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Abstract 

This paper considers the problem of stabilization 
of discrete-time systems with actuator nonlinearities. 
Specifically, dynamic, output feedback control design 
for discrete-time systems with time-varying, sector- 
bounded, input nonlinearities is addressed. The pro- 
posed framework is based on a linear matrix inequality 
approach and directly accounts for robust stability and 
robust performance over the class of actuator nonlinear- 
ities. F'urthermore, it is directly applicable to actuator 
saturation control and provides dynamic, output feed- 
back controllers with guaranteed domains of attraction. 
The effectiveness of the approach is illustrated by a nu- 
merical example. 

1. Introduction 

In practical applications of feedback control, actuator 
nonlinearities, such as saturation, arise frequently and 
can severely degrade closed-loop system performance and 
in some cases drive the system to instability. The issue of 
closed-loop system stability and performance subject to 
actuator saturation thus carries a great deal of practical 
importance. For continuous-time systems, the problem 
of actuator saturation has been widely studied and an ex- 
tensive literature is devoted to it (see, e.g., [2,6,7,12,15] 
and the numerous references therein). In contrast to  the 
continuous-time, actuator saturation control problem, 
the problem of stabilizing discrete-time systems in the 
presence of control signal saturation has received scant 
attention. For recent exceptions see [8,11,13] and the 
references therein. Since most physical processes evolve 
naturally in continuous time, it is not surprising that 
the bulk of stability and control theory involving sys- 
tems with actuator nonlinearities has been developed for 
continuous-time systems. Nevertheless, it is the over- 
whelming trend to implement controllers digitally. 

For discrete-time systems, Riccati equation-based 
global and semi-global stabilization techniques for actu- 
ator saturation have been developed in [ll, 131. In addi- 
tion, the application of an anti-windup actuator satura- 
tion control framework to discrete-time systems is given 
in [lo]. However, the research literature on controller 
synthesis for systems with more general time-varying, 
sector-bounded, input nonlinearities is rather limited. 
In a recent paper [8], a Riccati equation-based global 
and local static, output feedback control design frame- 
work for discrete-time systems with time-varying, sector- 
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bounded, input nonlinearities was developed. Unfortu- 
nately, however, a caveat of [8] is that it can not ad- 
dress the dynamic, output feedback compensation prob- 
lem for discrete-time systems with actuator nonlineari- 
ties. Specifically, for the aforementioned problem, the 
Lagrange multiplier approach of [8] leads to severe alge- 
braic complexity in the computation of explicit closed- 
form expressions for the dynamic, output feedback con- 
troller. 

In this paper, to overcome the limitation of [8], we fo- 
cus on a tractable formulation of the dynamic, output 
feedback control synthesis for system with input non- 
linearities using a linear matrix inequality (LMI) frame- 
work [l]. As demonstrated in this paper, dynamic, out- 
put feedback control of discrete-time systems with time- 
varying, sector-bounded, actuator nonlinearities leads to 
a matrix inequality that is nonlinear in the decision 
variables; hence, circumventing a direct application of 
the LMI theory. By a judicious over-bounding of sev- 
eral terms in the nonlinear matrix inequality (NMI), 
we provide tractable sufficient conditions, in the form 
of LMIs, for dynamic, output feedback control of sys- 
tems with time-varying, sector-bounded, actuator non- 
linearities. In addition, we detail a numerical algorithm 
for solving this control synthesis problem. Finally, we 
demonstrate the efficacy of the proposed approach via 
an illustrative numerical example. All proofs are omit- 
ted due to space constraint. 

Nomenclature 
R,WTX",RT - real numbers, r x s real matrices, EtTx1 
I T ,  OT - r x r identity matrix, T x r 

PT - r x r positive-definite matrix 
N 
n, m,p, d,  n,, Ti - positive integers; 1 5 n, 5 n; 

zero matrix 

- to, 172,. . . , 1 

n=n+n ,  
2. Dynamic Output Feedback Control of Sys- 

tems with Actuator Nonlinearities 

In this section, we introduce the problem of dynamic, 
output feedback control of discrete-time, linear systems 
with actuators containing a set ip of time-varying, sector- 
bounded nonlinearities. The goal of the problem is to 
determine a strictly proper, optimal, dynamic compen- 
sator (Ac,  B,, Cc) that stabilizes a given linear, dynam- 
ical system with actuator nonlinearities 4 ( u ( k ) , k )  E @ 
and minimizes a quadratic performance criterion involv- 
ing weighted state and control variables. The structure 
of 

Dynamic Output Feedback Stabilization Prob- 
lem. Given the nth-order stabilizable and detectable 
plant with input nonlinearities 4 ( u ( k ) ,  k) E ip, k E N, 

is specified later in the section. 
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Theorem 2.1. Let m x m diagonal matrices MI and 
M2 be given such that M2 - M I  is positive-definite. In 
addition, let (A,,  B,, C,) and a scalar E ,  0 < E < 1, be 
given. Suppose there exist an m x m diagonal, positive- 
definite matrix H and an ii x f i  positive-definite matrix 

~ ( k  + 1) = A z ( k )  - B@(u(k), k ) ,  ~ ( 0 )  = SO,  E N,(1) 
(2) 

where u ( k )  E R", y ( k )  E E', determine an nLh-order, 
linear, time-invariant , dynamic compensator 

Y ( k )  = C Z ( k ) ,  

satisfying 

ATpA - p + EP + R 
< 0. (10) 1 ( H e  - BTpA)T 

H e  - B T P A  -Ro + BTPB 
z c ( k  + 1) = Aczc (k )  + Bcy(k), (3) [ 

u ( k )  = C C . C ( k ) ,  (4) 

that satisfies the following design criteria 2) the zero 
solution of the closed-looP system (1)-(4) is globally 
asYmPtoticallY stable for all k ,  E @ and 22) the 
quadratic performance functional 

Then the function ~ ( 2 )  = kT& is a Lyapunov func- 
tion that guarantees that the zero solution S ( k )  0 of 
the closed-loop system'(1)-(4) is globally asymptotically 
stable for all actuator nonlinearities d.. .I E @. Further- 

I \ ,  , 
00 

4(.> ) E 0 k=O 

more, the performance functional (5) satisfies the bound 
J(Ac,Bc,Cc) f SUP C z T ( k ) z ( k ) ,  (5) J(3.07 A,, Bc, Cc) < v(20). 

Note that J(ji.0, A,, B,, C,) < t r  5;PZo = t r  PZO?;, 
which has the same form as the H2 cost appearing in 
the standard Linear Quadratic Gaussian (LQG) theory. 

Hence, we replace 3oi; by i j > o ~  where 6 5 
D1 E I t n x d ,  0 2  E Rlxd ,  and D2DT > 0 and proceed 
by determining the controller gains that minimize the 
auxiliary cost ~ ( p ,  A,, B,, c,) $ t r  PDDT.  

Theorem 2.1 provides an efficient computational ap- 
proach for closed-loop stability analysis when the con- 
troller (A,,  B,, C,), scalar E ,  0 < E < 1, and the sector- 

ut ' ', = ', .. '  l m l  ' ( 6 )  bounds M I ,  M2 for input nonlinearity 4( . ,  .) E @ are 
given. Specifically, since (10) is an LMI in the variables 
H and p ,  one Can efficiently determine the feasibility 
Of (10) to establish the stability of (1)-(4). 
In this paper, however, we focus on extending Theorem 
2.1 to design stabilizing feedback controllers for systems 
with actuator saturation nonlinearities. Before proceed- 
ing, observe that (10) is an NMI since it contains product 
terms involving A,, B,, C,, p ,  and H .  

Note that multiplier theory-based robust control de- 
sign problems frequently result in NMIs when simulta- 
neous determination of the controller and multiplier ma- 
trices is attempted [4,14]. In order to  circumvent the 
technical difficulties arising from the numerical solution 
of such NMIs, in prior literature, many researchers have 
focused on an iterative solution of the closed-loop sta- 
bility analysis and stabilizing controller synthesis sub- 
problems [4,14]. Specifically, [4,14] have shown that the 
multiplier theory-based robust control design can be ac- 
complished by z) solving an LMI problem for closed-loop 
stability analysis which provides the stability multiplier 
for a given controller and iz) solving an LMI problem 
for controller synthesis with a given stability multiplier. 

separately are convex, the problem of simultaneous mul- 
tiplier and controller determination is not. In addition, 
no claim can be made regarding the convergence of this 

u , E R ,  i = l ,  . . . ,  m,  EN}. (9) iterative scheme. However, the aforementioned proce- 
dure offers attractive computational advantage by ex- 
ploiting the convexity of the two LMI sub-problems and 
has been widely used with Success in practice. 

Unfortunately, however, (10) does not fit the class of 
NMIs that arise in the standard multiplier theory-based 
robust control design. Specifically, in contrast to  [4,14], 

where z ( k )  4 Elz (k )  + Ezu(k) ,  z E Rp, is minimized. 
To characterize the class @ of time-varying, sector- 

bounded, memoryless nonlinearities the following defini- 
tions are needed. Let M I ,  M2 E Rmx" be given diagonal 
matrices such that MI = diag  MI^ , .. . ,MI,) ,  M2 = 
diag (M211 . .  . ,M2, ) ,  and M 4 M2 - Mi is positive- 

definite with diagonal entries M,,, i = 1 , .  . . , m. Next, 
we define the set of allowable nonlinearities $(., -) by 

5 M ~ , ~ : ,  

I - -  

514 : Rm N + ~m : M ~ , ~ ;  5 

Now, we provide a closed-loop NMI that guarantees 
global asymptotic stability of the closed-loop system (1)- 
(4) for all actuator nonlinearities 4( . ,  .) E @. First, how- 
ever, we decompose the nonlinearity 4( . ,  -) into linear 
and nonlinear parts so that 4(u(k), k )  = 4s (u (k ) ,  k )  + 
~ ~ ~ ( k ) .  With the above transformation, the close-loop 
system (1)-(4) has a state-space representation 

3 ( k  + 1) = AiE(k) - B$,(u(k), k) ,E(O) = 30, k E N ,  (7) 

(8) u ( k )  = & ( I C ) ,  

where 

A -BMICc 
A e [ B,C A,  

B 
B f  

addition, the performance variable z ( k )  is given by 
E2Cc 1 .  Note that the z ( k )  = B ? ( ~ ) ,  where E 5 [ El 

given by 

QS f {4s : R" x N + R" : 0 5 q5s,(u,k)u, 5 Mzzu:, 

transformed nOnhearities 4 ~ ( . ,  .) to the set @ S  Note that although sub-problems 2) and 2%) considered 

The following result provides the foundation for our 
dynamic, output feedback controller synthesis frame- 
work. For the statement of this result, let H be an m x m 
diagonal, positive-definite matrix and define the notation 
Ro 4 2HM-1 and R f ETE.  
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when the stability multiplier matrix H is assumed to 
be given, (10) still contains product terms involving 
A,, B,, C,, and P .  The standard controller elimination 
procedure discussed in [l] and widely used in prior lit- 
erature is thus not directly applicable in this case. In 
the following section, we develop a sufficient condition 
for (10) to provide an efficient computational algorithm 
for the design of a dynamic, output feedback controller 
for systems with actuator nonlinearities. 
3. Dynamic Output Feedback Controller Syn- 

thesis for Systems with Actuator Nonlinear- 
ities 

In this section, we present the main theorem character- 
izing dynamic, output feedback controllers for discrete- 
time systems with actuator nonlinearities. In order to 
state this result, we assume that scalar E ,  0 < E < 1, 
and diagonal, positive-definite matrix H are given. In 
addition, we assume that MI and M2 are given m x m 
diagonal matrices such that Mz - M I  is positive-definite. 

Note that (10) is a nonstandard NMI and is not di- 
rectly amenable to the linearizing change of controller 
variables proposed in [3,5]. However, as demonstrated 
in this section, by a judicious over-bounding of several 
terms in the NMI, we can apply the linearizing change 
of controller variables of (3,5] to obtain a tractable suf- 
ficient condition, in the form of an LMI, for dynamic, 
output feedback control. For the remainder of this sec- 
tion, we set n, = n to consider the full-order, dynamic, 
output feedback controller synthesis. It follows from [3] 
that a procedure similar to Theorem 3.1 given below can 
be used to design reduced-order controllers. 

For stating the main result of this section, without loss 
of generality, consider the following partitioning of P and 
p-l 

X M  , P-'= [ Y N  v ] , (11) 
' = [ M T  (J ]  NT 

where X,? E B". Next, we define 

Using PP-l  = I", it now follows that pn1 = nz. With 
a slight modification of [3,5], we define the change of 
controller variables as follows 

AK e G ~ , f i ~  + GB,c? - X B M ~ C , N ~  + XA?, (13) 

BK fMB, ,  CK 4 C,fiT. (14) 

nifAn,, B p np,B, c f. &Ill E 5 En,, D p nco, 
In addition, by defining the variables A 2 

P f IITPII1, as in [3,5], we obtain the identities 

AY - B M ~ C K  A 
A =  [ AK X A  + BKC ] l B = [  :B]l 

Before proceeding, note that the variables A, B ,  c, E ,  D ,  
and P are affine in (X,Y,AK,BK,CK). 

Next, we define a b  C a and consider the case 
such that the input nonlinearity is time-invariant, i.e., 
q5(u,k) = $ ( U )  and 4(u) is contained in for a finite 
range of its argument U as expressed below 

4 E ab 5 {4 : Rm -i Rm : hf1,uT I f$,(U)'?& 5 hf22,u:, 
2, I U ,  5 E,,  i = 1,. . . ,m},  (16) 

where 1, < 0 and E,  > 0, i = 1,. . , , m, are given and 
correspond to the lower and upper limits, respectively, 
of U,. Finally, for i E (1,. . . ,m}, we define [7] 

X, fi {z E R" : .U, I 6 , ~  I E,}, x 4 nE1 x,, 

q+ : Qi(Ei), q- fiQ&), 

D A  2 {z E X :  v(2) < vs}, (17) 

VS f , min {min(q+,K-)}, 
z = l , . .  .m 

where 6i is the ith row of 6, A fi A-tBMlC' ,  and P E P" 
satisfies (10) for a given (A,,  B,, C,). 

Theorem 3.1. Let m x m diagonal matrices Ml and 
M2 be given such that M2 -MI is positive-definite. Fur- 
thermore, let m x m diagonal, positive-definite matrix H 
and scalar E ,  0 < E < 1, be given. Suppose there exist 
X, ? E Bn and ( A K ,  B K ,  C K )  satisfying 

where 

- ( l - t )P  AT 
-0.5P 

OmxA PRO 1 , 
06 E T  

Omxp 

-0.5P Ocxp 

In addition, let p and (Ac, B,, C,) be given by 

P = rIzrI;l, (19) 

B, = M - ~ B ~ ,  c, = c K N - T .  (21) 

A, = &~-'[AK - BKC? + XBMICK - XA?]fi-*,(20) 

Then P and (A,, B,, C,) satisfy (10) and the zero solu- 
tion 2 ( k )  = 0 of the feedback interconnection of linear 
system with input nonlinearity 4(., .) E given by (1)- 
(4) is globally asymptotically stable for all @(-, .) E a. 
If $(.) E then the zero solution l ( k )  = 0 of the 
closed-loop system (1)-(4) is locally asymptotically sta- 
ble and 2 ) ~  defined by (17) is a subset of the domain 
of attraction of the closed-loop system. Finally, for 
all 4 E a, the auxiliary cost J ( P ,  A,, B,, C,) satisfies 
J ( P ,  A,, B,, C,) < tr  Q ,  where Q E Pd is such that the 
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LMI variables k,Y E P" and BK satisfying (18) addi- 
tionally satisfy 

(22) 

Remark 3.1. LMI (18) in Theorem 3.1 is obtained 
by writing (10) as (*) + CTX-lC2 + C;X-'C1 < 0 and 
using the fact that (Cl - C2)*X-'(C1 - C2) 2 0 (for 
X > 0) to yield a sufficient condition that guarantees 
the existence of variables satisfying (10). Finally, LMI 
(18) is obtained using the Schur complement [l] and the 
linearizing change of controller variables defined above. 

Remark 3.2. It is important to note that the esti- 
mate of the domain of attraction 2 ) ~  given by (17) for 
the closed-loop system (1)-(4) is predicated on open 
Lyapunov surfaces. Specifically, since CzB + 0, i E 
(1,. . . , m},  it follows from [7] that an estimate of the 
domain of attraction can be constructed using open Lya- 
punov surfaces which yields considerable improvement 
over domains of attraction predicated on closed Lya- 
punov surfaces. See [9] for a detailed discussion on the 
distinction between open versus closed Lyapunov sur- 
faces for estimating domains of attraction. 

Remark 3.3. A key application of Theorem 3.1 
is the case in which 4 ( u ( k ) , k )  represents a vec- 
tor of time-invariant, component-decoupled, satura- 
tion nonlinearities. Specifically, let 4 ( u ( k ) )  = 

for i E (1,. . . , m}, is characterized by 
[&(ul(k))j.. . ,4m(um(k))lTI 

4%(.Z(k)) = uz(k), 
4z(uz(k)) = a, sgdu,(k)), Iu,(k)l > a,. (23) 

E N, where $z(uq(k))i 

I.%(k)l 5 az, 

In this case, Theorem 3.1 can be used to guarantee 
asymptotic stability of the closed-loop system (1)-(4) for 
all 4(-) E @b with a guaranteed domain of attraction. In 
particular, if MI > 0, M2 = I 2 MI > 0 ,  and there 
exist X , ?  E P" and (AK,BK,CK) satisfying (18) and 
thus p E IF" satisfying (lo), then take ?iz = -3% = LL 

i = 1,. . . ,m, in (16). 
Mi, ' 

4. Numerical Algorithm for Dynamic Output 
Feedback Control of Systems with Actuator 
Nonlinearit ies 

In this section, we present a numerical algorithm for 
the dynamic output feedback control of discrete-time sys- 
tems with actuator nonlinearities. Following the ap- 
proach of [4,14], we decompose the problem of feasi- 
ble stability multiplier determination (matrix H )  and 
optimal control design (Ac,B, ,Cc)  into two LMI sub- 
problems. This enables us to exploit the computational 
advantage afforded by the convex formulation of the 
LMI-based feasibility and optimization problems. The 
basic structure of the numerical algorithm used is as fol- 
lows. 

Algorithm 4.1. To design a dynamic output feed- 
back controller for discrete-time systems with time- 
varying, sector-bounded nonlinearities, carry out the fol- 
lowing procedure: 

Step 1. Obtain an initial stabilizing controller 
(Ac ,  B,, Cc) using, e.g., the LQG scheme. 

Step 2. Beginning with some initial values of M I  
and A 4 2  and the current controller gain, for 4(., .) E 
@, solve the feasibility problem involving LMI (10) 
in variables p E lP' and m x m diagonal, positive- 
definite matrix H .  

Step 3. With matrix H obtained in step 2, for 
4(.,.) E a, minimize t r  Q subject to LMIs (18) 
and (22) in variables X ,  ? E P", AK E Rnxn, 
BK E R n x l ,  CK E Rmxn,  and Q E Pd.  

Step 4. Compute (Ac,  B,, C,) using (20), (21). 
Now, vary M1 and M2 to represent larger sec- 
tor nonlinearities, then repeat the above procedure 
(steps 2, 3) until feasible solutions are found for the 
target values of MI and M2, or until no feasible so- 
lution is found. 

Step 5. For $(., -) E @b, compute an estimate of do- 
main of attraction using (17). 

5. Illustrative Numerical Example 

In this section, we provide an illustrative numerical 
example to demonstrate the proposed framework for de- 
signing actuator amplitude saturation controllers. 

The following state equations describe the longitudinal 
dynamics of the F-8 aircraft [16] 

r -0.8 -0.0006 -12 o 1 
0 -0.014 -16.64 -32.2 
1 -0.0001 -1.5 X(t) = 

-0.66 -0.5 - I  -0.16 -0.5 

(25) 

Discretization of the above dynamics with sampling pe- 
riod T, = 0.1 sec yields 

0.0874 -0.0000 0.8084 0.0000 x(k) ! 0.8695 -0.0001 -1.0485 0.0001 
-0.2315 0.9986 -1.4536 -3.2178 

0.0943 -0.0000 -0.0551 1.0000 

x ( k  + 1)= 

r- 1.7822 -0.25331 
- 1 0'0951 o.0120 1 4 ( u ( k ) ) ,  ~ ( 0 )  = xO1 k E N, (26) -0.1017 -0.0593 

1-0.0913 -0.01351 

where the amplitude saturation nonlinearity @ ( u ( k ) ) ,  k E 
N, is given by (16) with i = 2 and a1 = a2 = 3.5. The 
performance variable z is given by 



Next, we select the design variables D1 = [I4 04x2] ,  
D2 = [OzX4 Iz], and target A 4 1  and A42  to be 0.9I2 and 
1 2 ,  respectively. We initialize the Algorithm 4.1 with 
an LQG controller corresponding to the state weight- 
ing matrix R1 = ETEl ,  the control weighting matrix 
R2 = ETE2, with El and E2 given as in (28), the plant 
noise intensity VI = DID?, and the measurement noise 
intensity Vz = D2DT. For this design data, we com- 
puted an optimal controller using Algorithm 4.1. Finally, 
we computed an LQG controller for the state and con- 
trol weighting matrices given by (28) and the plant and 
measurement noise intensities given by VI = D1 DT and 
Vz = D2 DF, respectively. 

To illustrate the closed-loop behavior of the system 
let z o  = [ 1 0 0 0 1’. For the controller designed 
using Algorithm 4.1, the guaranteed domain of attraction 
is computed via the stability analysis subproblem and is 
given by DA = {z : V(z) < 7.1663 x lo7}. Note that 
V(z0) = 3.6868 x lo7 so that zo E DA.  It can be seen 
from Figure 1 that the controller designed by Algorithm 
4.1 results in an asymptotically stable system while the 
LQG controller in the presence of an input saturation 
nonlinearity yields unstable response. 

6. Conclusion 

In this paper, we developed a dynamic, output feed- 
back control design framework for discrete-time systems 
with time-varying, sector-bounded, actuator nonlineari- 
ties via weighted circle criterion. Our results are directly 
applicable to systems with saturating actuators and pro- 
vide guaranteed domains of attraction. The technical 
difficulties associated with the NMIs involving nonlinear 
terms in the decision variables were nullified by develop- 
ing an LMI-based sufficient condition for actuator sat- 
uration control. A numerical algorithm was developed 
to  exploit the computational advantage afforded by the 
convex formulation of the LMI conditions. Finally, the 
effectiveness of the design approach was demonstrated 
via a numerical example. 
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