Ann. Inst. Statist. Math.
Vol. 57, No. 1, 39-47 (2005)
(©2005 The Institute of Statistical Mathematics

REGRESSIONS FOR SUMS OF SQUARES OF SPACINGS

S. KIRMANI! AND J. WESOLOWSKI?

! Department of Mathematics, Northern Iowa University, Cedar Falls, IA 50614-0506, U.S.A.
2 Wydziat Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Warszawa 00-661, Poland

(Received May 12, 2003; revised November 17, 2003)

Abstract. Starting with a new formula for the regression of sum of squares of
spacings (SSS) with respect to the maximum we present a characterization of a family
of beta type mixtures in terms of the constancy of regression of normalized SSS of
order statistics. Related characterization for records describes a family of minima of
independent Weibull distributions.
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1. Introduction

If Xi.p,...,Xpn.n are the order statistics of a random sample X;,..., X, from a
continuous distribution then V; = X;.,, — X;_1.n, ¢ = 2,...,n, are called spacings of the
order statistics. The spacings play an important role in statistics and applied probabil-
ity. Sukhatme (1936) and Greenwood (1946) are two of the earliest references in this
regard. We refer to Misra and van der Meulen (2003) and the references therein for
some recent work on the distribution theory and reliability-theoretic aspects of spacings.
If the distribution sampled has bounded support [a,b] then an important statistic is
Greenwood’s G = Zf:ll V2; Xo.n = @, Xny1.n = b. This statistic is particularly useful
in testing goodness of fit when primary interest is in detecting discrepancies between
density functions; see Kirmani and Alam (1974). If F is the distribution function (df)
sampled, Fy a specified continuous df and Hy : F' = Fy the goodness-of-fit hypothesis,
let Up.p = Fo(Xim), 1 =0,1,...,n+ 1, with X¢., = —00 and Xp,41., = 00. If Hy is true
and D; = Uj., — U;_1.n, then E(D;) = 1/(n + 1), so that

n+1 1
o M2 =G — ——
2D~ B =6 - o,

which shows the relevance of G in testing Hy. This, of course, is one of many situations
where the sum of squares of spacings (SSS) enters in a natural manner. It does, however,
suggest the question of predicting SSS. Another situation, where distributional prop-
erties of the SSS are very useful, arises for instance in investigations of Poisson driven
sequences of observations as noted in Kirmani and Wesolowski (2003).

We show in Section 2 that the best mean square error predictor of SSS through the
largest order statistic has a rather interesting form in terms of the distribution function
sampled. This form leads to an intriguing result (Proposition 2.1) for the beta B(p,1)
distribution. On a more general note, our expression for the best predictor of SSS opens
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new possibilities for exploring the extent to which the form of this predictor determines
the distribution sampled. We study the case n = 2 in detail.

It is shown in Section 3 that, for n = 2, constancy of regression of normalized SSS on
the maximum characterizes a family of beta type mixtures. The case n > 2 is out of our
reach at present. Related investigations for records are presented in Section 4. Rather
unexpectedly they lead to characterizations of a family of distributions of minima of two
independent Weibull rv’s.

The results we present here fall in the wide area of characterizations of probability
distributions via regression properties of ordered statistics and records. The area devel-
ops rapidly in recent years. To have a wider perspective one can consult some of recent
papers as for example: Ahsanullah (2000), Ahsanullah and Nevzorov (2000), Asadi et al.
(2001), Dembinska (2001), Dembiniska and Wesolowski (2000, 2003), Ferguson (2002),
Franco and Ruiz (2001), Gupta and Wesolowski (2001), Lépez-Bldzquez and Wesolowski
(2001, 2004), Raquab (2002), Wesolowski and Ahsanullah (2001), Wu (2000, 2001a,
2001b), Wu and Lee (2001).

2. Regression for sum of squares of spacings (on X,.,) and the beta B(p,1) distribution

While studying distributional properties of Poisson driven sequences of observations,
we (Kirmani and Wesolowski (2003)) obtained the following concise formula for inde-
pendent identically distributed (iid) random variables (rv’s) Uy, ..., U, assuming values
in [0, a] and having a continuous df H:

n—1
(21) E U12n + Z(Uk+l:n - Uk:n)2 + (a - Un:n)2
k=1
—2 / / [H(z) + 1 — H(y)|"dzdy.
O<z<y<a
Let X1,X5,...,X, be iid square integrable positive rv’s with a continuous df F.
Then, according to the general formula (2.1) and the fact that for any > 0 the condi-
tional distribution of (X1.n,..., Xn—1.n) given X,., = z is the same as the distribution

of (Yin—1,...,Yn—1.n—1) for iid observations Y3,...,Y,_1 having the df

0, y <0,
Fi(y) =4 8, ye[0,F(z)),
1, y > F(z),

see for instance Nevzorov (2001), it follows that

(22) E[X12n + (X2:n - Xl:n)2 +--- 4 (Xnn - -Xn—lzn)2 ] Xnn]

B [F(Tzn)]—T / /0< oy @)+ F(Xnin) = F(y)]"dzdy.

The formula is a starting point of our investigation of families of distributions with
constant regression of the normalized SSS. We show below that any beta distribution
B(p,1) with the density f(x) = pzP~'I 1)(z) has this property.

ProposiTiON 2.1. If X4,...,X, are tid beta B(p,1) rv’s then
(23) E[X12n + (X2;n - Xl:n)2 + e + (Xnn - Xn—l:n)2 I Xnn] - a(pv n)X'z:na
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where

k kp+1

a(p,n):gnil(n_l) B(k-i—%,n—k).

p k=0

ProOF. Using (2.2) we have for any z € (0,1)

(24) E[X12n + (X2:n - Xl:n)2 + -+ (Xnn - )(n——lzn)2 I Xn:n = Z]

2 =Y 1
= z("T)P/O /0 (2P + 2P — yP|"" dxdy.

To compute the last integral we use the Newton formula:

z Y . zn—1 n—1 y
/ / (2P + 2P — yP|" dady = / z / ] yP)r R dady
o Jo o ;o\ Kk 0

1
n—1 1 * kol e pyn—l—k
= —yP)" dy.
k=0< " )kp+1/0y (2F —oP) Y

Now, introducing in the last integral a new variable by y? = 2Pt we get

1
/z ykp+l(zp _ yp)n—l—kdy — / (ztl/p)kp+lzp(n—l—k)(1 _ t)n—l—kgtl/p—ldt
0 0

2+4(n—1 1
_z (; )p/ tk:+2/p—1(1__t)n—1—kdt
0

2+(n—-1)p
- B(k+2,n—k) A
b D

Plugging it back into (2.4) we arrive at (2.3). O

If we divide both sides of (2.3) by X2, we see that the regression of the normalized
(by X2.,) SSS in the case of the beta B(p, 1) distribution is constant.
In particular for n = 2 we get

X2, 4+ (Xa.9 — X1:2)2 2
I e e S e ]
Since the function
2p
h(p) = —r~;—5 P>0,

C(p+D(p+2)

attains its maximum value 2(3 — 2v/2) at p = v/2 it follows that a(p,2) € [4v2 — 5,1).
Observe also that for p = 1, i.e. for the uniform distribution one gets

X2, + (X222 — X1:2)?

(2.6) E on

Xz:z] = 2.

It might be worthy to notice that a(1,2) = 2/3 ~ 0.66667 is very close to the lower
bound a(v/2,2) = 4v/2 — 5 ~ 0.65685.
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3. Characterizations of mixtures of beta type distributions

In this section we will identify the family of distributions on the positive half axis
having the property of constancy of regression of normalized SSS. It appears that the
family is much wider that just beta B(p, 1) distributions. However this type of the beta
distribution is the main building element of the family.

THEOREM 3.1. Let X;,Xy be iid rv’s with a continuous df F and the support
[0,7F], where rp = inf{z > 0: F(z) =1} < co. Assume that

E X2, + (Xo2 — X1.2)2
X22:2

(3.1)

X2:2) =,

where ¢ is a constant.
Then up to a positive scale the df F' is a mixture of the beta B(b,1) df Fy and a df
F2, i.e.
F=aF+(1—-a)F,

for some a € [0,1] and only the following two cases are possible: either ¢ = 4y/2 — 5
(i-e. a = b, see below) and then the df Fy is of the form

0, z <0,
Fy(2) = { 2V2(1 - V2log(2)), =€ [0,1],
1, z>1,

or c € (4v/2 —5,1) (i.e. a < b, see below) and then the df Fy is of the form

0, z <0,
Fa(z) = bp=ezt 2 e 0,1],
1, z>1,
where
3c—14+vVc2+10c—-7 3c—1—+c2+10c—7
(32) 21— <) @ 21 — ¢ >0
PRrROOF. Since 0 9
1 _
- < g:_i_(y__g)_ <1, 0<z<y,
2 y?

then it follows that ¢ € [0.5,1).

Since F(z) = 0 for 2 < 0 and F(z) = 1 for z > rp, where rp is the right end of
the support of the distribution, we consider below only the arguments z € (0,rr). From
(2.4) with n = 2 it follows that (3.1) is equivalent to

(3.3) 2 /O ’ ( / " IF(z) + F(2) - F(y)]dm) dy = c22F(2).

0

Thus F is differentiable in (0,7r) and differentiating the above formula we get

2 /0 Fz)de = 262F(2) + (c — 1)22F'(2).
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Hence F'is twice differentiable. Differentiating again we obtain the equation

2(2¢-1)

(3.4) 2" (2) + == :

2F'(2) +2F(z) = 0.

Introduce a new function u = u(z) by F(z) = exp(u(z)). Then the differential equation
(3.4) assumes the form

2(2¢-1)

2u(z2) + [ ()] + =

zu'(z) +2=0.

Define v(z) = 2u/(2). Then 22u”(2) = 2v'(2) — v and the above equation can be written
as

3c—1
c—1

(3.5) —2v'(2) = w(2)]* + v(z) + 2.

Since the discriminant of the quadratic at the rhs of (3.5) is

A 02—1—100—7,
(1-¢)?

then A < 0iff ¢ € [0.5,4v/2—5) and A > 0 iff ¢ € [4/2 — 5,1) since, as observed earlier,
c€[0.5,1).
In the first case solving the differential equation (3.5) and returning to the density
f = F' we obtain
f(2) = F(2)z|8 + atan(D — alog(z))],
where )
7—10c —c 3c—-1
@ - (1-¢)2? >0 B
and D is a real constant. Note that f satisfying the above equation cannot be a density
function since the rhs assumes negative values in the set of positive Lebesgue measure
in the right neighborhood of zero.
Thus only the case ¢ € [44/2 — 5, 1) is possible.
Consider first the case ¢ = 4y/2 — 5. Then solving (3.5) we arrive at the equation

F'(z) Q 1
F(z)  z = z(D; +log(z))’

>0
1—c !

where D) € [—00,00] is a constant. Hence for |D;| < oo
F(z) = Daz"2|Dy + log(2)|,

where Dy is a constant. Note that since F is a df then necessarily rp < co. Without
any loss of generality we assume that rp = 1. Then, since F(1) = 1, it follows that
Dy = 1/|Dy|. Thus necessarily D; < 0 and writing d = —1/D; we have

F(2) = 2V2(1 - dlog(z)).

Note that 0 < d < \/5, since otherwise the function F' is not non-decreasing. The case
|D1| = oo allows as to write 0 < d < V2. Tt is an elementary exercise to check that
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any df of the above form satisfies (3.3), i.e. proceeding via differentiation procedure we
remained within the set of solutions of our original problem.
Denoting o = 1 — d/v/2 € [0, 1], the above formula can be written as

F(z) = azV? 4 (1- a)z‘/i(l —V2log(2)),

where « € [0, 1], which proves the first part of the assertion since a = b = /2 (see (3.2)).
If ¢ € (4/2 — 5,1) the solution of (3.5) written in terms of the density f has the

form
-1 _ Dlaza—-l

20— Dyze
where a and b are defined in (3.2) and D; € [—00,00] is a constant. Therefore for
|D1' < 00

Zb
f(2) = F(z)°

F(z) = D22“|zb_“ - Dy,

where D5 is a constant. Similarly as in the previous case, we have to have rp < o0
and again, without loosing generality, we take rp = 1. Obviously, then we have to have
D, #1 and Dy =1/|1 — Dy| > 0 and thus

2%|zb=% — D|
F =
(Z) Il_Dll

Consider first the case D; < 0. Then for d = —D; > 0 we have

b dz°
F(z) = %&z_ =2’ + (1 —ag)2°

with a3 = 1/(1 +d) € (0,1]. The case |D;| = d = oo allows to write oy € [0, 1], and
thus F' is a df of a mixture of beta distributions B(a, 1) and B(b,1). Note that defining
aby (1 —a)b=(1—-a1)(b— a) we have a € [0,1] and

bz® — a2’

o = aFy(2) + (1 @) Fy(2)

F(z)=az’+ (1 - @)
If D; > 0 then, since F is non-decreasing, we have to have D; > 1. Then

Dlz“ — Zb
F(Z) = -ﬁ

and  f(2) = 27—,

which is nonnegative iff D; > b/a > 1. Thus

Dyz0 — 2

P) = Sp—,

which can be written as
F(2) = aF(z) + (1 — a)Fy(2),
for

Dy(b—a) [0 a]’

=l €23
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since D1 = oo is also allowed.
Again, on noting that for a and b defined by (3.2) one has

a b
(@+D@+2) G+1B+2)

it is elementary to check that the above df satisfies (3.3), and thus this is the general
form of the solution of our problem in the second case. O

Observe that the case of uniform distribution is included in Theorem 3.1 by spec-
ifying ¢ = 2/3 (then a = 1, b = 2) and @ = 1/2. Also if @ > a/b then the mixture
characterized in Theorem 3.1 can be represented as a mixture of beta B(a, 1) and beta
B(b,1) distributions, with new mixing coeflicients (1 — a)b/(b—a) and (ab—a)/(b—a),
respectively.

4. Characterization of minima of Weibull distributions

For a sequence (X;) of iid non-negative rv’s with a continuous df F and R(z) =
—log(1-F(x)) for x € (0,rFr) let (R,) denote the record sequence starting with Ry = X;.
Since the conditional distribution of (Ry,..., R,—1) given R, = z > 0 is the same as the
joint distribution of order statistics from a sample of size n from the df defined by

0, z <0,
F,(z) = ggfg, z € [0, 2),
1, T >z,

(see for instance Lemma 4.3.3 in Arnold et al. (1998)) then it follows from (2.1) that the
regression of SSS of first n records on the n-th record has the form

E |Ri+ ni(RkH - Rp)? | R,
k=1
: n-1
 R@E)T /0<:c<y<Rn [R(z) + R(Rn) — R(y)]" ™ dzdy.

Consider now a special case of a sequence (X;) of iid Weibull W(«,p) rv’s with
the df F(z) = [1 — exp(—axP)|[(0,c0)(x), With the parameters a,p > 0. Then R(z) =
azPl ) (z) and thus, since a plays a role of a scale only, immediately from the above
formula and considerations of Section 2 we find out that in this case the following ana-
logue of (2.5) holds

(4'1) E[R% + (R2 - R1)2 +ooe (Rn - Rn—1)2 l Rn] = Oé(p, n)R%’
where a(p,n) is defined in Proposition 2.1. Taking n = 2 we have, as in Section 2, that

R% + (R2 — R1)2
R3

2p
(p+1(+2)
Note that for p = 1, i.e. for the exponential distribution the constant at the right

hand side of (4.2) is 2/3—it was the case of uniform distribution for the SSS of the first
two order statistics.

(4.2) E ‘ Rg] =1
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Similarly as in Section 3 we are unable to study the converse of (4.1) in full generality.
Instead we are concerned only with the first two records i.e. with the question, if (4.2)
describes a property which is characteristic for the Weibull (exponential) distributions. It
appears that a wider family of minima of Weibull (exponential) distributions is identified
by this property.

THEOREM 4.1. Let (X;) be a sequence of iid rv’s with a continuous df and the
support [0,rx], rx < co. Assume that

R} + (Ry — R,)?

E
R3

RQ] =,

where ¢ is a constant.
Then c € [4v/2 —5,1), rx = 0o and

X £ min{Wy, W,},

where Wy and Wy are independent Weibull rv’s W{a, a) and W(83,b), respectively, where
a and b are defined in (3.2) and o and B are some nonnegative constants, o+ 3 > 0.

PrOOF. Exchanging the roles of R and F' in the previous proof we arrive at the
equation (3.5) with R(z) = e*(*), v(2) = 2u’(z). Then, similarly as earlier, we observe
that necessarily ¢ € [4v/2 - 5,1).

Considering first the case ¢ = 4v/2 — 5, as in the previous proof, we see that, since
lim, .o R(2) = 0o and R is non-decreasing in [0,75), we have to have R(z) = DzV2,
D > 0 (only |D;| = oo is admissible) and rr = 0o. Consequently, X;’s are Weibull with
the df s

F(z) = (1= e P ) 0,000 (2)

anda=b=+2,a=8=D.
If ¢ € (4v/2 — 5,1) then again following the previous proof we find out that
R(2) = D22%|2%" — Dy|, z€(0,7F).

Since R is nondecreasing, necessarily Dy < 0 (this time the case D; > 0 is impossible)
and thus rp = 00. Finally, we conclude that the df has the form

—az®—g2°
F(z)=(1-e B2) 10,00 (2),

which is a df of minimum of two independent Weibull W(«,a) and W(S3,b) random
variables, where «, # > 0 and are not zero together.

For the above F on returning to R one can easily check that the analogue of (3.3)
is satisfied and thus F gives the complete solution of our problem. O

Similarly as in the previous section we observe easily that the exponential distri-
bution is included in the statement of Theorem 4.1 by specifying ¢ = 2/3 (then a = 1,
b=2)and 8 =0.
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