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Abstract— In this paper a distributed stochastic network
system with incoming tasks that are classified with priorities
is studied. The network system is assumed to have variable
topology, and agents are not necessarily always connected to
each other. In addition, the observations about neighbors’ states
are supposed to be obtained with random noise and delays. To
ensure efficient operation of this network system, a novel control
strategy is proposed. With this strategy, network resources are
allocated in a randomized way with probabilities corresponding
to each priority class. To maintain the balanced load across
the network for different priorities, a so-called “differentiated
consensuses” problem is examined. This consensus problem is
that, in a system with multiple classes, consensus is targeted for
each class, which may be different among classes. In this paper,
the ability of the proposed control protocol to maintain almost
balanced load, i.e. approximate consensus for every priority class
across the network, is proved. In addition, a numerical example
that illustrates the proposed control strategy and the results of
simulations are provided.

I. INTRODUCTION

To date, the consensus problem has been widely used
to solve practical challenges such as information exchange
in multiprocessor networks, distributed control of robotic
networks, optimal task allocation in groups of unmanned
areal vehicles, distribution of tasks in transportation net-
works, distributed computing, distributed control of learning
or educational processes etc. [1], [2], [3], [4], [5], [6],
[7]. These works usually consider networks consisting of
agents which work together to accomplish certain tasks.
Agents not necessarily have to be identical, e.g., they could
have different capacities or productivities. Approaches and
algorithms for distributed control in such networks have
attracted a lot of research interest. Essentially the question
is how to distribute tasks among the agents to ensure the
system working more efficiently.

In general, for a network serving incoming tasks that have
to be distributed among agents, various approaches for the
allocation of these tasks can be used. In previous works [4],
[5], it was shown that the problem of optimal (or near
optimal) task distribution in a network among agents can
be reformulated as a problem of reaching a consensus in the
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network. Based on this finding, one approach is to distribute
the tasks among agents in accordance with the current loads
of agents and in a view of their productivities [4], [5]. A
limitation of this approach is that it treats all jobs as the same
type, and does not take into account the specifics of tasks. In
a real systems, however, some tasks could be more important
or urgent then others and the control strategy should consider
different priorities for them.

Recently in [8], it was discussed that the tasks in a
network could be of different types, e.g. they have different
importance (priority) levels. For such networks, the same
task allocation question applies. To address the question,
it is important to take into account the types of incoming
jobs and the specifics of the entire system in the control.
Specifically, it was highlighted [8] that there could be several
consensus objectives for such a network, since, in practice,
many network systems support more than one class where
service differentiation exists. For example, in a system,
the deadline requirement for a class of urgent tasks may
be different from that for a class of normal tasks. This
calls for differentiated consensuses, which we define as a
consensus problem for systems with multiple classes, where
a consensus is targeted for each class and may be different
among classes. Ultimately, for the control goal of the network
we want to achieve a consensus within each class, separately.

In [9], [10] the group consensus in multi-agent network is
considered. Unlike group consensus, differentiated consensus
has to be achieved throughout the whole network, not just
among certain group of agents and thus the consensus value
for every priority class has to be the same for every agent.

In [8], we considered a network with cost constrains where
tasks are of different (strict) priorities and at an agent, when
multiple tasks are present, the tasks at the highest priority
level are served first. For this network, we proposed to
distribute tasks among agents in accordance with the current
load of each priority and the productivity of each agent. With
the proposed strategy, it was proved [8] that the network can
achieve differentiated consensuses and satisfy different cost
constrains for all groups of priorities.

In this paper, we consider another general setting for
the network with priorities. In particular, the scheduling
discipline among different types of tasks at each agent
is Strict Priority in [8], which has the known “starvation
problem” for low priority tasks and may reduce the efficiency
of the network [11]. In the present work, we extend our
previous results to consider that the scheduling discipline at
each agent is Probabilistic Priority [12], [13]. Essentially,
we add to each priority class a probability. Specifically, the
high priority tasks are executed with a high probability, but
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the execution of jobs with lower priority also have nonzero
probability (but, of course, lower than the high priority tasks).
Hence, depending on the priorities of tasks, they will be
allocated with different amounts of network resources.

More specifically, we investigate differentiated consen-
suses in a distributed stochastic network with incoming tasks
that are classified with priorities. In the considered network
the communication links between agents may change over
time, i.e. the topology is variable, and the information about
states of neighbors (e.g., queue lengths) is to be obtained
with noise and delays. We introduce a new control strategy
for task redistribution among agents. Following this control
strategy we use the randomized way to distribute resources,
with corresponding probabilities. Depending on the priority
level of tasks in a queue we allocate different amount of re-
sources (more resources for high priority tasks, less resources
for low priority tasks). We propose a control protocol and
prove its ability to achieve almost balanced (equal) load, i.e.
approximate consensus, for every priority class across the
network.

The paper is organized as follows. Section II contains
the problem formulation and notations used in the paper.
In Section III the control protocol for achieving the differ-
entiated consensus is suggested. The main result along with
the proof and necessary assumptions are in the Section IV.
Simulation results are presented in Section V. Section VI
provides conclusion and plans for future work.

II. PROBLEM STATEMENT

Consider a dynamic network system of n agents, which
collaborate with each other, and a set of tasks of different
classes, which have to be executed in the system. Tasks come
to possibly different agents of the system in different discrete
time instants t = 0,1, . . . ,T . Agents process incoming tasks
in parallel. Tasks can be redistributed among agents based
on a feedback. Note that a task cannot be interrupted after
it is being processed by an agent, i.e. the system is non-
preemptive.

Without loss of generality, agents in the system are num-
bered. Let i, i= 1, . . . ,n, be the number of an agent. Assume,
that N = {1, . . . ,n} denotes the set of agents in the network
system. The network topology may switch over time. Let
the dynamic network topology be modeled by a sequence
of digraphs {(N,Et)}t≥0, where Et ⊂ E denotes the set of
edges at time t of topology graph (N,Et) and may change
over time. The corresponding adjacency matrices are denoted
as At = [ai, j

t ], where ai, j
t > 0 if agent j is connected with

agent i and ai, j
t = 0 otherwise. Here and below, an upper

index of agent i is used as the corresponding number of an
agent (while not as an exponent). Matrix At = [ai, j

t ] is the
adjacency matrix of the graph at time t. Denote GAt as the
corresponding graph.

To introduce some properties of the network topology, the
following definitions from the graph theory will be used.
Define the weighted in-degree of node i as the sum of i-th
row of matrix A: di(A) = ∑

n
j=1 ai, j; D(A) = diag{di(A)} is

the corresponding diagonal matrix; dmax(A) is the maximum

in-degree of the graph GA. Let L (A) = D(A)−A denote the
Laplacian of the graph GA; ·T is a vector or matrix transpose
operation; ||A|| is the Euclidian norm: ||A||=

√
∑i ∑ j(ai, j)2;

Re(λ2(A)) is the real part of the second eigenvalue of matrix
A ordered by absolute magnitude; λmax(A) is the maximum
eigenvalue of matrix A.

The digraph GB is to be said a subgraph of a digraph GA
if bi, j ≤ ai, j for all i, j ∈ N.

The digraph GA is said to contain a spanning tree if there
exists a directed tree Gtr = (N,Etr) as a subgraph of GA.

We suppose that tasks (jobs) belong to different classes
k = 1, . . . ,m and every agent has m queues — one for each
task class.

Particularly, the behavior of an agent i ∈ N is described
by two characteristics:
• the m-vector of queue lengths of tasks qi

t = [qi,k
t ] at

time t whose k-th element is defined by the amount
of tasks of k-th class k = 1, . . . ,m;

• the productivity pi.
Agents, having each its own probability or the number

of operations the agent can execute during the time instant,
should distribute it among all tasks classes in such a way that,
on the one hand the priorities for task classes are provided
and on the other hand the ”starvation problem” is taken into
account i.e. tasks of the lower priority classes don’t wait for
execution for too long. This is achieved by making use of the
probabilistic priorities. Each task class is given a productivity
fraction Pk, k = 1, . . . ,m which is the same for certain class k
on every agent in the system. On each agent the tasks from
its queues are chosen for execution randomly according to
the following formula:

p̃i,k
t =

{ Pk
∑

qi,l
t >0

Pl
, if qi,k

t > 0;

0, otherwise,

where p̃i,k
t is the probability of choosing a task of class k

for execution on agent i at a time instant t. Therefore the
bigger the fraction Pk is, the higher is the chance for the
task of class k to be executed. Thus agent’s productivity is
distributed among all classes of tasks in the following way:

pi,k
t = p̃i,k

t pi. (1)

Here pi,k
t is a number of operations allocated for tasks of

class k on agent i at a time instant t. Note that according to
the way p̃i,k

t is defined if at certain time instant t ′ the queue of
tasks of class k′ on the agent i′ is empty, no operations would
be allocated for tasks of class k′. Instead pi′,k′

t ′ operations
would be distributed among other task classes in proportions
of their productivity fractions Pk, k 6= k′.

For all i ∈ N, t = 0,1, . . . ,T , the dynamics of the network
system is as follows

qi
t+1 = qi

t −pi
t + zi

t +ui
t , (2)

where pi
t = [pi,k

t ], and zi
t = [zi,k

t ] is an m-vector whose k-th
element zi,k

t is the amount of new tasks of class k, which came
to the system and were received by agent i at time instant
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t; ui
t ∈ Rm is an m-vector of control actions (redistributed

tasks of class k to agent i at time instant t), which could
(and should) be chosen based on some information about
queue lengths of neighbors q j

t , j ∈ Ni
t , where Ni

t is the set
{ j ∈ N : ai, j

t > 0}.
Assume, that pi 6= 0, ∀i ∈ N and Pk 6= 0, k = 1, . . . ,m.

In [4] it was proven that from all possible options for
the redistribution of all tasks the minimum operation time
of the system is achieved when the load (defined as the
ratio of the queue length over the productivity) is equalized
throughout the network. Hence, it is important to consider
the achievement of the following goal.

It is required to maintain balanced (equal) load across the
network for every priority class.

At this setting we can consider the consensus problem for
states xi

t = [xi,k
t ] of agents, where

xi,k
t =

{
qi,k

t /p̃i,k
t , if p̃i,k

t > 0;
0, otherwise.

We emphasize, that xi
t is a state vector, consisting of states

for m classes.
To ensure balanced load across the network (e.g., in order

to increase the overall throughput of the system and to reduce
the execution time), it is naturally to use a redistribution
protocol over time.

We assume that to form the control strategy ui
t each agent

i ∈ N, has noisy and possibly delayed observations about its
neighbors’ states

yi, j
t = x j

t−si, j
t
+wi, j

t , j ∈ Ni
t , (3)

where wi, j
t is a noise vector, 0 ≤ si, j

t ≤ s̄ are integer-valued
delays, and s̄ is a maximum of possible delays.

III. CONTROL PROTOCOL

In [4], [5], properties of a control algorithm, called local
voting protocol, for load balancing problem of a stochastic
network were studied. The control value of the local voting
protocol for each agent was determined by the weighted sum
of differences between the information about the state of the
agent and the information about its neighbors’ states.

Let’s consider a similar family of protocols as follows. For
each k = 1, . . . ,m we define

ui,k
t = γ p̃i,k

t ∑
j∈N̄i

t

bi, j
t (yi, j,k

t − xi,k
t ), (4)

where γ > 0 is a step-size of the control protocol and N̄i
t ⊂

Ni
t is the neighbor set of agent i (note, that we could use

not all the available connections, but some subset of them),
bi, j

t are protocol coefficients. With the use of this protocol,
the system works in such a way that within each priority
tasks are distributed evenly. Let Bt = [bi, j

t ] be the matrices
of task redistribution protocols for every time instant t. (We
set bi, j

t = 0 when ai, j
t = 0 or j /∈ N̄i

t .)
Due to a construction method of matrices Bt , the cor-

responding graph GBt most of the time may has the same
topology as graph GAt of matrix At or more poor.

Let’s assume s̄ = 0. Then the dynamics of the closed loop
system with protocol (4) will be as follows

xi
t+1 = xi

t − r̃i
t + z̃i

t + γ ∑
j∈Ni

t

bi, j
t (yi, j

t −xi
t) =

xi
t − r̃i

t + z̃i
t + γ

∑
j∈Ni

t

bi, j
t x j

t

− γdi(Bt)xi
t + γw̃i

t , i ∈ N, (5)

where vectors r̃i
t = [r̃i,k

t ] and z̃i
t = [z̃i,k

t ] consist of components

r̃i,k
t =

{
pi,k

t / p̃i,k
t , if p̃i,k

t > 0;
0, othewise,

z̃i,k
t

{
zi,k

t / p̃i,k
t , if p̃i,k

t > 0;
0, othewise,

and w̃i
t = ∑ j∈N̄i

t
bi, j

t wi, j
t .

Let us rewrite Eq. (5) in a more compact form. Define the
Rnk-valued vectors Xt , Rt , Zt , Yt and Wt by concatenation
of corresponding vectors x̃i

t , r̃i
t , z̃i

t , and w̃i
t . The dynamics of

the closed loop system with protocol (4) reduces to

Xt+1 =Xt +γ(Bt⊗Im)Xt−γ(D(Bt)⊗Im)Xt−Rt +Zt +γWt ,
(6)

where Bt ⊗ Im is the Kronecker product the nm×nm which
is the block matrix:

Bt ⊗ Im =

b1,1
t Im · · · b1,n

t Im
...

. . .
...

bn,1
t Im · · · bn,n

t Im

 .
If s̄ > 0 we “artificially” add ns̄ new agents to the current

network topology. At each time instant t the new “fictitious”
agents have states which are equal to the corresponding states
of “real” agents at previous time instants t−1, t−2, . . . , t−
s̄. The same is done for every class k = 1 . . .m. Let xi,k

t ≡
0, i ∈ N for −s̄ ≤ t < 0. Denote X̄t ∈ Rn̄, n̄ = nm(s̄ + 1),
as an extended state vector for t = 0,1, . . . which consists
of s̄+ 1 (nm)-vectors Xt ,Xt−1, . . . ,Xt−s̄, i.e. it includes all
the components with all kinds of delays not exceeding s̄.
Denote n(s̄+ 1) as ñ. Introduce the extended ñ× ñ matrix
B̄t of the control protocol (4) which consists of zeros at all

places except |N̄i
t | entries b̄i, j+nsi, j

t
t in each i ∈ N, j ∈ N̄i

t of
n first lines, which are equal to bi, j

t and b̄i,i−n
t = 1/γ in next

ns̄ lines, i = n+1, . . . , ñ.
Due to the view of the Laplacian matrix L (B̄t ⊗ Im) we

can rewrite the dynamics of the system in the following
vector-matrix form:

X̄t+1 = X̄t − γL (B̄t ⊗ Im)X̄t +

(
−Rt +Zt + γWt

0

)
. (7)

IV. MAIN RESULTS

A. Assumptions

Let (Ω,F ,P) be the underlying probability space corre-
sponding to the sample space, the collection of all events,
and the probability measure respectively, and E be a mathe-
matical expectation symbol.

We assume that graphs GBt , t = 1, . . . are i.i.d. (independent
identically distributed), i.e. the random events of appearance
of edge ( j, i) are independent and identically distributed for
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the fixed ( j, i). Let bi, j
av define mean values (mathematical

expectations) of bi, j
t , and Bav is the corresponding adjacency

matrix.
Assume that the following conditions are satisfied:
• A1. Graph GBav has a spanning tree, for the consensuses

to be achievable throughout the system [14].
• A2. a) For all i ∈ N, j ∈ Ni

t , observation noise vec-
tors wi, j

t are zero-mean, independent identically dis-
tributed (i.i.d.) random vectors with bounded variances:
E(wi, j

t )2 ≤ σ2
w.

b) For all i ∈ N, j ∈ Ni
max = ∪t N̄i

t the appearance of
“time-varying” edges ( j, i) in graph GBt is independent
random event. For all i ∈ N, j ∈ Ni

t weights bi, j
t in

the control protocol are independent random variables
with expectations: Eb̃i, j

t = bi, j, and bounded variances:
E(b̃i, j

t −bi, j)2 ≤ σ2
b .

c) For all i ∈ N, j ∈ Ni there exists a finite value s̄ ∈N:
si, j

t ≤ s̄ with probability 1, and integer-valued delays si, j
t

are i.i.d. random variables taking value l = 0, . . . , s̄ with
probability pi, j

l .
d) For all k = 1, . . . ,m, i∈N, t = 0,1, . . . random values
zi,k

t are independent with expectations: Ezi,k
t = z̄k which

do not depend on i, and variances: E(zi,k
t − z̄k)2 ≤ σ2

z,k.
e) For all i ∈ N, t = 0,1, . . . random vectors pi

t are
independent and consist of independent components.
Random values r̃i,k

t , k = 1, . . . ,m, have expectations:
Er̃i,k

t = r̄k which do not depend on i.
Additionally, all mentioned in Assumptions A2.a–A2.d
independent random variables and vectors are mutually
independent.
In general, if Assumptions A2.b and A2.c hold, the
averaged matrices B̄av = EB̄t , consist of elements

b̄i, j
av =

 pi,( j mod n)+1
j÷n bi,( j mod n)+1, if i ∈ N, j = 1, . . . , ñ,

1/γ, if i = n+1, . . . , ñ, j = i−n,
0, otherwise.

(8)
Here, the operation mod is a remainder of division, and
÷ is a division without remainder.
Note, that if s̄ = 0, then B̄av = Bav.

• A3. For the step-size of the control protocol γ > 0 the
following conditions are satisfied:

δ = |Re(λ2(B̄av⊗ Im))|− γRe(λmax(Q))> 0, (9)

where

Q = ECT
t Ct , Ct = L (B̄av⊗ Im)−L (B̄t ⊗ Im).

and

γ ≤ 1
max{dmax(Bav),δ}

. (10)

B. Averaged Models

Let x?0 be the weighted average m-vector of the initial
states

x?0 =
∑i gixi

0

∑i gi

where gT is the left eigenvector of matrix Bav [15] and {x?t }
is the trajectory of averaged systems

x?t+1 = x?t + z̄− r̄, (11)

where m-vectors z̄ = [z̄k] and r̄ = [r̄k] consist of expectations
which are defined by Assumptions A2.d, A2.e.

Note that in the case of balanced topology graph GBav ,
x?0 =

1
n ∑

n
i=1 xi

0.

C. Differentiated Consensuses

Consider vectors X̄?
t ∈ Rn̄, t = 0,1, . . . , which consist of

1n⊗x?t ,1n⊗x?t−1, . . . ,1n⊗x?t−s̄.
Theorem 1: If Assumptions A1–A3 hold for trajectories

of closed-loop systems (5) and (11) the following inequality
holds:

E||X̄t − X̄?
t ||2 ≤

∆

γδ
+(1− γδ )t

(
||X̄0− X̄?

0||2−
∆

γδ

)
,

where

∆ = 2mσ
2
wγ

2(n2
σ

2
b + ||Bav||2)+n

m

∑
k=1

(σ2
z,k +(1−Pk)

2),

i.e. if additionally E||X̄0− X̄?
0||2 < ∞, then the asymptotic

mean square ε-consensus in (5) is achieved with

ε ≤ ∆

γδ
.

Proof: Consider vectors X̄?
t ∈ Rn̄, t = 0,1, . . . , which

consist of 1n ⊗ x?t ,1n ⊗ x?t−1, . . . ,1n ⊗ x?t−s̄ and satisfy the
equation:

X̄?
t+1 =UX̄?

t +

(
Z̄− R̄

0

)
, (12)

where 1n is the n-vector of units, Z̄ = 1n⊗ z̄, R̄ = 1n⊗ r̄, and
U is a n̄× n̄ matrix:

U =


Ink 0 . . . 0 0
Ink 0 . . . 0 0
0 Ink . . . 0 0
...

...
...

...
...

0 0 . . . Ink 0

 .

The vector 1n̄ is the right eigenvector of Laplacian-type
matrices L̄t = γL (B̄t ⊗ Im) and L̃ = γL (B̄av⊗ Im) corre-
sponding to the zero eigenvalue: L̄t1n̄ = L̃ 1n̄ = 0. Sums of
all elements in rows of matrices L̄t or L̃ are equal to zero
and, moreover, all the diagonal elements are positive and
equal to the absolute value of the sum of all other elements
in the row.

Due to the definition of matrices L̄t for differences νt+1 =
X̄t+1− X̄?

t+1 of trajectories of systems (7) and (12) we have

νt+1 = X̄t − L̄tX̄t +

(
Ft + γWt

0

)
−UX̄?

t −
(

F̄
0

)

= νt − L̄tνt +

(
γWt +Ft − F̄

0

)
,
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where Ft = Zt −Rt and F̄ = Z̄− R̄. Further, by adding and
subtracting L̃ νt we get

νt+1 = (In̄− L̃ )νt +(L̃ − L̄t)νt +

(
γWt +Ft − F̄

0

)
.

Let F̃t denote σ -algebra of all probabilistic
events, generated by the random elements
xi

0,w
i, j
0 , . . . ,wi, j

t−1,z
i
0, . . . ,z

i
t−1,s

i, j
0 , . . . , si, j

t−1,p
i
0, . . . ,p

i
t−1,b

i, j
0 ,

. . . ,bi, j
t−1,b

i, j
t , i, j ∈N, Consider the conditional mathematical

expectation of the squared norm νt+1:

EF̃t
||νt+1||2 = ||(In̄− L̃ )νt ||2 +2ν

T
t (In̄− L̃ )T(L̃ − L̄t)νt+

+2ν
T
t (In̄− L̄t)

T
(

γEF̃t
Wt +EF̃t

(Ft − F̄)
0

)
+ (13)

+2γEF̃t
WT

t (Ft − F̄)+ν
T
t (L̃ − L̄t)

T(L̃ − L̄t)+

+γ
2EF̃t
||Wt ||2 +EFt−1 ||Ft − F̄||2.

By Assumption A2.d,A2.e and the independence of Ft from
σ -algebra Ft−1 we have

EF̃t
(Ft − F̄) = E(Ft − F̄) = 0,

(14)

EF̃t
||Ft − F̄||2 = E||Ft − F̄||2 = n

m

∑
k=1

σ
2
z,k +(1−Pk)

2.

Due to Assumption A2.a, mutual independence of
wi, j

t , i, j ∈ N, and their independence from Ft and σ -algebra
F̃t , we obtain

EF̃t ∑
j∈N̄1

t

bi, j
t (wi,i

t −wi, j
t ) = ∑

j∈N̄1
t

bi, j
t E(wi,i

t −wi, j
t ) = 0,

EF̃t ∑
j∈N̄1

t

bi, j
t (wi,i

t −wi, j
t )(Ft − F̄) = (15)

∑
j∈N̄1

t

bi, j
t E(wi,i

t −wi, j
t )E(Ft − F̄) = 0,

and

EF̃t

∑
j∈N̄i

t

bi, j
t (wi,i

t −wi, j
t )

2

= (16)

= ∑
j∈N̄i

t

(bi, j
t )2(E(wi,i

t )2 +E(wi, j
t )2) = 2mσ

2
w ∑

j∈N̄i
t

(bi, j
t )2.

Taking into account the above relations (14)–(16) and de-
noting by b̄t the vector, consisting of the components
∑ j∈N̄1

t
(b1, j

t )2, . . . ,∑ j∈N̄n
t
(bn, j

t )2, we derive from (13)

EF̃t
||νt+1||2 = ||(In̄− L̃ )νt ||2 +2ν

T
t (In̄− L̃ )T(L̃ − L̄t)νt+

+ν
T
t (L̃ −L̄t)

T(L̃ −L̄t)+2mσ
2
wγ

2b̄t +n
m

∑
k=1

(σ2
z,k+(1−Pk)

2).

(17)
Let Ft denote the σ -algebra of probabilistic
events, generated by all random elements
xi

0,w
i, j
0 , . . . ,wi, j

t ,zi
0, . . . ,z

i
t ,s

i, j
0 , . . . , si, j

t ,pi
0, . . . ,

pi
t ,b

i, j
0 , . . . ,bi, j

t , i, j ∈ N, that were implemented before
time t. Consider conditional expectations of both sides of

(17). Due to stochastic properties of the uncertainties A2b,c
and the independence of B̄k

t and b̄t from σ -algebra F̃t we
obtain

EFt−1 ||νt+1||2 = ||(In̄− L̃ )νt ||2 + γ
2
ν

T
t Qνt+

+2mσ
2
wγ

2EFt−1 b̄t +n
m

∑
k=1

(σ2
z,k +(1−Pk)

2)≤

(1− γ|Re(λ2(B̄av⊗ Im))|+ γ
2
λmax(Q))||νt ||2+

+2mσ
2
wγ

2(n2
σ

2
b +

n

∑
i=1

n

∑
j=1

s̄

∑
k=0

pi, j
k (bi, j)2)+

+n
m

∑
k=1

(σ2
z,k +(1−Pk)

2) = (1− γδ )||νt ||2+

+2mσ
2
wγ

2(n2
σ

2
b +

n

∑
i=1

n

∑
j=1

(bi, j)2)+

+n
m

∑
k=1

(σ2
z,k +(1−Pk)

2) = (1− γδ )||νt ||2 +∆.

We take the unconditional expectation and get:

E||νt+1||2 ≤ (1− γδ )E||νt ||2 +∆,

By Lemma 1 of Chapter 2 of [16] it follows that inequal-
ity (12), which is the first part of Theorem 1, holds.

The second conclusion about the asymptotic mean square
ε-consensus follows from inequality (12) if t → ∞. Since
Assumption A4 is satisfied, we obtain that |1−γδ |< 1, and,
therefore, the second term of (12) exponentially tends to zero.

At this point, we highlight that, the result of Theorem 1
shows that queues with different priorities achieve m different
consensus levels separately. This behavior is termed as
differentiated consensuses.

V. SIMULATION RESULTS

Let’s consider the example of a network of five agents,
connected as a circle. Assume the links between agents may
disappear with probability of 1/5, and “diagonal” links may
also appear with the same probability. Maximum delay for
information exchange s̄ equals 1 and the probability of delay
appearance is equal to 1/3 and is the same for all edges. Let
there be tasks of three different classes arriving at the agents.
The productivity fractions are 4 : 2 : 1, i. e. with all queues
nonempty the agent’s productivity will be divided among
classes as 4

4+2+1 p = 4
7 p, 2

7 p and 1
7 p correspondingly.

So, in this case matrix Bav will have the form

Bav =


0 1

5
1
5

1
5

4
5

4
5 0 1

5
1
5

1
5

1
5

4
5 0 1

5
1
5

1
5

1
5

4
5 0 1

5
1
5

1
5

1
5

4
5 0


Note that given average topology graph GBav is balanced.

Let’s choose γ = 1/2 For Bav we have dmax(Bav) = 7/5.
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Matrix B̄av will look like this:

B̄av =



0 2
15

2
15

2
15

8
15 0 1

15
1
15

1
15

4
15

8
15 0 2

15
2
15

2
15

4
15 0 1

15
1
15

1
15

2
15

8
15 0 2

15
2
15

1
15

4
15 0 1

15
1
15

2
15

2
15

8
15 0 2

15
1
15

1
15

4
15 0 1

15
2
15

2
15

2
15

8
15 0 1

15
1
15

1
15

4
15 0

2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0


.

In this case we can compute |Re(λ2(B̄av⊗ Im)| = 1.5396,
Re(λmax(Q)) = 0.4963. We see, that both δ = Re(λ2(B̄av⊗
Im)− γRe(λmax(Q)) = 1.5396− 0.5 ∗ 0.4963 = 1.2915 > 0
and 1/2 = γ ≤ 1

max{dmax(Bav),δ} =
1

max{7/5, 1.2915} =
1

7.5 = 5/7
are satisfied, so (9) and (10) are true here.

Fig. 1 shows behavior of agents’ queue lengths during task
distribution via described protocol. In the experiment agents
are given tasks with exponentially distributed “complexities”
with parameter 1 while agents’ productivities also equal 1.

0 50 100 150 200
20

40

60

80

100

120

t

x
t
i, k

Fig. 1. Evaluation of queue lengths in the example for 3 classes of tasks

The lines on the figure correspond to agent’s queue lengths
for every class of tasks, that is xi,k

t . In the experiment shown
above there are five agents in the system with three queues
each.

In Fig. 1 typical behaviors of queue lengths of tasks of
different classes are shown. The states of different agents
for the same class k congregate and reduce due to tasks
execution. The more the productivity fraction for the class
is, the faster corresponding states of agents reduce.

VI. CONCLUSION

In this paper we examined a new consensus problem,
called differentiated consensuses. Specifically, we considered
a distributed stochastic network, where incoming tasks have
different priorities. The network model was supposed to
have switched topology, noise and delays in measurements.
For this network, we obtained the conditions of achieving
m (possibly different) consensus levels separately. A new
control strategy that allocates the resources of the network in

a randomized way with corresponding probabilities for each
priority class was introduced. To illustrate the theoretical
results we considered a numerical example which shows the
performance of the control protocol.

Standard assumptions on statistical properties for the
topology, noise and delays in measurements are considered.
In [17] these conditions are weakened and some approaches
how to deal with the systems under the influence of almost
arbitrary external perturbations are suggested. We plan to ex-
tend these approaches to consider the case with deterministic
and unknown but bounded noise.
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