
(i+1)
1 , . . . , θ (i+1)

p from
the following sequence of full-conditionals:

p(θ
(i+1)
1 |θ

(i)
2 , . . . , θ (i)

p , y)

p(θ
(i+1)
2 |θ

(i+1)
1 , θ

(i)
3 , . . . , θ (i)

p , y)

p(θ
(i+1)
3 |θ

(i+1)
1 , θ

(i+1)
2 , θ

(i)
4 , . . . , θ (i)

p , y)

...

p(θ (i+1)
p |θ

(i+1)
1 , . . . , θ

(i+1)
p−1 , y).

This algorithm is easy to implement if the full conditionals
can be derived and are relatively easy to simulate from.
Otherwise, additional sampling methods within the sampler
must be utilized (see [33]). One must also decide on initial
conditions to start the Markov chain, how long to let the
chain “burn-in”, how to account for the dependency in the
samples, and how to establish convergence. These issues are
beyond the scope of this article, but can be found in the
literature (e.g., [33]). In addition, even if the full conditional
distributions are conceptually easy, implementation may be
difficult or impossible for problems with high-dimensional
data, process, or parameters. Furthermore, implementation
can be problematic in cases with non-linear operators and/or
distributions for which one cannot analytically derive the full-
conditional distributions.

5.3.1. Simple Gibbs sampling example
To illustrate the MCMC Gibbs sampler approach to DA, we

again consider the simple AR(1) process with measurement
error example discussed in Section 3.1.1. In this case, our
data model is given by (26) and our process model given by
(27). We also have an initial condition prior X0 ∼ N (0, 1)

as stated in Section 3.1.1. Assume for illustration that we
“know” the measurement error variance R = 0.1 but do
not know the evolution operator M nor the process variance
σ 2

η . Thus, we specify prior distributions for these, M ∼

U (−1, 1), σ 2
η ∼ IG(2, 1), where U (w1, w2) corresponds to

a continuous uniform distribution between w1 and w2, and
IG(a, b) corresponds to an inverse gamma distribution with
shape parameter a and scale parameter b.

In this case, the posterior distribution of interest is:

p(M, σ 2
η , x0, . . . , xT |y1, . . . , yT )

∝

T∏
t=1

p(yt |xt )p(xt |xt−1, M, σ 2
η )p(x0)p(M)p(σ 2

η ). (37)

Given the uncertainty in the parameters, we cannot find the
normalizing constant for this posterior distribution analytically.
We can, however, use MCMC (specifically, a Gibbs sampler)
to obtain samples from this distribution. To do so, we need the
following full-conditional distributions:
p(x0|·) ∝ p(x1|x0, M, σ 2
η )p(x0) = N ((M2/σ 2

η + 1)−1

× (Mx1/σ
2
η ), (M2/σ 2

η + 1)−1) (38)

p(xt |·) ∝ p(xt+1|xt , M, σ 2
η )p(xt |xt−1, M, σ 2

η )p(yt |xt )

= N ((M2/σ 2
η + 1/σ 2

η + 1/σ 2
ε )−1

× (Mxt+1/σ
2
η + Mxt−1/σ

2
η + yt/σ

2
ε ),

(M2/σ 2
η + 1/σ 2

η + 1/σ 2
ε )−1),

for t = 1, . . . , T − 1. (39)

p(xT |·) ∝ p(xT |xT −1, M, σ 2
η )p(yT |xT )

= N ((1/σ 2
η + 1/σ 2

ε )−1

× (MxT −1/σ
2
η + yT /σ 2

ε ), (1/σ 2
η + 1/σ 2

ε )−1). (40)

p(M |·) ∝

T∏
t=1

p(xt |xt−1, M, σ 2
η )p(M)

= N[−1,1]

( T∑
t=1

x2
t−1/σ

2
η

)−1

×

(
T∑

t=1

xt xt−1/σ
2
η

)
,

(
T∑

t=1

x2
t−1/σ

2
η

)−1
 , (41)

where N[−1,1]( ) indicates a normal distribution truncated
between −1 and 1. Finally,

p(σ 2
η |·) ∝

T∏
t=1

p(xt |xt−1, M, σ 2
η )p(σ 2

η )

= IG

T/2 + a,

(
1/b + 0.5

T∑
t=1

(xt − Mxt−1)
2

)−1
 . (42)

Note that the normal full-conditional distributions can be
derived by completing the square and the inverse gamma
distribution can be derived by recognizing that the IG prior
on σ 2

η from a normal distribution is conjugate (e.g., see [20]).
We also note that the full-conditionals for xt , t = 1, . . . , T
assume that there are no missing data. The corresponding full-
conditional for the case of a missing yt is also normal but
without the terms corresponding to yt and σ 2

ε . These are not
presented here for space considerations.

To implement the Gibbs sampler, one could use the
following pseudo-code:

Assign initial values to: x (0)
t , t = 0, . . . , T , M (0), σ

2(0)
η

for k = 1 to m
x (k)

0 = sample from (38) given x (k−1)
1 , M (k−1),σ 2,(k−1)

η

for t = 1, . . . , T −1, x (k)
t = sample from (39) given x (k)

t−1,

x (k−1)
t+1 , M (k−1), σ

2,(k−1)
η

x (k)
T = sample from (40) given x (k)

T −1, M (k−1), σ
2,(k−1)
η

M (k)
= sample from (41) given x (k)

t , σ
2,(k−1)
η

σ
2,(k)
η = sample from (42) given x (k)

t , M (k)

end

Given data and starting values, one could generate m
samples from this algorithm. We note that for Markovian
state–space process models such as presented here, there are
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Fig. 8. MCMC Posterior samples for M (top) and σ 2
η (bottom) based on the

AR(1) simulation described in Section 3.1.1.

Fig. 9. MCMC posterior mean and 2.5% and 97.5%-tiles for AR(1) simulation
described in Section 3.1.1.

more efficient sampling approaches than the basic approach
given above. These typically make use of the Kalman filter and
smoother algorithms and effectively allow one to update the full
state–process at once (e.g., see [42] for an overview).

This algorithm was implemented on the simulated data
discussed in Section 3.1.1 with an MCMC sample of 40,000
after a 10,000 sample burn-in. Fig. 8 shows histograms of
MCMC samples from the posterior for M and σ 2

η . Clearly, the
true values for these parameters (0.7 and 0.5, respectively) used
in the simulation are contained in these posterior distributions.
In addition, Fig. 9 shows the posterior mean of the state process
(xt ), and the 95% Bayesian credible intervals (for each time) as
a measure of uncertainty. Note that the posterior distribution
seems to cover the true process and the uncertainty in the
data free regions (t = 40–43, t = 80–83) is much larger, as
expected.

5.3.2. Real world examples
Although hierarchical Bayesian methods are not yet

practical for operational DA in the atmospheric sciences, they
have been used successfully in various smaller-scale contexts
related to DA. For example,

• Berliner et al. [7] develop a Bayesian hierarchical model
for tropical Pacific sea surface temperature. This model uses
qualitative dynamics in reduced dimensional (EOF) space,
conditioned on hidden processes. In this case, the dynamical
propagator is time-varying, depending on the current and
projected climate state.

• Wikle et al. [46] use a hierarchical Bayesian model to
predict tropical surface winds given high-resolution satellite
scatterometer observations and low-resolution analysis
fields. In this context the data models included (low
resolution) data from analysis fields and high resolution, but
incomplete, satellite scatterometer observations of winds.
The process model was based on equatorial shallow water
equations with random evolution parameters for large-
scale dynamics and a multiresolution (wavelet) process for
small-scale dynamics. Parameter model distributions for the
equatorial modes was based on the climatology, and priors
for multiresolution modes based on observed power-law
(5/3 slope) scaling behavior in tropical surface winds over
the ocean.

• Berliner et al. [8] use the Bayesian hierarchical approach to
couple models for the atmosphere and ocean. That is, they
develop the idea of hierarchical coupling of complicated sys-
tems, where each subsystem is also modeled hierarchically.
Approximate dynamics, with random parameters and noise
terms are used to account for model uncertainty and unmod-
eled components. A hybrid importance sampler, the Gibbs
sampler algorithm, is used and the model is tested in an
observation, simulation system experiment.

6. Conclusion

The Bayesian framework is the ideal probabilistic frame-
work for combining information. It follows that it provides
a complete and general perspective for data assimilation. In
the case of linear operators and Gaussian error distributions,
well-known equations for optimal interpolation follow from the
Bayesian development. Furthermore, in the sequential estima-
tion setting, the Kalman filter and smoother can be derived
from a Bayesian perspective. More importantly, the Bayesian
paradigm provides the more general probabilistic DA linkage
for non-Gaussian or nonlinear processes, in both the retrospec-
tive and sequential settings. However, it is typically not possible
to derive analytically the posterior distributions in these cases.
Thus, one must consider various (local linear) approximations
and/or Monte Carlo sampling. For example, as shown here, the
particle filter (sequential importance sampling) gives a useful,
approximate posterior distribution through Monte Carlo sam-
pling for nonlinear operators and non-Gaussian distributions.
However, due to the curse of dimensionality, it cannot be ap-
plied to problems with high dimensional data and state spaces.
The ensemble Kalman filter is arguably a viable and practical
alternative to the particle filter.

In cases where there are complicated data sources,
and/or uncertainty in the process and parameter models,
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the Bayesian hierarchical modeling approach is a plausible
extension to the usual state–space modeling approach used
in sequential updating. In addition, the hierarchical approach
suggests that relatively simple physical models with random
parameters and/or correlated error processes can model real-
world processes with complicated spatio-temporal structure.
This approach can also be applied to multiple processes,
and suggests a probabilistic approach for coupling models.
Although such models cannot be implemented in extremely
high-dimensions, such limitations will be less of a factor as
computing technology improves and necessary algorithms are
developed.
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