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A b s t r a c t .  Starting with a new formula for the regression of sum of squares of 
spacings (SSS) with respect to the maximum we present a characterization of a family 
of beta type mixtures in terms of the constancy of regression of normalized SSS of 
order statistics. Related characterization for records describes a family of minima of 
independent Weibull distributions. 
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1. Introduction 

If X l : n , . . .  ,Xn:n  are the order  statist ics of a r andom sample X 1 , . . .  , X n  from a 
continuous dis tr ibut ion then  V~ = Xi:n  - X i - l : n ,  i = 2 , . . . ,  n, are called spacings of the 
order  statistics. The  spacings play an impor tan t  role in stat ist ics and applied probabil-  
ity. Sukhatme (1936) and Greenwood (1946) are two of the earliest references in this 
regard. We refer to Misra and van der Meulen (2003) and the references therein  for 
some recent work on the d is t r ibut ion  theory  and rel iabi l i ty-theoret ic  aspects of spacings. 
If the dis t r ibut ion sampled has bounded  suppor t  [a, b] then  an impor t an t  s tat is t ic  is 

v ' n + l  1//2; X0:~ = a, Xn+l:n = b. This  s tat is t ic  is par t icular ly  useful Greenwood's  G = z_~i=l 
in test ing goodness of fit when  p r imary  interest  is in detect ing discrepancies be tween 
density functions; see Ki rmani  and Alam (1974). If F is the dis t r ibut ion funct ion (df) 
sampled, F0 a specified cont inuous df and H0 : F = F0 the goodness-of-fit  hypothesis ,  
let Ui:n = Fo(Xi :n) ,  i = 0, 1 , . . .  , n +  1, with Xo:n = - c o  and Xn+l:n = oc. If H0 is t rue  
and Di = Ui:n - Ui- l :~,  t hen  E ( D i )  = 1 / ( n  + 1), so tha t  

n + l  

~ - ~ [ D i -  E ( D i ) ]  2 
i=l 

~ G m  _ _  
n + l '  

which shows the relevance of G in tes t ing H0. This,  of course, is one of many  s i tuat ions 
where the sum of squares of spacings (SSS) enters in a na tura l  manner .  I t  does, however,  
suggest the quest ion of predict ing SSS. Another  si tuation,  where dis t r ibut ional  prop- 
erties of the SSS are very  useful, arises for instance in investigations of Poisson driven 
sequences of observations as no ted  in Kirmani  and Wesolowski (2003). 

We show in Section 2 tha t  the  best  mean  square error  predic tor  of SSS th rough  the  
largest order statist ic has a ra the r  interest ing form in terms of the dis t r ibut ion funct ion 
sampled. This form leads to an intr iguing result  (Proposi t ion 2.1) for the b e t a  B ( p ,  1) 
distribution.  On a more general  note,  our  expression for the best  predic tor  of SSS opens 
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new possibilities for exploring the extent to which the form of this predictor determines 
the distribution sampled. We study the case n = 2 in detail. 

It is shown in Section 3 that, for n = 2, constancy of regression of normalized SSS on 
the maximum characterizes a family of beta  type mixtures. The case n > 2 is out of our 
reach at present. Related investigations for records are presented in Section 4. Rather 
unexpectedly they lead to characterizations of a family of distributions of minima of two 
independent Weibull rv's. 

The results we present here fall in the wide area of characterizations of probability 
distributions via regression properties of ordered statistics and records. The area devel- 
ops rapidly in recent years. To have a wider perspective one can consult some of recent 
papers as for example: Ahsanullah (2000), Ahsanullah and Nevzorov (2000), Asadi et al. 
(2001), Dembifiska (2001), Dembifiska and Wesotowski (2000, 2003), Ferguson (2002), 
Franco and Ruiz (2001), Gupta  and Wesotowski (2001), Ldpez-Bls and Wesotowski 
(2001, 2004), Raquab (2002), Wesotowski and Ahsanullah (2001), Wu (2000, 2001a, 
2001b), Wu and Lee (2001). 

2. Regression for sum of squares of spacings (on Xn:n) and the beta B(p, 1) distribution 

While studying distributional properties of Poisson driven sequences of observations, 
we (Kirmani and Wesotowski (2003)) obtained the following concise formula for inde- 
pendent identically distributed (iid) random variables (rv's) U1, . . . ,  Un assuming values 
in [0, a] and having a continuous df H: 

n--1 

( 2 . 1 )  E U2:n -~- Y ~ ( U k + l : n  -- Uk:n) 2 -~- (a - Un:n) 2 
k = l  

= 2 [ / "  [H(x) + 1 - H(y)]ndxdy. 
J J0 <x<y<a 

Let X1, X 2 , . . . ,  Xn be iid square integrable positive rv's with a continuous df  F .  
Then, according to the general formula (2.1) and the fact that for any x > 0 the condi- 
tional distribution of (XI :n , . . . ,  Xn-l:n)  given Xn:n = x is the same as the distribution 
of (Yl:n-1, . -- ,  Yn-nn-1) for iid observations Y1, . . - ,  Yn-1 having the df 

0, y < 0, 
Fx(y) = F(y) y e [0,F(x)) ,  

1, y >> F(x) ,  

see for instance Nevzorov (2001), it follows that 

( 2 . 2 )  E[X21:n -1- ( X 2 : n  - X l : n )  2 - t - " " " - I -  (Xn:n - Xn_ l :n )  2 I Xn:n] 

= 2 /~0  IF(x) + F(Xn:n) - F(Y)ln-ldxdy.  
[F(Xn:n)] n-1 <x<y<Xn:,~ 

The formula is a starting point of our investigation of families of distributions with 
constant regression of the normalized SSS. We show below that any beta  distribution 
B(p, 1) with the density f ( x )  = pxp-lI(o,1)(x) has this property. 

PROPOSITION 2.1. If  X 1 , . . . , X n  are iid beta B(p, 1) rv's then 

(2.3) E[Z2:n n t- ( X 2 : n  - X l : n )  2 -t- . . . . .  Jr- (Zn:n Xn_ l :n )  2 ] Xnln] OL(B, n)Zn:n,2 
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where 

1) 
~(p, n) = p k=o k 

(2  ) 
B k + p , n - k  

k p +  l 

PROOF. Using (2.2) we have for any z C (0, 1) 

(2.4) E[X~:n ~- (/2:n -- /l:n) 2 ~-''" q- (Xn:n - Xn-l:n) 2 I Xn:n = z] 

/o ]o z(~_l) p [ xp + z p - yP]n-l dxdy. 

To compute the last integral we use the Newton formula: 

L/o )/: z Y[x p + zp _ yp]n_ldxdy = n - 1 xkP(zp _ yp)~_ l_kdxdy  
k=0 k hi ( )  

= E n - 1 1 ykp+l(z p __ yp)~_l ,kdy"  
k=o k kp + 1 

Now, introducing in the last integral a new variable by yV = zpt we get 

/0 z /0 ykp+I(zP _ yp)n-l-kdy = (z t l /p)kp+lZp(n-l-k)(1 _ t ) n - l - k Z t l / P - t d t  
P 

Z2+(n--1)P ~01 
- -  t k+2/p-1 (1 - t) n - l -kd t  

P 
( 2  I Z 2k(n-1)p 

---- B k + - , n - k  
P P 

Plugging it back into (2.4) we arrive at (2.3). [] 

2 If we divide bo th  sides of (2.3) by X~: n we see tha t  the regression of the normalized 
(by X~:n) SSS in the case of the beta  B(p,  1) dis tr ibut ion is constant .  

In part icular  for n = 2 we get 

(2.5)  [xx 2  x22 x12 21 ] 
X2:2 X2:2 -- 1 - 

2p 

( p +  1 ) ( p +  2)" 

Since the function 
2p 

h(p) = (p + 1)(p + 2) '  P > O, 

a t ta ins  its max imum value 2(3 - 2v~)  at p = v ~  it follows tha t  a(p, 2) C [4v/-2 - 5, 1). 
Observe also tha t  for p = 1, i.e. for the uniform dis t r ibut ion one gets 

(2.6) E [ X 2 : 2 + ( X 2 : 2 - X I : 2 ) 2 1 2 X 2 2 : 2  X2:2 = ~ .  

It might be worthy to notice tha t  a(1, 2) -- 2/3 ~ 0.66667 is very close to the lower 
bound a(x/~, 2) = 4x/2 - 5 ~ 0.65685. 
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3. Characterizations of mixtures of beta type distributions 

In this section we will identify the family of distr ibutions on the positive half axis 
having the property of constancy of regression of normalized SSS. It appears tha t  the 
family is much wider tha t  just  beta  B(p, 1) distributions.  However this type  of the be ta  
dis tr ibut ion is the main building element of the family. 

THEOREM 3.1. Let X I , X  2 be lid rv's with a continuous df F and the support 
[0,rF], where rF = inf{x > 0:  F(x) = 1} <_ co. Assume that 

(3.1) E (  X2:2+(X2:2-Xl:2)2X2:2 X2:2) = c, 

where c is a constant. 
Then up to a positive scale the df F is a mixture of the beta B(b, 1) df F1 and a df 

F2, i.e. 
F =- aF1 + (1 - a)F2 

for some a C [0, 1] and only the following two cases are possible: e i t h e r  c = 4x/2 - 5 
(i.e. a = b, see below) and then the df F2 is of the form 

0, z < O, 

F2(z) = z45(1 - v/21og(z)), z e [0, 11, 

i, z > i, 

or  c C ( 4 v ~ -  5,1) (i.e. a < b, see below) and then the df F2 is of the form 

0, z < 0, 

F2(z) = b-o , z e [ 0 , 1 ] ,  
1, z > 1, 

where 

(3.2) 
3 c -  1 + ~/c 2 + l O c -  7 3 c -  1 - x/c 2 § l O c -  7 

b =  a =  > 0 .  
2(1 - c) ' 2(1 - c) 

PROOF. Since 
1 x 2 + (y - x) 2 
- <  < 1 ,  O < x < y ,  
2 -  y2 

then it follows tha t  c E [0.5, 1). 
Since F(z) = 0 for z < 0 and F(z) -- 1 for z >> rE, where rE is the right end of 

the support  of the distribution, we consider below only the arguments  z C (0, rF). From 
(2.4) with n ---- 2 it follows tha t  (3.1) is equivalent to 

(3.3) 2 L z (LY[F(x)  + F(z) - F(y)]dx) dy --- cz2F(z). 

Thus F is differentiable in (0, rF) and differentiating the above formula we get 

L 
Z 

2 F(x)dx -- 2czF(z) + ( e -  1)z2F'(z). 
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Hence F is twice differentiable. Differentiat ing again we obta in  the  equat ion  

(3.4) z2F,,(z) + 2(c2_C_~ 1 1 )  z F ' ( z ) +  2 F ( z ) =  0. 

In t roduce a new funct ion u = u(z) by F(z)  = exp(u(z) ) .  Th en  the differential equat ion  
(3.4) assumes the form 

2(2C-_lX) zu'(z  ) z2u"(z) + [ z u ' ( z ) ]  2 + + 2 = o.  

Define v(z) = zu'(z).  T h e n  z2u"(z) = zv'(z) - v and the above equat ion can be wr i t t en  
as  

3 c -  1 
(3.5) - z v ' ( z )  = Iv(z)] 2 + c - - y v ( z )  + 2. 

Since the  discriminant of the quadra t ic  at the rhs of (3.5) is 

c 2 + 10c - 7 
A -  

(1  - c )  2 ' 

then  A < 0 iff c E [0.5, 4 v ~  - 5) and A _> 0 iff c E [4v/2 - 5, 1) since, as observed earlier, 
c e [0.5, 1). 

In the first case solving the differential equat ion (3.5) and re turn ing  to the densi ty  
f = F '  we obta in  

f ( z )  F(z)z[13 + a t a n ( D  - a log(z))], 

where 
7 -  lOc- c 2 3 c -  1 

a = - A -  > 0 ,  / 3 - - -  > 0 ,  
( 1  - c )  2 1 - c 

and D is a real constant .  Note  tha t  f satisfying the above  equat ion  cannot  be a densi ty 
funct ion since the rhs assumes negative values in the set of posit ive Lebesgue measure  
in the right ne ighborhood of zero. 

Thus  only the case c E [4v~ - 5, 1) is possible. 
Consider first the case c = 4 v / 2 -  5. T h e n  solving (3.5) we arrive at the equat ion  

F'(z)  x/2 1 
- + 

F(z)  z z(D1 + log(z) ) '  

where D1 C [ - oc ,  oc] is a constant .  Hence for ]Dll < oc 

F(z)  = D2zV~lD1 + log(z)l , 

where D2 is a constant .  Note  tha t  since F is a df then  necessarily rF < c<). W ith o u t  
any loss of generali ty we assume tha t  rF  = 1. Then ,  since F (1 )  = 1, it follows tha t  
D2 = 1/ID1 ]. Thus  necessarily D1 < 0 and wri t ing d = -1 /D1  we have 

F(z)  = zV~(1 - d log(z) ) .  

Note tha t  0 < d _< x/~, since otherwise the funct ion F is not  non-decreasing.  The  case 
IDll = c~ allows as to wri te  0 _< d _< v/2. It is an e lementary  exercise to check tha t  
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any df of the above form satisfies (3.3), i.e. proceeding via differentiat ion procedure  we 
remained within the set of solutions of our  original problem. 

Denot ing  a = 1 - d / v ~  E [0, 1], the  above formula can be wri t ten  as 

F ( z )  = a z  v~ + (1 - a)zV~(1 - v/21og(z)),  

where a �9 [0, 1], which proves the first par t  of the assertion since a = b = x/2 (see (3.2)). 
If c �9 (4x/~ - 5, 1) the solut ion of (3.5) wr i t ten  in terms of the densi ty  f has the 

form 
b z b - 1  _ D l a z  a - 1  

f ( z )  = F ( z )  zb _ DlZa , 

where a and b are defined in (3.2) and DI �9 [-(x~, (x~] is a constant .  Therefore  for 

l O l l  < O0 
F ( z )  = D 2 z a [ z  b - a  - V i i ,  

where D2 is a constant .  Similarly as in the previous case, we have to have rF < cO 
and again, wi thout  loosing generality, we take rF = 1. Obviously, t hen  we have to  have 
D1 r 1 and D2 = 1/[1 - Dl l  > 0 and thus 

zal zb-~ - Dl l  
F ( z )  = [1 - DI[ 

Consider  first the case D1 _~ O. T h e n  for d = - D I  _> 0 we have 

zb + dz~ - a l z  b + (1 - a l ) z  a 
g ( z )  -- 1 + d 

with Ol I : 1 / ( 1  -I- d) �9 (0,  1]. T h e  c a s e  [D1 [ = d ~-- (:~ a l l o w s  t o  write  a l  �9 [0, 1], and 
thus F is a df  of a mix ture  of be t a  dis tr ibut ions B(a ,  1) and B(b,  1). Note  tha t  defining 
a by (1 - a)b = (1 - a l ) ( b -  a) we have a �9 [0, 11 and 

b z  a - a z  b 
= - -- a F l ( z )  + (1 - a)F2(z ) .  F ( z )  a z  b + (1 a)  b - a  

If  D1 > 0 then,  since F is non-decreasing,  we have to have D1 > 1. T h e n  

D 1  z a  - z b D l a Z  a - 1  _ b z  b - 1  

F ( z ) - -  D I - 1  and f ( z ) =  D l - 1  

which is nonnegat ive  iff D1 >_ b/a > 1. Thus  

F ( z )  - D l z a  - z b  

D 1 - 1  ' 

which can be wr i t t en  as 

F ( z )  = a F l ( Z )  + (1 - a)F2(z) ,  

for 

a = l  D l ( b - a )  [0, a , 
(D1 - 1)b �9 b] 
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since D1 = cr is also allowed. 
Again, on not ing tha t  for a and b defined by (3.2) one has 

a b 

( a + l ) ( a + 2 )  (b + 1)(b + 2) '  

it is e lementary  to check tha t  the above df satisfies (3.3), and thus this is the general  
form of the solution of our  problem in the second case. [] 

Observe tha t  the case of uniform dis t r ibut ion is included in Th eo rem  3.1 by spec- 
ifying c = 2 /3  ( then a = 1, b = 2) and a = 1/2. Also i f a  > a/b then  the mix tu re  
character ized in Theo rem 3.1 can be represented as a mixture  of be t a  B(a, 1) and be ta  
B(b, 1) distr ibutions,  with new mixing coefficients (1 - a)b/(b - a) and (ab - a)/(b - a), 
respectively. 

4. Characterization of minima of Weibull distributions 

For a sequence (Xi) of iid non-negative rv 's  with a continuous df F and R(x) = 
- l o g ( 1 - F ( x ) )  for x E (0, rE) let (Rn) denote  the record sequence s tar t ing wi th  R1 = X l .  
Since the condi t ional  dis t r ibut ion of ( R 1 , . . . ,  R,~-I) given R,~ = z > 0 is the same as the 
joint  d is t r ibut ion of order  statistics from a sample of size n from the df  defined by 

0, x < 0, 

F (x) = x e  [0, z),  

1, x _> z, 

(see for instance L e m m a  4.3.3 in Arnold et al. (1998)) then  it follows from (2.1) t ha t  the 
regression of SSS of first n records on the n- th  record has the form 

E R 2 -~- E ( R k + I -  R k )  2 R n 

k=l  

_ 2 if0 [R(x) + R(R,~) - R(y)]n-ldxdy. 
[R(Rn)]  n-1  <x<y<R,~ 

Consider now a special case of a sequence (Xi) of iid Weibull W ( a , p )  rv 's  with 
the df F(x) = [1 - exp(-axP)]I(o,~)(x), with  the  paramete rs  a,p > 0. T h e n  R(x) = 
axPI(o,~) (x) and thus, since a plays a role of a scale only, immediate ly  from the above 
formula and considerat ions of Section 2 we find out  tha t  in this case the following ana- 
logue of (2.5) holds 

(4.1) E[R~ + (R2 - R1) 2 ~ - " "  + (Rn  - 2~n-1) 2 [Rn] : a(p,n)R2n, 

where a(p,  n) is defined in Proposi t ion 2.1. Taking n = 2 we have, as in Sect ion 2, t ha t  

(4.2) E [R2 + (R2 - RI)2 1 2p 
n~ R~ = 1 -  ( p + l ) ( p + 2 ) .  

Note tha t  for p = 1, i.e. for the exponent ia l  d is t r ibut ion the constant  at  the  right 
hand side of (4.2) is 2 / 3 - - i t  was the case of uniform dis t r ibut ion for the SSS of the  first 
two order  statistics. 
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Similarly as in Section 3 we are unable to s tudy  the converse of (4.1) in full generality. 
Instead we are concerned only with the first two records i.e. with the question, if (4.2) 
describes a property which is characteristic for the Weibull (exponential) distributions. It 
appears tha t  a wider family of minima of Weibull (exponential) distr ibutions is identified 
by this property. 

THEOREM 4.1. Let (Xi)  be a sequence of  lid rv's with a continuous df  and the 
support [0, rx l ,  r x  <_ cx~. Assume  that 

E [R2 + (R2 - R I )  2 ] 
R~ R2 = c, 

where c is a constant. 
Then c �9 [4v~ - 5, 1), r x  = co and 

X d min{W1, W2}, 

where W1 and W2 are independent WeibuU rv's W ( a ,  a) and W(~,  b), respectively, where 
a and b are defined in (3.2) and a and ~ are some nonnegative constants, a + ~ > O. 

PROOF. Exchanging the roles of R and F in the previous proof we arrive at  the 
equation (3.5) with R(z )  = e u(z), v(z)  = zu ' (z ) .  Then, similarly as earlier, we observe 
tha t  necessarily c E [4x/~ - 5, 1). 

Considering first the case c = 4 x / ~ -  5, as in the previous proof, we see tha t ,  since 
l imz_.~ R(z )  -- co and R is non-decreasing in [0, rF),  we have to have R(z )  = D z  v~, 
D > 0 (only IDll -- co is admissible) and rF ---- oo. Consequently, Xi ' s  are Weibull with 
the df 

_ D z  r  
F ( z )  = (1 - e )I(o,~)(z) 

and a = b = x/~, a = ~ = D. 
If c �9 (4v~ - 5, 1) then again following the previous proof we find out tha t  

R(z )  = D2zalz  b-a - Dxl, z �9 (0, rF) .  

Since R is nondecreasing, necessarily D1 _< 0 (this t ime the case D1 > 0 is impossible) 
and thus rF = oo. Finally, we conclude tha t  the df has the form 

[~z b 
F ( z ) = ( 1 - e  - a z ~  )I(0,c~) (z), 

which is a df  of minimum of two independent  Weibull W ( a ,  a) and W(f l ,  b) random 
variables, where (~, fl _> 0 and are not zero together.  

For the above F on returning to R one can easily check tha t  the analogue of (3.3) 
is satisfied and thus F gives the complete solution of our problem. [] 

Similarly as in the previous section we observe easily tha t  the exponential  distri- 
but ion is included in the s ta tement  of Theorem 4.1 by specifying c = 2/3 (then a = 1, 
b = 2 )  a n d ~ 3 = 0 .  
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