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Abstract— This paper presents an approach for sonar feature
map building. The approach is composed of extracting features
at the data-level fusion stage and fusing the extracted features
with the registered features in the map at the feature-level
fusion stage. A data-level fusion model, termed three mea-
surements association model (TMAM), has been developed for
associating three measurements with a line or a point feature.
By use of TMAM, different sets of measurements obtained from
a single sonar sensor at consecutive steps are associated with
the line and point features. Subsequently, the parameters of
the identified features are estimated by use of the iterated least
square estimation method. Finally, when a feature is extracted,
a simple feature-level fusion strategy is used to update the map.
The proposed approach has been tested both in simulation and
on real data.

I. INTRODUCTION

The problem of mobile robot navigation had been summa-
rized into answering the following three questions: “Where
am I?”, “Where am I going?” and “How should I get there?”
[1]. In our views, another question should be added as the
first of all. That is “What can I see?”. In this paper, we are
principally concerned with this question and build a feature-
based map using sonar data. Map building is the process
of recognizing the environment from sensing information.
It mainly comprises three questions: how to represent the
sensor information, how to represent the environment and
how to map the sensor information into the map.

A. Representations of Sonar Data

Due to the wide beam of the sonar sensor, it is diffi-
cult to determine the location of an object from a single
sonar reading. Furthermore, specularity makes some sonar
readings unexplained. However, Kuc, Siegel, Barshan [2]
[3] and Leonard [4] have provided strong evidences that
sonar measurements are indeed explicable and predictable
in indoor environment. The different views on whether the
sonar sensor is an attractive sensor or not lie in the different
models used to interpret the sonar readings.

Prior work has specified three models to describe a single
sonar reading: centerline model, uniform distribution model
and gaussian distribution model. The centerline model as-
sumes that the echo originates from the middle point of
the circular arc, without considering angle uncertainty. The
uniform or Gaussian distribution model assumes that the
location where the echo comes from follows a uniform or
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Gaussian distribution respectively on the arc. In our opinion,
it is safe and reasonable to model the angle uncertainty of
a single sonar reading by use of the uniform distribution
model. The reason is that, we really don’t have enough
knowledge to make our decision on the location where a
single sonar echo comes.

B. Representations of Environment

Besides semantic and topological maps [5], there are two
different approaches to represent the environment at different
levels. One is feature-based map, and the other is grid-
based map [6]. In the grid-based map, the environment is
divided into a discrete, two or three-dimensional grid of
cells. Each cell is assigned a single value between 0 and
1 to represent the probability that the cell is unknown,
occupied or free space. In the feature-based map, the en-
vironment is modeled by a set of geometric primitives such
as line segments and points. Grid-based representations make
weaker assumption about the environment than feature-based
approaches. Also, computational requirements are much less
sensitive to environment complexity. However they are less
powerful than the geometric models for the purpose of
position estimation. The sonar sensors can detect four types
of targets in indoor environment: planes, cylinders, corners
and edges [4]. Different types of targets return the transmitted
pluses in different ways. We refer to corners and edges as
point features, cylinders as arc features and planes as line
features. In this paper, we consider only the line and point
features.

C. Mapping Sensor Measurements into Map

Crowly [7] developed one of the earliest feature-based
approaches. In his work, a specific configuration of 24
ultrasonic sensors was used to find the line segments, based
on some detecting rules. A centerline model, with a simple
ellipse shaped uncertain region, was used to represent a
single sonar measurement. Line segment was created from
three consecutive depth readings aligning within a tolerance
and updated by a form of kalman filter. Wijk and Christensen
developed a point feature extraction method, triangulation-
based fusion (TBF) algorithm [8]. In the TBF algorithm,
uniform distribution model was used to describe the sonar
data. Point features were found at the intersections of the
sonar arcs in a data window (moderate size: 10 steps and
16 sensors). The parameters were estimated by averaging
the intersections on the present arcs. And local grid maps
were used to refine the triangulation points. From the ob-
served point features, line features were extracted by use of
Hough transform method. The arc-transversal median (ATM)
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algorithm developed by Choset and Nagatani introduced
the concept of transversal intersections [9]. The transversal
intersections, considered as the stable intersections of two
arcs by the authors were used to estimate the parameters
of point features. The implementation of ATM is similar to
that of TBF. Another different approach for feature-based
map building is RCDs (regions of constant depth) method
developed by Leonard [2], which considers both the line and
point features. In their work, a rotating sonar scanner was
used to obtain dense sonar data. At the first stage, based on
the centerline model, RCDs were extracted from the sonar
scans obtained at different robot locations. For each RCD,
a series of angles to constrain the true bearing to the target
were defined. Target was assumed to distribute uniformly
on the arc between the constraint angles. Owing to this
data-level fusion, angle uncertainty is reduced. Subsequently,
classification of the clustered RCDs was determined by the
percentage of RCDs in the cluster which matches one another
according to each hypothesis, based on two RCDs matching
model. At the final stage the parameters of the known clusters
were estimated using orthogonal regressions for the line
features or average for the point features.

D. Our Philosophies and Approaches

Our task is to determine the locations of the objects
from sonar data. Without taking the measurement noises
and environment complexity into account, we can deter-
mine the location of a line feature or a point feature from
two measurements that both originate from a line or a
point feature. The principles are: if the two measurements
originate from a line feature, then determine the location
by finding the common tangent line of two sonar arcs;
if the two measurements originate from a point feature,
the intersection of two sonar arcs is the location of the
point feature. Unfortunately, the measurements don’t provide
direct information for associating them with specific type of
features. A natural method to solve the problem is that: firstly
clustering the measurements; then identifying the type of
each clustering by use of the measurements in the clustering;
finally estimating the locations of the identified features from
the associated measurements. RCDs method is a case of this
philosophy, unfortunately at the cost of stacking dense sonar
data. Our concern is to find a method that can associate
sparse sonar data, rather than dense sonar data, with a line
feature or a point feature. The next section will describe
our three measurements association model (TMAM) that can
do so. Subsequently, a method to estimate the parameters
of an identified feature from the associated measurements
will be introduced in Section III. Finally, a feature-level
fusion strategy for updating and maintaining the map will
be presented in Section IV.

II. DATA-LEVEL FUSION MODEL FOR FEATURE

IDENTIFICATION

A. Two Measurements Association Model

When matching two sonar arcs, we use the similar defi-
nitions reported in [4]: contact point, which is the tangent

point on each arc, where the common tangent line of these
arcs pass; and intersection point, which is the intersection of
two arcs. As shown in Fig. 1, r1 and r2 denote the two sonar
readings at two sensor locations with a distance d. Angle φ1

is the possible bearing to the object. The general problem is
to find a third circle of known radius R, which is tangent to
the two circles that the sonar arcs define. If R is known, we
can compute φ1 by

cos(φ1) =
(r1 +R)2 − (r2 +R)2 +d2

2d(r1 +R)
(1)

Taking the limit of this equation as R → ∞, it yields a result
for line features:

cos(φ1) =
r1 − r2

d
(2)

While setting R = 0, it yields

cos(φ1) =
r2

1 − r2
2 +d2

2dr1
(3)

It means that if we know the type of the feature, we can
know where the readings originate. However our task is to
obtain the knowledge of R and identify the type of features.
Thus we write another form of (1) as

R =
z2

1 − z2
2 −2d cos(φ1)z1

2(d cos(φ1)+ z2 − z1)
(4)

We calculate all the possible R corresponding to all the
possible φ1 using (1). If the minimum of all the possible
R is very large, line feature is determined. While if the
maximum of all the possible R is very small, point feature
is determined. Otherwise, arc feature is determined. This
is the two measurements association model in [10]. This
model seems a simple model to determine the type of a
feature. However there are many occasions where not only
the maximum of all the possible R is very large, but also
the minimum of all the possible R is small. As a result, arc
feature will be determined although there is no arc feature
at all.

It is obvious that if there exist both contact points and
intersection point on the two arcs, then the minimum of
all the possible R is zero and the maximum is infinite. On
this occasion two measurements association model will fail.
It can’t determine the type of the feature by use of two
measurements. That is the problem using two measurements

yc
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Fig. 1. Two measurements association model.
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association model. For a general understanding, think of
relations of two circles: the fact that two circles have
common tangent lines doesn’t deny the hypothesis that they
have common intersections, and vice versa.

B. Three Measurements Association Model

In order to determine the type of a feature from sparse
sonar data, we make a little stronger assumption that three
measurements originate from a feature. A geometrical theo-
rem is given by

Theorem 2.1: If three distinct circles with their different
centers on a line have a common tangent line, then these
circles don’t have a common intersection, and vice versa.
The exception is that these circles are commonly tangent at
the intersection.1

Remark 2.1: Theorem 2.1 gives us a theoretical guidance
to identify the type of a feature from three measurements. In
the ideal case, if three sonar arcs originate from a common
feature, the type of the feature can be determined by finding
whether there exists a common tangent line or a common
intersection. The assumptions that three sonar arcs originate
from a common feature and their centers lie on a line are
not too restricted. Three measurements obtained from a sonar
sensor, when the robot moves in a straight line, always satisfy
these assumptions.

In our views, consecutive measurements obtain from a
sonar sensor have more chance to detect the same feature
than those from different senors with different orientations,
when the robot moves in a straight line. So at this data-
level fusion stage, the fusions are implemented among the
consecutive measurements obtained from a single sonar
sensor, rather than among the measurements from different
sensors. The information from different sensors will be fused
at the feature-level fusion stage.

Theorem 2.1 is an ideal case. In practice, the measure-
ments do originate from the planes and corners, rather than
from the lines and points. Noises from the measurement
devices and environments make it difficult to find a common
tangent line or a common intersection of three sonar arcs.
Fortunately, it is easy to find a common tangent line or a
common intersection of two arcs.2

As shown in Fig. 2, when matching arc1 and arc2, we
obtain two contact points and one intersection point; and
when matching arc2 and arc3, we obtain two contact points
and one intersection point too.

Theorem 2.2: If the two contact points on arc2 are iden-
tical, then arc1, arc2 and arc3 have a common tangent line.

Theorem 2.3: If the two intersection points on arc2 are
identical, then arc1, arc2 and arc3 have a common intersec-
tion.3

1This theorem can be proofed by contradiction, and the details of the
proof are omitted.

2The contact or intersection points of two circles can be obtained using
(2) or (3). Thus by checking whether these points fall on the two arcs,
we could determine whether the two arcs have a common tangent line or
intersections.

3It is easy to prove these two theorems, so the proof is omitted.

c

i

Arc2
Arc3

Arc1

Fig. 2. Three measurement association model: the green and blue points
denote the contact points and the intersection points respectively.

Remarks 2.2 and 2.3: These two theorems provide us
with a different method to find a common tangent line
or a common intersection of three arcs by checking the
contact or intersection points on the arc2. Thus we can
obtain following useful clues: More closely the two contact
points distribute on arc2, more possibly these three arcs have
a common tangent line; more closely the two intersection
points distribute on arc2, more possibly these three arcs have
a common intersection.

Then we use the angles θc and θi to measure the differ-
ences, as shown in Fig. 2. If there is only one contact point
on arc2, we let θc = 22.5◦, and let θi = 22.5◦ when there is
only one intersection point.

If θc < αθi and θc < γ < 22.5◦, we label arc2 as contact
arc, where α has a value less than 1 and γ is a gating value
less than 22.5 degree. If θc > βθi and θi < γ < 22.5◦, we
label arc2 as intersection arc, where β has a value larger
than 1. Otherwise, we label arc2 unidentified arc.

Denote the consecutive readings as {r(k),k = 1,2, . . .} or
{arc(k),k = 1,2, . . .} in an another form, where k is the time
step, then we obtain the following rules:

• If arc(k),arc(k+1), . . . ,arc(k+n) are contact arcs, then
associate r(k − 1),r(k),r(k + 1), . . . ,r(k + n + 1) with
a line feature. If arc(k),arc(k + 1), . . . ,arc(k + n) are
intersection arcs, then associate r(k−1),r(k), . . . ,r(k +
n+1) with a point feature.

• If arc(k),arc(k +1), . . . ,arc(k +n) are contact arcs and
arc(k +n+1) is a intersection or unidentified arc, then
associate r(k− 1),r(k),r(k + 1), . . . ,r(k + n + 1) with a
line feature.

• If arc(k),arc(k +1), . . . ,arc(k +n) are intersection arcs
and arc(k +n+1) is a contact or unidentified arc, then
associate r(k− 1),r(k),r(k + 1), . . . ,r(k + n + 1) with a
point feature.

where n = 0,1, . . . is the number of consecutive labeled arcs
associating with an identified feature. If n = 0, the number
of the associated measurements is 3 and if n > 0, the number
of the associated measurements is n+2.

III. ESTIMATING PARAMETERS OF IDENTIFIED

FEATURES

A. Two Observation Models

We denote a line as

pr = xcos(pθ )+ ysin(pθ ) (5)
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Fig. 3. Observation model of the line and point features.

where pr is normal distance from the origin to the line and
pθ is the angle with respect to x axis, as shown in Fig. 3.
Denote the location of the sensor as ps(k) = (xs(k),ys(k)),
and the measurement as r(k) at step k. The observation model
for line feature is given by

r(k) = hl(PL, ps(k))+w(k)
= |pr − xs(k)cos(pθ )− ys(k)sin(pθ )|+w(k)

(6)

where PL = (pr, pθ ) is the parametric vector of the line, and
w(k) is the zero-mean white Gaussian noises with variance
σ2.

The observation model for point feature is written as

r(k) = hp(PC, ps(k))+w(k)

=
√

(pρ cos(pα)− xs(k))2 +(pρ sin(pα)− ys(k))2 +w(k)
(7)

where PC = (pρ , pα) is parametric vector; w(k) is the noises
and (pρ , pα) are the polar coordinates of the point feature
in the world coordinate system.

B. Iterated Least Square Estimation

The Iterated Least Square (ILS) Estimator is a technique
for iteratively improving the current estimate using the
measurements until convergence (or up to a certain maximum
number of iterations) based on the Least Square principle
[11]. It is an approximate one by use of a first order series
expansion to solve the nonlinear estimation. Let T denote
transpose, then we write the consecutive measurements ob-
tained from an identified feature as

r = [r(k),r(k +1), ...,r(k +n)]T = h(P, ps)+w (8)

where

h(P, ps) =




h(P, ps(k))
h(P, ps(k +1))

...
h(P, ps(k +n))


 (9)

are the observation equations and P is the parametric vector.
Given the estimate P̂j at the end of iteration j, the updated
P̂j+1 is obtained as

P̂j+1 = P̂j +(JT
j R−1Jj)−1JT

j R−1[r−h(P̂j, ps)] (10)

where

Jj =
∂h(P, ps)

∂P

∣∣∣∣
P=P̂j

(11)

is the Jacobian matrix and R is the measurement covariance
matrix give by diag(σ2,σ2, ...). An initial estimate p̂0 for
the estimator can be obtained from the intersection of any
two sonar arcs for a point feature, or from the common
tangent line of any two sonar arcs for a line feature. The
mean square error matrix of the final estimate p̂ at iteration
j +1 is obtained by

E[(P̂j+1 −P)(P̂j+1 −P)T ] = (JT R−1J)−1 (12)

where J is the Jacobian, evaluated at the final estimate. The
Jacobian matrix Jj for a point feature is given by

Jj =




∂h(P,ps(k))
∂ pρ

∂h(P,ps(k))
∂ pα

∂h(P,ps(k+1))
∂ pρ

∂h(P,ps(k+1))
∂ pα

...
...

∂h(P,ps(k+n))
∂ pρ

∂h(P,ps(k+n))
∂ pα




P=P̂j

(13)

with

∂h(k)
∂ pρ

=
pρ − xs(k)cos(pα)− ys(k)sin(pα)√

(pρ cos(pα)− xs(k))2 +(pρ sin(pα)− ys(k))2

(14)
∂h(k)
∂ pα

=
pρ(xs(k)sin(pα)− ys(k)cos(pα))√

(pρ cos(pα)− xs(k))2 +(pρ sin(pα)− ys(k))2

(15)
where h(k) = h(P, ps(k)).

However, because of presence of an absolute symbol in
(6), it is difficult to induce directly the Jacobian matrix from
the observation model of a line feature. In order to get rid
of the absolute symbol, we define a local coordinate system
with the origin at the location where the sensor first observes
the line. The orientation of the sensor is defined as the y axis
of the local coordinate system, as shown in Fig. 4. Thus the
equation of a line in the local coordinate system is written
as

pS
r − xS cos(pS

θ )− yS sin(pS
θ ) = 0 (16)

where superscript S denotes the representation in the local
coordinate system. As the width of sonar arc is 22.5◦, it
yields

sin(pS
θ ) > 0 (17)

for all possible lines tangent to the arc. Additionally, the
consecutive locations of the senors are all below any possible
line. Thus we obtain following inequations:

O
X

Y
XS

YS

k step

PRS

P S

OS

Fig. 4. Observation model of line feature in local coordinate system.
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pS
r − xS

s (i)cos(pS
θ )− yS

s (i)sin(pS
θ ) > 0 (18)

where i = k,k + 1, . . . ,k + n. Using (6) and (18), the obser-
vation model in the local coordinate system is given by

h(PS, pS
s (k)) = pS

r − xS
s (k)cos(pS

θ )− yS
s (k)sin(pS

θ )+w(k)
(19)

which immediately yields

∂h(PS, pS
s (k))

∂ pS
r

= 1 (20)

∂h(PS, pS
s (k))

∂ pS
θ

= sin(pS
θ )xS

s (k)− cos(pS
θ )yS

s (k) (21)

At the end of iterations, we obtain the estimate P̂C =
(p̂ρ , p̂α) or P̂S

L = (p̂S
r , p̂S

θ ) with the respective mean square
error matrix

ΛC =
[

σ2
ρρ σρα

σαρ σ2
αα

]
(22)

or

ΛS
L =

[
σ2

rr σrθ
σθr σ2

θθ

]
(23)

We describe an extracted point feature using a parametric
vector p f = (p̂ρ , p̂α ,ΛC,nc), where nc is the number of the
associated measurements. As for a line segment, we use P̂L =
(p̂r, p̂θ ,ΛL,xm,ym,h,nl) to describe it in the world coordinate
system:

• p̂r: the estimated perpendicular distance from the line
segment to the origin of the world coordinate system.

• p̂θ : the estimated orientation of line segment.
• ΛL: the mean square error matrix transformed from the

local coordinate system to the world coordinate system.
• (xm,ym): coordinates of the mid-point of the line seg-

ment.
• h: half length of the line segment.
• nl : number of the associated measurements.

IV. FEATURE-LEVEL FUSIONS FOR MAP UPDATING

The first stage for map updating is matching the extracted
feature with the registered features. Successful matching is
used to update the map. If there is no matching, the extracted
feature will be registered as a new one in the map. If more
than one matching happens, we should use a reasonable
measure to decide which matching is the proper one. As
for point features, we use Euclidian distance to determine
whether the extracted feature matches with the registered
one. If the distance is smaller than a gating value, a matching
is found. The matching that has the smallest distance is used
to update the map. If no match happens, the extracted point
feature will be registered in the map.

In our philosophies, the measurements are considered as
the samples taken from the corresponding feature in the
environment. The parameters of both the extracted feature
p f e = (p̂ρe, p̂αe,ΛCe,ne) and the registered features p f r =
(p̂ρr, p̂αr,ΛCr,nr) are considered as the statistical results

from different sets of samples. Then the total statistical
results are naturally obtained as

p̂ρu =
ne p̂ρe +nr p̂ρr

ne +nr

p̂αu =
ne p̂αe +nr p̂αr

ne +nr

ΛCu =
neΛCe +nrΛCr

ne +nr
nu = ne +nr

As for line feature, matching is a process of comparing
an extracted line feature to each of registered line fea-
tures in the map to detect similarity in orientation, co-
linearity and overlap. Denote the extracted and registered
features as p f e = (p̂re, p̂θe,Λe,xme,yme,he,ne) and p f r =
(p̂rr, p̂θr,Λr,xmr,ymr,hr,nr) respectively. The matching pro-
cess are described by following steps:

• Check the similarity in orientation, co-linearity and
overlap by

(p̂θe − p̂θr)2 < σ2
θθe +σ2

θθr (24)

(p̂re − p̂rr) < σ2
rre +σ2

rrr (25)

(xme − xmr)2 +(yme − ymr)2 < (he +hr)2 (26)

• Calculate the deviation between the extracted and the
registered features which pass above three tests by

Deviation =
(p̂θe − p̂θr)2

σ2
θθe +σ2

θθr

+
(p̂re − p̂rr)
σ2

rre +σ2
rrr

+
(xme − xmr)2 +(yme − ymr)2

(he +hr)2

(27)

• Select the registered feature with the smallest deviation
as successful matching. Thus the parameters of the
updated line feature are obtained as

p̂ru =
ne p̂re +nr p̂rr

ne +nr

p̂θu =
ne p̂θe +nr p̂θr

ne +nr

Λu =
neΛe +nrΛr

ne +nr
nu = ne +nr

And the additional parameters (xmu,ymu) and hu are
obtained by projecting the extracted and registered seg-
ments on the updated line.

V. EXPERIMENTAL RESULTS

In order to test the feasibility of our approach, we test it
both in simulation and on real data. Fig. 5 shows the experi-
mental environment composed of planes, corners and edges.
The robot, with a ring of 16 Polaroid ultrasonic sensors,
runs following the dashed line. In our implementation, the
distances between consecutive sampling steps are measured
by odometry.
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Fig. 5. Experimental results after applying TMAM.
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Fig. 6. Experimental results of final feature map.

After the robot makes a complete turn in the environment,
2400 sonar data for 150 steps are obtained. By use of
TMAM, 524 sonar data are associated with 20 point features
and 17 line features respectively as shown in Fig. 5. The
blue line denotes the extracted line feature, and the blue
circle denotes the position of the extracted point feature.
The parameters of these features are estimated by use of the
iterated least square method. In our implementation, the ILS
iterations terminate when the norm of the difference between
two consecutive estimates is less than 1 or when the number
of iterations exceeds 10. After the feature-level fusions, 6
point features and 6 line features are registered in the map,
as shown in Fig. 6. The estimated and actual parameters of
these features are listed in Table I.

VI. CONCLUSIONS

We have proposed an approach for building a feature-
based map using sonar data. In the data-level fusion, a model
has been developed to associate sparse sonar data with spe-
cific type of features. The parameters of an identified features
are estimated by use of ILS methods from the associated
measurements. In the feature-level fusion, information from
the sonar senors mounted at different locations on the robot
is fused to update and maintain the map. Our approach can
be implemented in real-time, because of using sparse data to
extract the features.

Experimental results show that the proposed approach has
the capability to robustly extract the features and build a
satisfactory feature-based map. In future work, we will exert

TABLE I

EXPERIMENTAL RESULTS

Point Estimated Actual
Feature p̂ρ (cm) p̂α pρ (cm) pα
1 4.5357 −0.8192 0 0
3 405.22 0.004 400 0
5 444.4 0.4605 447.2136 0.46
7 824.13 0.2442 824.6211 0.245
9 943.11 0.5628 943.3981 0.5586
11 506.29 1.5735 500 1.5708

Line Estimated Actual
Feature p̂r (cm) p̂θ pr (cm) pθ
2 0.5839 1.5686 0 1.5708
4 402.73 0.0161 400 0
6 197.98 1.5754 200 1.5708
8 807.12 0.0222 800 0
10 500.45 1.5702 500 1.5708
12 2.0828 0.006 0 0

on finding the potential performance of TMAM and more
proper estimation methods. Furthermore, we will take the
pose uncertainty of robot into account and focus on the
SLAM problem.
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