
J. Tu* 

K. K. Choi^ 

Y. H. Park* 

Center for Computer-Aided Design and 
Department of Mechanical Engineering, 

College of Engineering, 
Ttie University of Iowa, 

Iowa City, lA 52242 

A New Study on Reliability-
Based Design Optimization 
This paper presents a general approach for probabilistic constraint evaluation in the 
reliability-based design optimization (RBDO). Different perspectives of the general ap­
proach are consistent in prescribing the probabilistic constraint, where the conventional 
reliability index approach (RIA) and the proposed performance measure approach (PMA) 
are identified as two special cases. PMA is shown to be inherently robust and more 
efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for 
violated probabilistic constraints. Moreover, RBDO often yields a higher rate of conver­
gence by using PMA, while RIA yields singularity in some cases. 

1 Introduction 
In engineering design, the traditional deterministic design opti­

mization model (Arora, 1989; Haftka and Gurdal, 1991) has been 
successfully applied to systematically reduce the cost and improve 
quality. However, the existence of uncertainties in either engineer­
ing simulations or manufacturing processes calls for a reliability-
based design optimization (RBDO) model for robust and cost-
effective designs. 

In the RBDO model for robust system parameter design, mean 
values of random system parameters are usually used as design 
variables, and the cost is optimized subject to prescribed probabi­
listic constraints by solving a mathematical nonlinear program­
ming problem. Therefore, the solution from RBDO provides not 
only an improved design but also a higher level of confidence in 
the design. 

To date, almost all researchers on RBDO (Enevoldsen, 1994; 
Enevoldsen and Sorensen, 1994; Chandu and Grandi, 1995; 
Frangopol and Corotis, 1996; Choi et al., 1996; Yu et al., 1997, 
1998; Wu and Wang, 1996; Grandhi and Wang, 1998) have used 
the reliability index evaluated in the traditional reliability analysis 
to prescribe the probabilistic constraint. In this paper, the proba­
bilistic constraint evaluation in RBDO is studied from a broader 
perspective. It is shown that the target probabilistic performance 
measure of the proposed performance measure approach (PMA) 
evaluated in an inverse reliability analysis is consistent with the 
conventional reliability index approach (RIA) in prescribing the 
probabilistic constraint for RBDO. Moreover, it is illustrated that 
the probabilistic constraint can be effectively evaluated from dif­
ferent perspectives in a general approach where RIA and PMA are 
two special cases. 

Thus, different perspectives of the general approach are consis­
tent in prescribing the probabilistic constraint because any of them 
can sufficiently identify the exact status of the probabilistic con­
straint. However, they are not equivalent in solving the RBDO 
problem. It is shown in this paper that PMA is inherently robust for 
RBDO and is more efficient in evaluating the inactive probabilistic 
constraint. In contrast, RIA may yield singularity in many RBDO 
applications though it is more efficient in evaluating the violated 
probabilistic constraint. Thus, efficiency and robustness in solving 
RBDO problems can be achieved by using PMA and RIA adap-
tively depending on the estimated marginal status of the probabi­
listic constraint in the RBDO iterations. 
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2 Probability Analysis of the System Performance 
Function 

The uncertainties of an engineering system are identified by the 
variations of the random system parameter X = [X,]'^ (/ = 1, 
2, . . . , n). The probability distribution of X, is described by its 
cumulative distribution function (CDF) Fx,(Xi) or probability den­
sity function (PDF)/j-,(j;:,), and is often bounded by the tolerance 
limits of the system parameter (Dai and Wang, 1992; Ayyub and 
McCuen, 1997). 

The system performance criteria are described by system per­
formance functions. Consider a system performance function 
G(x), where the system fails if G(x) < 0. The statistic description 
of G(x) is characterized by its CDF Fa{ g) as 

Foig) = P{G(x) < g) = I . . . I /,(x)rfx, . . . dx,„ 

\'-<x<x" (1) 

where/x(x) is the joint probability density function (JPDF) of all 
random system parameters and g is named the probabilistic per­
formance measure. The probability analysis of the system perfor­
mance function is to evaluate the non-decreasing Fa{g) ~ g 
relationship, which is performed in the probability integration 
domain bounded by the system parameter tolerance limits given in 
Eq. (1). 

A generalized probability index )3G, which is a non-increasing 
function of g, is introduced (Madsen et al., 1986) as 

Foig) = *(-i3G) (2) 

which can be expressed in two ways using the following inverse 
transformations (Rubinstein, 1981), respectively, as 

(3«) fio(8) = -^-\Fa{g)) 

giPo) = Fo'm-fia)) Ob) 

Thus, the non-increasing Pa ~ g relationship represents a 
one-to-one mapping of FcX g) ~ g and also completely describes 
the probability distribution of the performance function. Since the 
system performance is often non-normal distribution, the JSQ ~ g 
relationship is generally nonlinear. 

3 General Definition of the RBDO Model 
In the robust system parameter design, the RBDO model 

(Enevoldsen and Sorensen, 1994; Chandu and Grandi, 1995; Choi 
et al., 1996; Wu and Wang, 1996; Yu et al., 1997, 1998; Grandhi 
and Wang, 1998) can generally be defined as 

minimize Cost(d) (4a) 
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subject to Pfj = P{Gj{x) < 0) < Pfj, 

i = 1, 2, 

d < d ' 

np {Ab) 

(4c) 

where the cost can be any function of the design variable d = 
[dif — [^i-iY (' = 1> 2, . . . , n), and each prescribed failure 
probability limit Pj is often represented by the reliability target 
index as ^, = - $ ~ ' ( P / ) . Hence, any probabilistic constraint in 
Eq. {Ab) can be rewritten using Eq. (1) as 

Fo(0) < <I>(-i3,) (5) 

which can also be expressed in two ways through inverse trans­
formations as 

(6a) 

(6b) 

where jŜ  is traditionally called the rehability index and g* is 
named the target probabilistic performance measure in this paper. 

To date, most researchers have used the reliability index ap­
proach (RIA) of Eq. (6a) to directly prescribe the probabilistic 
constraint as 

i3.(d) > |8, (7a) 

At a given design d* = [d'lY = iy^'lY, the evaluation of 
reliability index /3,(d*) for RIA is performed using the well-
developed reliability analysis (Madsen et al., 1986) as 

k\ = _ r 1 S - l ^.(d*) = - $ 
G(x)<0 

fxix)dxt . . . dx„: 

xk^Xi^xl (7b) 

It is clear that Eq. {6b) can also be used to prescribe the 
probabilistic constraint and it is called the performance measure 
approach (PMA) as 

g * ( d ) s O (8a) 

and the evaluation of target probabilistic performance measure 
g*(d*) in PMA is called the inverse reliability analysis (Tu and 
Choi, 1997) as 

gHd") = Fc 
\ •' G(x)<x» 

. . . fx(x)dxt . . . dx„\ 

4 Broader Perspective of the Probabilistic Constraint 
Evaluation 

RIA and PMA are directly derived from the general definition of 
the probabilistic constraint and they are consistent in prescribing 
the probabiUstic constraint in RBDO. In fact, the probabilistic 
constraint can be understood from an even broader perspective, 
where RIA and PMA are just two special cases. 

4.1 Example. Consider a system described by two indepen­
dent, uniformly distributed random system parameters, X, ~ Uni-
form[a,, b,] {i = 1, 2), and their PDFs are expressed as 

fx,ixi) = l/(fo, - a,) a,. < X, < (• = 1, 2 (9a) 

where the mean values and variances of system parameters are 
expressed, respectively, as 

XifxXxi)dx, = (a, - bi)/2, i = 1, 2 {9b) 

{Xi ~ ix^%{x,)dx, = {bi - ai)Vn, r = 1, 2 (9c) 

In the system parameter design, both fij and JLIJ are chosen as 
design variables, d = [rf,, rfa]'^ — [MU IJ-2V, and their variances 
are constants as a\ = crl = \. Thus, the PDFs of system parameters 
can be expressed in terms of design variables as 

fx>{Xi) (/,• - 1 < X( < d,. + 1, ! = 1, 2 Od) 

Since Xi and Xj are mutually independent, their JPDF can be 
explicitly expressed as 

A(x) = A, {x,)fxMi) = i rf,- - 1 s Xi < rf,. + 1, (• = 1, 2 
(9e) 

Consider a probabilistic constraint in the RBDO model that is 
defined as 

P{G{x) <0)^Pf= 2.275% = 4>(-^,) (9/) 

where j3, = -<t> '(0.02275) = 2. The system performance 
function G(x) and its CDF are 

G(x) = xi + 2 x 2 - 10 (9g) 

Faig) = 
G(x)<s 

dx. dx„ 

x f < x , < x r (8) 

d,-\<x,^dt+\, i=\,2 {9h) 

At three different designs, d' = [3.7, 3.7]'', d ' = [4.2, 4.2]'', 
and d' = [4.5, 4.5]'^, the Fo{g) ~ g relationship can be obtained 
by performing the probability integration in Eq. {9h) repeatedly 

Nomenclature 

X = Random system parameter; X 
= [X,.]' (1 = 1, 2, n) 

X = Outcomes of the random sys­
tem parameter; x = [x,]'^ (/ = 
1, 2, . . . , n) 

x'̂ , x" = Lower and upper tolerance lim­
its of the system parameter; 
x ' < X s x" 

$(•) = Standard normal cumulative 
distribution function (CDF) 

G(x) = System performance function; 
system fails if G(x) < 0 

FG{ g) — CDF of the system performance 
function G(x); Faig) -
P{G{x) < g) 

np = Total number of the probabilis­
tic constraints in the RBDO 
model 

Pf = Failure probability; Pf = 
FG(0) = P{G{x) < 0) 

Pf = Prescribed failure probability 
limit 

j3, = Reliability index; jS, = 
-<p-'{Pf) = -^-\Fa{0)) 

1 1 * 

'H'Hi 

Reliability target index; /3, = 
-^~'{Pf) 
Target probabilistic performance 
measure; P{G{x) < g*) = Pf 
MPP of RIA corresponding to 
G(u) = 0 in the u-space; /3, = 
i|ut.o!l 
MP? of PMA corresponding to 
G(u) = g* in the u-space; g* 
= G{U%a,) 
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B o = - « - ^ ( F o ( g ) ) 

Fig. 1 General Interpretation of Probabilistic Constraint 

2, can sufficiently identify the status of the probabilistic constraint, 
while RIA and PMA are two extreme cases. 

However, RIA can yield singularity in the probabilistic con­
straint evaluation. For this, consider design d' = [4.5, 4.5]'^, 
whose non-increasing fio ~ g curve is shown in Fig. 1. Note that 
the point (^„ 0) does not exist because the failure probability of 
the design is zero. Numerically, the reliability index j3,(d') ap­
proaches infinity and thus RIA yields singularity. This happens 
because the system performance function G(x) is positive every­
where in the corresponding probability integration domain of the 
design. If G(x) is negative everywhere, the failure probability of 
the design is one hundred percent and RIA yields singularity again 
as the reliability index approaches negative infinity. In contrast, 
PMA is inherently robust because the point ()3„ g*) always exists. 

with different values of g. Then, the corresponding non-increasing 
Pa ~ g curves are obtained using Eq. (3a), which are illustrated 
in Fig. 1. 

4.2 General Interpretation of the Probabilistic Constraint. 
Note that the comprehensive definition of the probabilistic con­
straint in Eq. {4b) includes two inequality relations. Conceptually, 
any probabilistic constraint in Eq. (4b) (or Eq. (5)) can be repre­
sented by a set of three simple constraints, where two inequality 
constraints are related to each other through an equality constraint 
by Eq. (2), as 

g > 0 

(10a) 

(IQb) 

(10c) 

The limit-state of Eq. (lOa) is represented in Fig. 1 by the 
vertical line at ^, = -<I>"'(P^), the limit-state of Eq. (lOh) is 
represented by the /3G-axis, and the limit-state of Eq. (10c) is 
represented by the non-increasing ^a ~ g curve. Thus, the J8G -
g space is naturally divided into four regions as 

Active Point: j3c = j8, and g = 0 (11a) 

Infeasible Region: jSc ^ J3, and g < 0 (Wb) 

Feasible Region: fie—Pi and g S O (He) 

Ambiguous Regions: (/3G — jB,) • g < 0 (IW) 

The probabilistic constraint is violated for design d' as the 
corresponding Pa ~ g curve passes through the infeasible region. 
It is active for design d̂  as its PG ~ g curve passes through the 
active point. And it is inactive for design d̂  as its jSc ~ g curve 
passes through the feasible region. In other words, a given design 
is infeasible if the non-increasing PG~ g curve passes through the 
infeasible region, while the design is feasible if the curve passes 
through the feasible region. For the active probabilistic constraint 
at design d ,̂ the only point outside the ambiguous regions is the 
active point (/3„ 0) because /3,(d^) = p, and g*(d^) = 0. That 
is, the probabilistic constraint can be evaluated by finding any 
point on the j3c ~ g curve that is outside the ambiguous regions. 

Thus, a single inequality relation can be used to represent the 
probabilistic constraint, such as Eq. (7a) in the conventional RIA 
or Eq. (8a) in the proposed PMA. On the /So ~ g curve for design 
d* = [4, 4]'^, as shown in Fig. 2, the point (P„ 0) is identified in 
RIA by performing reliability analysis of Eq. (7b), and the point 
(P„ g*) is identified in PMA by performing inverse reliability 
analysis of Eq. (Sb). The probabilistic constraint is violated in RIA 
because /3j = 1.512 < ]3, = 2 as well as in PMA because g* = 
-0 .452 < 0. 

4.3 Singularity of RIA in the Probabilistic Constraint 
Evaluation. Note that any point on the J3G ~ g curve that is 
outside the ambiguous regions, such as the point (p„, g„) in Fig. 

5 A General Approach for the Probabilistic Constraint 
Evaluation 

A general approach for the probabilistic constraint evaluation 
can be established by finding the point (/3„, g„) between (/3„ 0) 
and (P,, g*) so that a single inequality relation can be used to 
represent the probabilistic constraint. 

For general evaluation of the probabilistic constraint given in 
Eqs. (10a) to (10c), the Taylor series expansion of Eq. (10c) at the 
point (/3„, g j can be obtained in two ways by using its equivalent 
forms in Eq. (3a) and Eq. (3b), respectively, as 

Poig) = )3„ + E 
d"Pa{g-ga)" 
dg" n\ 

gC/Sc) = g„ + E 
d-'gAPc-Par 
dpi n\ 

(12a) 

(lib) 

By assuming g = 0 (RIA) in Eq. (10^) and substituting Eq. 
(12a) into Eq. (10a), an inequality relation can be obtained to 
represent the probabilistic constraint as 

^G(O) = /3„ + 2 
dg" n\ '• 

(13a) 

Similarly, by assuming Pc = P, (PMA) in Eq. (10a) and 
substituting Eq. (\2b) into Eq. (\Qb), another inequality relation is 
obtained to represent the probabilistic constraint as 

gifi,) = g.+ l.j^^-^, ^ 0 (Ub) 

Because high order derivatives in Eqs. (13a) and (13&) are 
generally difficult to obtain in practical applications, the wth-order 
approximation of the probabilistic constraint is instead used in two 
ways depending on whether the point (j3„, g„) is exemplified by 
reUability or inverse reliability analysis, respectively, i.e.. 

( / 3 t . g * ) 

Fig. 2 Illustration of Probabilistic Constraint Evaluation at d" = [4, 4]'^ 
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PAd) + S d"liA-ga)". 
/3,, forgiven g„=ag* (14a) 

gaid) + E 
d"gAli,~ IJa)". 
dpi n\ 

0, for given 

i 3 „ = ( l - a ) / 3 , + aj8, {\Ab) 

where the adaptive factor is in 0 s a < 1, and m depends on the 
specific approximate probability integration method. For example, 
m = 1 if the first-order reliability method (FORM) is used and 
m = 2 if the second-order reliability method (SORM) is used. It 
is clear that Eq. (14a) becomes the conventional RIA of Eq. (7a) 
if a = 0, and Eq. (146) becomes the proposed PMA of Eq. (8a) if 
a = 1. 

The consistency of various perspectives in the general approach 
is maintained by using a point (J3„, g,) that can sufficiently 
identify the limit-state of the probabilistic constraint, which is 
ensured by the adaptive factor so that the point is in between 0 „ 
0) and (/3„ ^*) . If the probabilistic constraint is active at design 
d', then the unique point is (/3„ 0) for arbitrary adaptive factor 
0 < a < 1 because p„(d') = jS^d*) = ^, and g„(d*) = g*(d') = 
0. Thus, various perspectives of the general approach are consis­
tent in prescribing the probabilistic constraint and they are ex­
changeable in RBDO iterations. 

6 FORM for Approximate Probability Integration 

Either Eq. (14a) or Eq. {lAb) can be used to prescribe a prob­
abilistic constraint in the RBDO model. At design d' in the RBDO 
iterations, the evaluation of Eq. (14a) requires reliability analysis 
and the evaluation of Eq. (146) requires inverse reliability analysis. 
In either case, the multiple integration is involved and the exact 
probability integration is in general extremely complicated to 
compute, i.e., 

/3„(d* -^~\Fo{ga)) 

= - $ 
G(x)<g„ 

• • fxWdx^ . . . dx„ 

xf < Xi < xf (15a) 

g„(d^) = F ^ > ( $ ( - ^ J ) 

GW<i„ 

fxWdXi . . . dx„ 

xf^x,^ x"i (156) 

The Monte Carlo simulation (MCS) (Rubinstein, 1981) provides 
a convenient approximation for both reliability analysis and in­
verse reliability analysis because it directly approximates the ;3G ~ 
g relationship. The minimum MCS sample size for finding the 
point (/3„, g„) is usually suggested as 

L = 10/P(G(x) < g j = 10/Fc(gJ = 1 0 / $ ( - ^ J (16) 

where L increases exponentially in terms of /3„ and becomes very 
large if the reliability target is high, e.g., L = 7692 for g„ = 3. 
Thus, MCS becomes prohibitively expensive for many engineering 
applications. 

Some approximate probability integration methods has been 
developed to provide efficient solutions (Breitung, 1984; Madsen 
et al , 1986; Kiureghian et al., 1987; Wu and Wirsching, 1987; 
Tvedt, 1990), such as FORM or the asymptotic SORM. FORM 
often provides adequate accuracy and is widely accepted for 
RBDO applications. The RIA and PMA can be used effectively 

with FORM in the probabilistic constraint evaluation. If the more 
accurate (and also more expensive) SORM is necessary in some 
engineering applications, the intermediate perspective of the gen­
eral approach becomes attractive. This paper focuses on RBDO 
using FORM for approximate probability integration. Thus, RIA 
and PMA, the two extreme cases of the general approach, are 
analyzed next and compared in RBDO applications. 

6.1 General Interpretation of FORM. In FORM, the 
transformation (Hohenbichler and Rackwitz, 1981; Madsen et al., 
1986) from the nonnormal random system parameter X (x-space) 
to the independent and standard normal variable U (u-space) is 
required. If all system parameters are mutually independent, the 
transformations can be simpHfied as 

M, = <&-'(Fx,(^,)), i = l , 2 . 

X; = F-'{^{u,)), i= 1, 2, 

(17a) 

(176) 

The performance function G(x) can then be represented as 
Gain) in the u-space. The point on the hypersurface Gu(u) = g„ 
with the maximum joint probability density is the point with the 
minimum distance from the origin and is named the most probable 
point (MPP) u*=g„. The minimum distance, named the first-order 
rehability index â,FORM. is an approximation of the generalized 
probability index corresponding to g„ as 

Pa.?, Iia= Pciga) (18) 

Inversely, the performance function value at the MPP u*^^^ with 
the distance /3„ from the origin is an approximation of the proba­
bilistic performance measure g„ as 

ga.FORM = G(;(U3 = p,) = g„ = g ( /3 J (19) 

Thus, the first-order reliability analysis is to find the MPP on the 
hypersurface Guin) = g„ in the u-space, and first-order inverse 
reliability analysis is to find the MPP that renders the minimum 
distance ^„ from the origin. In two special cases, the MPP u*=o is 
found by performing first-order reliability analysis in RIA, while 
the MPP u*=p, is found by performing first-order inverse reliability 
analysis in PMA. 

6.2 First-Order Reliability Analysis. In traditional first-
order reliability analysis (Madsen et al, 1986), the first-order 
reliability index /3„,PORM is the solution of a nonlinear optimization 
problem 

subject to G[;(u) = g„ 

(20a) 

(206) 

where the optimum is the MPP u*=g„ and thus /3O,FORM = l|u1-goll-
Many MPP search algorithms (such as HL-RF, Modified HL-RF, 
AMVFO) and general optimization algorithms (such as SLP, SQP, 
MFD, augmented Lagrangian method, etc.) can be used to find the 
MPP (Wu and Wirsching, 1987; Wu et al, 1990; Liu and 
Kiureghian, 1991; Wang and Grandhi, 1994; Wu, 1994; Choi et 
al., 1996; Yu et al., 1997, 1998). 

6.3 First-Order Inverse Reliability Analysis. In first-order 
inverse reliability analysis, the first-order target probabilistic per­
formance measure g„,FORM is the solution of a sphere-constrained 
nonlinear optimization problem (Tu and Choi, 1997) 

minimize G[/(u) 

subject to ||u|| = j8„ 

(21a) 

(216) 

where the optimum is the MPP Up=p„ and thus gamKaiPa) = 
G„(u*,=,„). 

General optimization algorithms (such as SLP, SQP, and MFD) 
can be used to solve this sphere-constrained optimization problem, 
which is generally easier to solve than the optimization problem in 
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G u ( u ) = 2 . 0 / , 

' r 
G u ( u ) = 1 . 0 ; 1 

1 \ 
\ 1 

Gu(ia)=0.0 \ \ 

Gu(u)=:g* = - 0 . ^ 5 2 \ 

G u ( u ) = - 0 . B 1 2 \ " ' • ' 

MPP l o c u s \ 

1 
1 
1 

\ \ \ 
V 

u 

i 

1 J 

2 

L 

^J.o.o ^ 

11\ B=0.5B3 

^=i8, = 1.32B 

/3=;St = 2 . 0 0 

/3=2.598 

Fig. 3 Illustration of MPP locus In the u-space 

Eqs. (20a) and {20b) due to the regular sphere constraint of Eq. 
(2\b). In particular, the advanced mean-value first-order method 
(AMVFO) (Wu et al, 1990; Wu, 1994) can also be used effec­
tively in PMA for many engineering applications. 

6.4 Example. Consider the same probabilistic constraint de­
fined in Section 4.1, where the CDFs of the uniformly distributed 
system parameters are 

FxX^i) = fxiiXi)dXi = (xi - a,)/ibi - a,), 

a,. S x , < bi, (• = 1, 2 (22fl) 

Since mean values are chosen as design variables, d = [rf,, 
diV = [fAi. ^2 ]^ and variances are constants as o-J = CTJ = 5, the 
CDFs of system parameters can be rewritten in terms of design 
variables as 

^x,(*i) = (Xi - di+ l)/2, flf,. - 1 < X, < <i, + 1, 

i= 1, 2 (22b) 

The transformations between the x-space and the u-space at 
design d* for two independent system parameters can be expressed 
as 

«,. = (S?~\Fx,{x,)) = (S>-\(x, -d\+ l)/2), i = 1, 2 (22c) 

Xi = 2 $ ( « i ) + rf*- 1, ! = 1 , 2 (22rf) 

and the performance function is then transformed into the u-space 
as 

Gc(u) = 2 $ ( M , ) + 4 $ ( M 2 ) + d\ + 2d\ - 13 (22e) 

At design d' = [4.0, 4.0]'^, the contours of the performance 
function, i.e., Gy(u) = g for different g values, and the MPP locus 
in the u-space are illustrated in Fig. 3, where the MPP u*=o (or 
Up=p,) is found using first-order reliability analysis of RIA, and the 
MPP u'g^p, (or u*=g.) is found using first-order inverse reliability 
analysis of PMA. The corresponding (jSc ~ g)FORM curve is then 
compared with the exact /3G ~ g curve in Fig. 4, where RIA 
identifies the point (/SJFORM, 0) and PMA identifies the point (/3„ 
S FORM)-

As discussed in Section 4.3, at design d̂  = [4.5, 4.5]^ the 
performance function of Eq. (22e) is positive everywhere in the 
probability integration domain as 

G(x) = G„(u) = 2<1>(M,) + A^iu^) + 0.5 > 0, 

d]-\<Xi^d]+ \, i = l , 2 (23) 

and thus first-order reliability analysis by Eqs. (20a) and {2Qb) of 
RIA yields no solution. In contrast, the first-order inverse reliabil­
ity analysis of PMA can always be performed. 

7 Computational Efficiency in Probabilistic Constraint 
Evaluation 

If the Monte Carlo simulation (MCS) is used for probability 
analysis, the computational efforts required to find point (j3„ 0) in 
RIA and point (|3„ g*) in PMA can be quantified by the minimum 
MCS sample size L suggested in Eq. (16) as LR,A = 10/4'(-i8,) 
and LpMA = 10/<I)(-/3,). That is. 

J3, and 

b. 

if the probabilistic constraint is inactive, then j3s > 

if the probabilistic constraint is active, then jS., = |3, and 

if the probabilistic constraint is violated, then j3, < fi, and 

It is pointed out that inverse reliability analysis is easier to solve 
than reliability analysis since the spherical constraint in Eq. {lib) 
is more regular compared to the general nonlinear constraint in Eq. 
{2Qb). In practical applications, the computational efforts associ­
ated with RIA (using first-order reliability analysis) and PMA 
(using first-order inverse reliability analysis) cannot be easily 
quantified, since RIA and PMA are searching for different MPPs. 
However, it is generally easier to find the MPP that is closer to the 
origin of the u-space (which means searching an MPP in a more 
restrictive solution space as shown in Fig. 3). Thus, the estimations 
of the computational efforts associated with RIA and PMA can 
also be established for three different scenarios so that 

b. 

if /3, > i8„ then the MPP of PMA u^ .̂̂ , is closer to the 
origin than the MPP of RIA u*=o (i.e., u'^^p,); 
if ^, = ^„ then PMA and RIA search the same MPP as 

u*,. 
c. if j8, < /3„ then the MPP of RIA is closer to the origin than 

the MPP of PMA. 

Therefore, PMA is not only inherently robust but is also more 
efficient for evaluating inactive probabilistic constraints, while 
RIA is more efficient for violated probabilistic constraints. Note 
that the computational difference between RIA and PMA becomes 
significant if u'^,,;, and u*=o are far apart in the u-space, while the 
exact status of the probabilistic constraint is unknown until either 
u*=p, or u*.o is finally found. Hence, it is desired to adaptively 
select RIA or PMA in the RBDO iterations depending on the 
marginally estimated status of the probabilistic constraint at the 
beginning of the MPP search. 

8 Difference of PMA and RIA in RBDO 
In previous sections, it has been illustrated that the probabilistic 

constraint in RBDO can be interpreted from a broader perspective 

t = - » " ' ( P f ) 

.Sa=-5-MFG(g)) 

( ^ t -gFOMl) 

Fig. 4 Probabilistic Constraint Evaluation by FROM 
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Table 1 RBDO History using RIA (d" = [4.000, 4.000]'̂ ) 

Iteration k 

0 
1 
2 
3 
4 
5 

Cost 

8.000 
8.455 
8.371 
8.354 
8.353 
8.353 

d\ 

4.000 
4.135 
4.116 
4.123 
4.123 
4.123 

d^ 

4.000 
4.320 
4.255 
4.231 
4.230 
4.230 

13,'., 

1.327 
2.481 
2.135 
2.057 
2.054 
2.054 

J = = 1 

^ ' i - i8,,i 

-0.727 
0.427 
0.081 
0.003 
0.000 

active 

iS.',. 

1.327 
2.066 
1.897 
1.881 
1.881 
1.881 

;• = 2 

Pt ,2 - P,2 

-0.554 
0.185 
0.016 
0.000 
0.000 
active 

in the general approach. These different perspectives of the general 
approach are consistent in prescribing the probabilistic constraint, 
but they are different in terms of robustness and computational 
efficiency in probabilistic constraint evaluation. Furthermore, us­
ing different perspectives of the general approach in prescribing 
the probabilistic constraint actually yields different rates of con­
vergence in solving the RBDO problem. 

The RBDO problem is usually solved by search methods for 
constrained nonlinear optimization, such as SLP, SQP, and MFD. 
The search method starts with an initial design and iteratively 
improves it with the design change obtained by solving an approx­
imate subproblem defined by the linearized probabilistic con­
straints. The difference is that the linearized probabilistic con­
straints from different perspectives are not equivalent in predicting 
the design change. The RIA and PMA are compared here to 
illustrate their differences in solving the RBDO problem. 

In RIA, the probabiUstic constraint of Eq. (7a) is linearized at 
design d* in defining the search direction determination subprob­
lem as 

^,(d*) + Vj/3,(d*)(d - d*) > p, (24a) 

where /3,(d*) and Vjj3,(d') are obtained in the first-order reliabil­
ity analysis, i.e., 

Hsid') = ||u* 

VjG„(u*=o) 

^-'^^^•''^^F^G^ 

(24b) 

(24c) 

Similarly, the probabilistic constraint of Eq. (8a) in PMA is 
linearized as 

g*(d*) + V j g * ( d ' ) ( d - d ' ) > 0 (25a) 

where g*(d') and Vjg*(d*) are obtained in the first-order inverse 
reliability analysis as 

VlsHd') = VlGu{u%,,) 

{25b) 

(25c) 

For comparison, the linearized probabilistic constraints from Eq. 
(24a) of RIA and Eq. (25fl) of PMA are rearranged, respectively, 
as 

VjGu(u*=o)(d - d*) s -||V„G^(u*=„)||(p,(d*) - p,) (26a) 

VlGa(u%p,)id - d*) > -G^in^f,,) (26b) 

If the probabilistic constraint is active at a given design d', then 
u*p=3, = u*=o, PXd") = P,, and G„(u*g.p,) = 0. Thus, Eqs. (26a) 
and (26b) become identical, which means RIA and PMA are the 
same in identifying the limit-state of the probabilistic constraint in 
the design space. On the other hand, Eqs. (26a) and (26b) are 
rather different if the constraint is violated or inactive. As a result, 
the design changes computed from them are different and therefore 
the RBDO convergence rates are different, too. 

8.1 Example. Consider the same system described in Sec­
tion 4.1, where the design variable d = [d,, d^Y = [jw-i, tJ'iV, 

and variances are constants as a\ — al = j . The RBDO problem 
is to 

minimize Cost(d) — dx + d2 (21a) 

subject to P{Gj(x) < 0) < Pfj, j= 1,2 (27b) 

1 < rf, < 10 & 1 < ^2 < 10 (27c) 

where the two system performance functions are defined as 

G,(x) = x , + 2 x 2 - 10 (28a) 

G2(x) = 2A;, + JC2 - 10 (2Sb) 

and the prescribed failure probability limits are P/i = 2.00% & 
Pfa = 3.00% (i.e., jS,, = - $ " ' ( 0 . 0 2 ) = 2.054 & 18,2 = 
- $ " ' ( 0 . 0 3 ) = 1.881), 

At design d', the transformations for the two system parameters 
are defined in Eqs. (22c) and (22d). Thus, the performance func­
tions can be represented in the u-space as 

G(;,,(u) = 2$(« , ) -I- 44)(M2) + id\ + 2d^2 - 13) (28c) 

Gc,2(u) = 4<I)(«,) -t- 2<I>(M2) + (2rf? + dl- 13) (2Sd) 

8.1.1 In RIA, the RBDO problem is to 

minimize Cost(d) = di + d^ (29a) 

subject to j3,,,(d) >j3,,, = 2.054 (29b) 

^. ,2(d)&^, ,2=1.881 (29c) 

l < d , < 1 0 & l < r f 2 ^ 1 0 (29d) 

At design d' = [d\, d^] ^, two rehability indexes are computed 
by performing two first-order reliability analyses to 

minimize u'\ + u\ (30a) 

subjectto Gy.,(u) = 2<I)(MI) 

+ 4<l>(i<2) + (^5 + 2 ^ ^ - 13) = 0 (30 ?̂) 

and 

minimize u] + u\ (30c) 

subjectto Gy,2(ii) = 4<I>(MI)-I-2<I>(M2) 

+ {2d\ + d''2-l'i) = 0 (30rf) 

In this example, any general nonlinear programming algorithm 
can easily solve the optimization problems in Eqs. (30a) to (2>Qd). 
The SLP can be used to solve the overall RBDO problem. Starting 
from an initial design d° = [4, 4]̂ ,̂ the SLP converges after five 
iterations and ten reliability analyses. The RBDO history is listed 
in Table 1. 
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8.1.2 In PMA, the RBDO problem is to 

minimize Cost(d) = d\ + d^ (3\a) 

subject to g * ( d ) > 0 , 7 = 1 , 2 (31^) 

l < r f i < 1 0 & I s ^ ^ j S l O (31c) 

At initial design d° = [d\, dlY, two target probabilistic per­
formance measures are computed by performing two first-order 
inverse reliability analyses to 

minimize G(,,i(u) = 24>(M,) + 4 $ ( M 2 ) + {d\ + 2dl - 13) 

(32a) 

subjectto M?-f-«| =/3?,, = (2.054)^ (32̂ >) 

and 

minimize Gy,2(u) = 4 $ ( M , ) -I- 2<E>(M2) + (2rf? + dl- 13) 

(32c) 

subjectto u] + ul= ^1^= {\.%^\y (32d) 

Note that the last terms in Eqs. (32a) and (32c) are not functions 
of u but are related only to the initial design. Thus, the MPPs for 
these two inverse reliability analyses are the same for any initial 
design, even though the values of the corresponding target prob­
abilistic performance measures are different for using various d°. 

The solutions of the nonUnear optimization problem of Eqs. 
(32fl) and (32b) can be obtained using SLP, SQP, or MFD as 

U3=p/"' = [uV'\ M?- ' " ] ' ' ^ [ -1 .278, -1 .608]^ (33a) 

g*M°) = 2<^{uf'') + 4^{u%-^-') + (rf? + 2dl - 13) (33^) 

and the solutions of the nonlinear optimization problem of Eqs. 
(32c) and (32d) are 

J=2 , * j=2 „ * J = 2 i r = ^„*J=2]r^ | -_ l 478_ _ i . i 6 3 ] ' ' (33c) 

g\{A°) = 4^(uV'^) + l^iuV^) + {2dl + dl-\3) (33c) 

Thus, the probabilistic constraints by PMA is linear in terms of 
design variables as 

gf(d) = g*,m + (rf, - rf?) + 2(rfa - dl) ^d, + 2d, 

- 12.583 > 0 (34a) 

g!(d) = g!(d») + 2(rf, - rf?) + [d^ - d°2) - 2d, + d, 

- 12.476 > 0 (34b) 

Consequently, this RBDO problem can be solved as a linear 
programming problem. The optimum d"'' = [4.123, 4.230]'̂  can be 
obtained in one iteration from an arbitrary initial design and only two 
first-order inverse reliability analyses of Eqs. (32a) to (32d) are 
required to compute gf(d°) and gt(d'') in Eqs. (34a) and (34b}. The 
RBDO results by PMA and RIA are compared in Table 2. 

8.2 Singularity of RIA in RBDO. In the previous section, it 
is shown that the convergence of RBDO is independent of the 
initial design if PMA is used for the probabilistic constraint eval-

Table 2 RBDO using PMA and RIA 

Total Number of 
Total Number Reliability or 

of RBDO Inverse Reliability 

Table 3 

Iteration k 

0 
1 

RBDO History using RIA (d° 

Cost dl d. 

7.000 3,500 3.500 
8.950 4.625 4.325 

= [3.500, 3,500]0 

i3,f,i |3f,2 

0.283 0.283 
0 0 OO 

nation. In this section, it will be shown that RBDO using RIA is 
very sensitive with respect to the initial design. For the given initial 
design d" = [3.5, 3.5]^ the RBDO history using RIA by SLP is 
listed in Table 3. The SLP fails in the first iteration due to the 
singularity of RIA at design d' = [4.325, 4.625]^ where the 
first-order reliability analysis for both probabilistic constraints 
have no solution. This is because the last terms in Eqs. (30^) and 
(30ii) are positive at design d', i.e.. 

2fi\ + /ixi- 13 = 0.375 > 0 

fi\ + 2ti\- 13 = 0.575 > 0 

(36a) 

(36b) 

RBDO 

PMA 
RIA 

Cost 

8.353 
8.353 

dT 

4.123 
4.123 

^ 2 ° " ' 

4.230 
4.230 

Iteration 

1 
5 

Analyses 

2 
10 

Thus, the performance functions are positive everywhere in the 
probability integration domains of the design, and the correspond­
ing failure probabilities are zeros. 

8.3 Discussion. The comprehensive probabilistic constraint 
is represented by Eq. (8a) in PMA and is directly measured by the 
target probabilistic performance measure. In RIA, on the other 
hand, the probabilistic constraint is measured by the reliability 
index, which is often a nonlinear transformation of the correspond­
ing probabilistic performance measure. In a case where the system 
has non-normally distributed random system parameters and the 
probabilistic constraints are for linear performance functions, 
PMA yields linear constraints of design variables while RIA yields 
nonlinear constraints. It is expected that, for the general nonlinear 
performance functions in practical applications, PMA yields a 
higher rate of convergence for RBDO than the conventional RIA. 

9 Summary 

It is clearly shown in this paper that the well-accepted RIA 
represents only one perspective of the probabilistic constraint. 
From a broader perspective, the general approach for the proba­
bilistic constraint evaluation is developed, where RIA and the 
proposed PMA are two extreme cases. Although various perspec­
tives of the general approach are consistent in prescribing the 
probabilistic constraint, their significant differences in solving the 
RBDO problem is illustrated. The PMA is inherently robust and 
more efficient in evaluating inactive probabilistic constraints, and 
it yields a higher overall RBDO rate of convergence. On the other 
hand, RIA is more efficient for violated probabilistic constraints, 
but the singularity behavior of RIA restricts its applications in 
broader engineering design practices. 

The overall efficiency of solving the RBDO problem depends on 
the balance between the total number of overall iterations and the 
computational efforts in each iteration. In practical applications, 
the RBDO problem can be solved robustly and more efficiently by 
adaptively choosing RIA and PMA depending on the estimated 
marginal status of the probabilistic constraint in the RBDO itera­
tions. 
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