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Abstract 

The paper considers both knowledge acquisition and knowledge interpretation tasks as tightly connected and 
continuously interacting processes in a contemporary knowledge engineering system. Fuzzy rules are used here as 
a framework for knowledge representation. An algorithm REFuNN for fuzzy rules extraction from adaptive fuzzy neural 
networks (FuNN) is proposed. A case study of Iris classification is chosen to illustrate the algorithm. Interpretation of 
fuzzy rules is possible by using fuzzy neural networks or by using standard fuzzy inference methods. Both approaches are 
compared in the paper based on the case example. A hybrid environment FuzzyCOPE which facilitates neural network 
simulation, fuzzy rules extraction from fuzzy neural networks and fuzzy rules interpretation by using different methods 
for approximate reasoning is briefly described. 
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1. Introduction 

Two are the major tasks of the contemporary 
research in knowledge engineering: 
• knowledge acquisition/knowledge refinement, 

and 
• knowledge interpretation. 
The two tasks are separate steps in building 
a knowledge-based system, but they are strongly 
connected. For  example, the process starts with 
initial set of prior or extracted from data rules. The 
rules are interpreted. During the interpretation new 
data has been entered and new results have been 
obtained which should reflect in a refined know- 
ledge and this process is continuous as depicted in 
Fig. 1. 

* Email: nkasabov@otago,ac.nz. 

The above approach of tightening the two pro- 
cesses together in one system is very relevant to 
solving many AI tasks. It is very much human- 
like, as humans learn, reason, and explain in a 
continuous manner over time. Developing know- 
ledge engineering tools which facilitate this ap- 
proach is a major concern of the research reported 
here. 

The paper has the following organisation. Sec- 
tion 2 presents general issues of approximate rea- 
soning. Section 3 introduces fuzzy neural networks 
and a model called FuNN for both rules extraction 
and reasoning. Section 3 discusses issues of connec- 
tionist methods for fuzzy rules extraction and also 
presents an algorithm called REFuNN. The algo- 
rithm is illustrated with the well-known Iris 
database. Section 4 compares results obtained after 
reasoning in FuNN and by using a standard 
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max-min composition fuzzy inference method. 
Both produce 100% correct classification on a se- 
lected Iris test data set. Section 5 finally suggests 
a knowledge engineering environment Fuzzy- 
COPE for building comprehensive AI systems. It 
facilitates rules extraction and different methods for 
approximate reasoning. Section 6 gives conclusions 
and directions for further research. 

2. Approximate reasoning - issues and problems 

Approximate reasoning is a process of inter- 
pretation of knowledge in a presence of uncert- 

ainty. The uncertainty can be present in a form of 
vague and contradictory knowledge, incomplete 
past data, uncertain new facts, not clear goals, etc. 
Fig. 2 gives examples of three different knowledge 
representation schemes which allow for represent- 
ing uncertainties on a case study of three simple 
rules. Different representation schemes influence 
the type of approximate reasoning techniques 
which can be used. Simple fuzzy rules 
[-25, 24, 20, 16, 17]. weighted production rules 
[20, 9, 14] and generalised fuzzy production rules 
[9, 14] are shown there as representation schemes 
as well as a basis for applying approximate reason- 
ing mechanisms. 

4, 
~Knowiedge Acquisition/ 

Knowledge Refinement H 

Knowledge Base 

(Fuzzy Rules) 

? 
a prionmles 

~ Knowledge Interpnetataon 

(Approximate Re~oning)~.~ Resuht 

Fig. 1. Knowledge acquisition and knowledge interpretation as two tightly coupled phases in one system, 

Simple fuzzy rules 
Rule 1: IF x, is Medium AND x 2 is Medium THEN y is Medium 
Rule 2: IF xj is High AND x 2 is High THEN y is High 
Rule 3: IF y is Medium THEN z is Medium 

Weighted fuzzy production rules 
Rule 1: IF x I is Medium with DI1.1=2 AND x 2 is Medium with DII.2=I THEN y is Medium (CF~=0.8); 
Rule 2: IF x I is High with DI2:=5 AND x 2 is High with DI2. 2 =2 THEN y is High (CF2=0.6) 
Rule 3:IF y is Medium THEN z is Medium (CF3=0.5), 
where: DIij are degrees of importance attached to the condition elements; CFi are certainty factors attached to 
the consequent (action) elements; 

Generalised fuzzy production rules 
Rule 1 :IF [x I is Medium with DIt.l=2 AND x 2 is Medium with DI~.2=I] (NTI=0.2, SF1=0.6) THEN y is Medium 
(CFI=0.8) 
Rule 2:IF [x I is High with DI2a=5 AND x 2 is High with DI2. 2 --2] (NT2=0.2, SF2=0.6) THEN y is High (CF2=0.6) 
Rule 3:IF y is Medium (NT3=0.2, SF3=0.6) THEN z is Medium (CF3=0.5), 
where: NT i are noise tolerance coefficients; SF i are sensitivity factors; DI~j are degrees of importance; CFiare 
certainty factors. 

Fig. 2. Examples of three different knowledge representation schemes on a case study of three simple rules. 
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Approximate reasoning methods are concerned 
with the following general issues: 

t ! • How new facts, e.g. xl, x2 should be matched to 
the condition elements in the rules and how partial 
match should be evaluated; 
• How to combine the partially matched by the 
new facts x'l and x~ condition elements in each of 
the rules R1 and R 2 and evaluate the matching of 
the whole antecedent part in them; 
• How to calculate the inferred through a rule new 
fact Y'i for each of the rules Ri; 
• How to agoregate the inferred values y'~ and Y2 in 
one value y'; 
• How to propagate an inferred fact y' to the next 
reasoning cycle in the reasoning chain, e.g. how to 
match the inferred value of y' to the third rule 
R3 and produce an output value z'. 

In addition to the above said, the following issues 
have to be considered when creating more sophis- 
ticated reasoning methods: 
• dynamic fact-changes, i.e. how to implement par- 
tial 'forgettin 9' of nonrelevant facts; 
• dynamic rule-changes, i.e. how rules can change 
over time, or - as a result of new data and know- 
ledge, or - as a result of changes in the environ- 
ment; how new rules can be created and old 
ones - corrected; 
• 'communication' between rules within a know- 
ledge base, i.e. how pieces of knowledge can 'com- 
municate' in order to improve themselves or their 
performance. 

Different techniques offer different solutions to 
the problems above, none of them so far being able 
to meet all the requirements. The symbolic methods 
of AI fail to provide comprehensive approximate 
reasoning techniques. The well-established methods 
of probability theory can handle uncertainties 
when they are strictly represented in the terms of 
this theory [2, 24]. They are not suitable for chain 
reasoning or to represent subjective knowledge. 
Fuzzy systems have been widely applied for control 
and decision making. They use vague, linguistic, 
fuzzy knowledge and numerical representation 
(membership functions) to define the fuzzy terms. 
Some limitations of applying fuzzy logic are experi- 
enced in learning and adaptation. These are tasks 
which neural networks and connectionist models 
can handle. Mixing fuzzy and connectionist models 

for building approximate reasoning systems is 
more than a promising approach [3]. In spite of the 
advances in the area of fuzzy neural networks 
(FNN) (also called neuro-fuzzy systems [7, 15]) and 
their applications for learning and adaptation 
[1, 3, 23], for rules extraction [1, 3, 6, 7, 11, 15], for 
modelling, control and decision making [7, 1, 4, 9], 
etc., their potential for learning and reasoning in 
a hybrid knowledge engineering environment is 
still to be explored and effectively applied. 

3. Fuzzy neural networks. The FuNN architecture 
for rules extraction and approximate reasoning 

3.1. Fuzzy neural networks - a general introduction 

A fuzzy neural network (FNN) is a connectionist 
model for fuzzy rules implementation and infer- 
ence. There is a big variety of architectures and 
functionalities of FNN. Adaptive network-based 
fuzzy inference systems are discussed in 
[1, 4-7, 15, 18]. Fuzzy neural networks have been 
implemented and used as reported in 
[19, 22, 23, 11, 13]. 

The FNN developed so far differs mainly in the 
following parameters: 
• Type of fuzzy rules implemented; this reflects in 
the connectionist structure used. 
• Type of inference method implemented; this re- 
flects in the selection of different neural network 
parameters and neuronal functions, such as 
summation, activation, output function; it also 
influences the way the connection weights are 
initialized before training, and interpreted after 
training. 
• Mode of operation; we shall consider here three 
major modes of operation as suggested in [11]. 

Fixed mode - 'fixed membership functions-fixed 
set of rules', i.e. fixed set of rules is inserted in 
a network; the network performs inference, but 
does not change its weights. It cannot learn and 
adapt. A representative of this type of systems is 
NPS [9, 14]. 

- Learnin9 mode, i.e. a neural network is struc- 
turally defined to capture knowledge in a certain 
format, e.g. - some type of fuzzy rules. The net- 
work architecture is randomly initialized and 
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trained with a set of data. Rules are then extrac- 
ted from the structured network [8]. The rules 
can be interpreted either in the same network 
structure or by using other inference methods. 

- Adaptation mode - A neural network is struc- 
turally set according to a set of existing rules, 
'hints', heuristics. The network is then trained 
with new data and then updated rules are extrac- 
ted from its structure. There are two cases which 
can be distinguished here: ' fixed membership func- 
tions - adaptable rules' [15] and 'adaptable mem- 
bership functions - adaptable rules' [1, 5]. The 
'catastrophic forgetting' phenomenon must be in- 
vestigated in these cases, i.e. how much the net- 
work forgets about previous data after having 
learned from completely new data without 
rehearsing the old ones [11]. 
To summarise the above, FNN have two major 

aspects: 
• Structural, i.e. a set of rules is used to define the 
initial structure of a neural network; two types of 
neural networks have been mainly used so far: 
- multi-layer perceptrons (MLP) [1, 5, 11, 6]; 
- radial-basis functions networks [-11]; 
• functional, parametric, i.e. after having defined 
the structure of a neural network and possibly 
having trained it with data, some parameters 
can be observed which parameters would explain 

the inference which the network performs 
[3, 19, 11]. Those parameters can be used to derive 
a (fuzzy) rule-based system represented in linguistic 
terms. 

3.2. The FuNN model 

The FuNN model [11] facilitates learnin9 from 
data, f u z zy  rules extraction, approximate reasoning. 

FuNN uses a MLP  network and a backpropaga- 
tion training algorithm. It is adaptable FNN where 
the membership functions of the fuzzy predicates, 
as well as the fuzzy rules inserted before training 
(adaption) malt adapt and change according to the 
training data. The general architecture of FuNN 
consists of the following layers (Fig. 3): 
• Input layer; a node here represents an input vari- 
able. 
• Condition elements layer; each node here repre- 
sents a fuzzy predicate of the input variables. The 
activation values of the nodes represent the mem- 
bership degrees of the input variables. Different 
summation function Sc, activation function ac and 
output function Oc can be used for the neurons of 
this layer. 
• Rule layer - each node in this layer represents 
either an existing rule, or an anticipating after 
training rule. When FuNN is used to implement 
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Fig. 3. An exemplar FuNN architecture for a simple set of two fuzzy rules. 
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initial set of fuzzy rules, then the connections be- 
tween the condition elements layer and the rule 
layer are set according to normalized degrees of 
importance attached to the antecedent elements in 
the corresponding rules. If degrees of importance 
are not attached to the condition elements of a 
rule R~, then the connection weights wij to a rule 
node R~ are uniformly calculated for each connec- 
tion as 

w~j = Neti/n, 

where n is the number of condition elements in the 
rule Ri; Neti is a constant which defines what the 
net input to the neuron R~ should be in order to fire 
the rule. The stronger the rule is as a piece of 
domain knowledge, the higher Net~ should be, 
which means a higher contribution of this rule to 
the output value. For a weak rule R~, Neti might 
take a value of 1, and for a strong rule Neti might 
need to be 5, provided a sigmoid activation func- 
tion is used. The other connection weights are in- 
itialised to zero. The following characteristics of 
this layer define the inference method performed by 
the FuNN: summation function SR; activation func- 
tion aR; neuronal output function OR. Additional 
rule nodes may be pre-set with zero connection 
weights. This may give the structure more flexibility 
to adjust the initial rules and the antecedent 
elements in them and to possibly capture new rules. 
The way the connection weights are interpreted 
here is used in the rules extraction algorithm 
REFuNN presented in the next section. 
• 'Action' elements layer; each node in this layer 
represents one fuzzy predicate (label) in the 'action' 
(consequent) elements of the rules. The connections 
between the rule nodes and the 'action' nodes are 
set as normalized certainty factors (CF) of the rules. 
The rest of the connections are set to zero. Again, 
three functions are defined for these nodes, i.e. sum- 
mation function SA, activation function aA and out- 
put function OA. Additional nodes may be used to 
capture additional action (conclusion) predicates 
during training (adaptation). 
• Output variable layer; it represents the output 
variables of the system. It is defined by the three 
functions: summation So, activation ao and output 
Oo functions. 

Fig. 3 depicts a FuNN for the following two 
rules: 

RI: IF Xl is Ax (DI1.1) and x2 is B1 (DI2,1) 
THEN y is Ca (CF1) 

R2: 1F Xl is A2 (DIi.2) and x2 is B2 (DI2,2) 
T H E N  y is Ca (CF2) 

An algorithm REFuNN for rules extraction from 
a trained FuNN is presented in the next section. 
The algorithm uses three layers from the FuNN 
architecture shown in Fig. 3 as the fuzzy predicates 
and membership functions are predefined. Fuzzy- 
fication and defuzzification are supposed to be 
done outside the structure. 

4. Connectionist methods for learning fuzzy rules. 
The REFuNN algorithm 

4.1. A general discussion on learning fuzzy rules 

Connectionist methods for learning rules from 
data use a connectionist structure, trained with 
data, and analyse the connection weights to extract 
rules. There are different methods which can be 
applied for rules extraction from a trained neural 
network architecture. They can be grouped into 
three major groups: 
• Destructive learnin9 methods, this involves learn- 
ing by pruning the neural network structure 
during the training procedure 
• Nondestructive learnin9 methods; here the net- 
work structure is kept intact during training; it is 
anlaysed and rules are extracted afterwards. 

Learned (or articulated) initial set of rules can be 
used to 'pre-wire' a neural network before its train- 
ing with data as it is the case with the FuNN 
architecture discussed in the previous section. 

Fuzzy rules can be learned based on: 
• fuzzified data and pre-defined membership func- 
tions, i.e. the data used for training is fuzzified by 
using pre-defined membership functions for the 
fuzzy predicates [16, 8, 11]; 
• crisp data and pre-defined membership func- 
tions, i.e. the data used for training is not fuzzified 
but the membership functions are predefined 
[1,5, 11]; these methods allow for tuning the 
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membership functions during further training or 
adaptation of the system; 
• crisp data and not pre-defined membership 
functions, i.e. the number and the shape of the 
membership functions are learned during training 
[1, 5, 63. 

Extracting rules from a trained connectionist 
structure may subsequently mean loss of informa- 
tion, as the way knowledge is extracted restricts the 
aspects of that knowledge and also directs and 
biases the knowledge acquisition process. A data 
set in general, contains much more than it can be 
extracted from it by using a particular connection- 
ist method. Rules extraction process ends up with 
an abstract, concise, condensed representation of 
one aspect only, may be the most important one for 
a particular application. 

4.2. The REFuNN algorithm - Rules extraction 
from a.fuzzy neural network 

The REFuNN algorithm, which first version was 
published in [8], is a simple connectionist method 
for extracting weighted fuzzy rules and simple fuzzy 
rules as illustrated in Fig. 2. It is based on training 
a MLP architecture with fuzzified data. The 
REFuNN algorithm, outlined below, is based on 
the following principles [8]: 

(1) simple operations are used and a low com- 
putational cost achieved; 

(2) hidden nodes in a MLP can learn features, 
rules, groups in the training data; 

(3) fuzzy quantization of the input and the out- 
put variables are done in advance; the granularity 
of the fuzzy representation (the number of fuzzy 
lanes used) defines in the end the 'fineness' and the 
quality of the extracted rules. Standard, uniformly 
distributed triangular membership functions can be 
used for both fuzzy input and output labels; 

(4) automatically extracted rules may need addi- 
tional manipulation depending on the reasoning 
method applied afterwards. 

The Algorithm 
Step 1: Initialisation of a FuNN. A fully connec- 

ted MLP neural network is constructed as shown 
in the example in Fig. 3 (the internal structure only 
between the two dashed vertical lines). The func- 

tional parameters of the rule layer and the output 
fuzzy predicates layer are set as follows: summation 
input function; sigmoid activation function; direct 
output function. 

Step 2: Training the FuNN. Supervised training 
algorithm is performed for training the network 
with fuzzified data until convergence. Backpropa- 
gation training algorithm can be used. 

Step 3: Extracting initial set of weiqhted rules. A 
set of rules {r j} is extracted from the trained net- 
work as follows. All the connections to an action 
element neuron Cj which contribute significantly to 
its possible activation (their values, after adding the 
bias connection weight if such is used, are over 
a defined threshold Tha), are picked up and their 
corresponding hidden nodes R j, which represent 
a combination of fuzzy input lables, are analysed 
further on. Only condition element nodes which 
support activating the chosen hidden node Rj will 
be used in the antecedent part of a rule U (the 
connection weights are above a threshold The). The 
weights of the connections between the condition- 
element neurons and the rule-nodes are taken as 
initial relative degrees of importance of the anteced- 
ent fuzzy propositions. The weights of the connec- 
tions between a rule node R~ and an action-element 
node Cj define initial value for the certainty degree 
CF i. The threshold The can be calculated by using 
the formula: 

The = Netm~x/k, 

where Netm,x is the desired value for the net input 
to a rule neuron to fire the corresponding rule; k is 
the number of the input variables. 

Fig. 6 shows an extracted initial set of weighted 
rules for 3 fuzzy labels from a FuNN trained with 
Iris fuzzified data (this is explained later in this 
section). 

Step 4: Extracting simple juzzy rules fi'om the set 
of weighted rules. The threshold The used in Step 3 
was defined in such a way that all the condition 
elements in a rule should collectively trigger the 
activation of this rule. This is analogues to an 
"AND' connective. The number of the fuzzy predi- 
cates allowed to be represented in the antecedent 
part of a rule is not more than the number of the 
input variables (one fuzzy predicate per variable at 
the most). The initial set of weighted rules can be 
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converted into a set of simple fuzzy rules by simply 
removing the weights from the condition elements. 
Some antecedent elements however can trigger the 
rules without any support from the rest of the 
condition elements, i.e. their degrees of importance 
DIij = wij (connection weights) are higher than 
the threshold Th,oR, = Netm,x. Such condition 
elements form separate rules which transforma- 
tion is analogous to a decomposition of rules with 
OR-connectives into rules with AND-connectives 
only. 

2.5 
Example. IF there is an initial weighted rule 

2 

IF xl is A(8.3) and x2 is B(1.2) T H E N  y is C, 
"~ 1.5 
i= 

and a threshold of Th.oR. = 5.0 is chosen, then two ~ 
separate simple fuzzy rules will be formed: = 

IF Xl is A and x2 is B T H E N  y is C, 

IF xl is A T H E N  y is C. 

The 'AND' and 'OR' connectives used here are 
vague, weak and loosely defined. An 'AND' con- 
nective should rather be expressed as a 'mutual 

2.5 

support' between variables or - synergism [19]. 
Step 5: Aggregatin 9 the initial weighted rules. All 2 

the initial weighted rules {ril, ri2 ..-} which have ~ 1.~ 
the same condition elements and the same conse- 
quent elements, subject only to different degrees of 
importance, are aggregated into one rule. The rela- 
tive degrees of importance DIij are calculated for 
every condition element Aij of a rule Ri as a nor- 
malized sum of the initial degrees of importance of 
the corresponding antecedent elements in the initial 
rules rij. 

An additional option in REFuNN is learning 
N O T  connectives in the rules. In this case negative 
weights which absolute values are above the set 
thresholds The and Tha are considered and the 
input labels corresponding to the connected nodes 
are included in the formed simple fuzzy rules with 
a N O T connective in front. 

Case example - Iris Classification Problem: As 
a case example the well understood and widely 
used in the machine learning community Dis data 
set is chosen. The whole data set comprises 50 
instances of each of the three Iris classes - Setosa, 

Versicolor and Virginica. The instances are repre- 
sented by four input attributes as follows: sepal 
length (SL), sepal width (SW), petal length (PL) and 
petal width (PW), all measured in cm. 120 examples 
are used for training and for rule extraction in the 
experiments below. 30 examples (10 examples of 
each of the classes) are used for testing the extracted 
rules. Fig. 4 shows a mapping of the whole Iris data 

Iris data 
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Fig. 4. Iris data sets mapped into the input space of the last two 
input attributes(diamond Setosa;square Versicolor;triangle 
- Virginica) 
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INPUTS 

0 . 0 ' - ~ 1 . 0 i M |  MED LRG 0 . 0 ~ 1 . 0  SM ~aE D LRG 

4,3000 SL 7.9000 O.IOQO I~V 2.5000 

SM MED LRG oOoD<-><t 
2.0000 ~ 4.4000 

SM MED LRG 

1.0000 PL 6.9000 

INFERENCE 
SM MED LRG 

0.00 Vk]inica 1.00 

Fig. 5. Three membership functions used to represent each of the input variables and each of the output variables (only 
Virginica is shown here). The used abbreviations are as follows: SM small; MED medium; LRG large. 

set, the training data and the test data into a two- 
dimensional space of the last two attributes only. 

By using the REFuNN algorithm several sets of 
fuzzy rules were extracted. First, three fuzzy predi- 
cates (Small - Sin, Medium - Med, and Large 
- Lrg) were used to represent each of the four input 
attributes and each of the three output variables, 
the latter representing possibilities for a data 
example to be classified into one of the three classes 
as shown in Fig. 5. 

A FuNN structure having 12 input nodes, 6 in- 
termediate nodes and 9 output nodes was trained 

with fuzzified Iris training data for 1000 training 
cycles, a learning rate of 0.1 and momentum of 0.3 
until a RMS error of 0.023. Fuzzy rules were then 
extracted. Fig. 6 shows the set of initial weighted 
rules, the sets of simple rules for each of the classes 
and a set of rules which have the last two input 
variables only. It can be seen from the list of extrac- 
ted rules that the most important for the classifica- 
tion task attributes are petal length and petal 
width. 

Another set of rules was extracted when 5 mem- 
bership functions were used for the input and the 

INPUTS 
VSM SM MED LRG VLRG 

0.0 
4.3000 SL 7.9000 

VSM SM MED LRG VLRG 

0.1000 ~N 2.5000 

VSM SM MED LRG VLRG 1 . 0 ~  

0.0 
2.0000 ~ 4.4000 

VSM SM MED LRG VLRG 

1.0000 Pt. 6.9000 

INFERENCE 
VSM SM MED LRG VLR 

0.[ 
0.00 Vlrginlca 1.00 

Fig. 7. Five membership functions for the input and the output variables for the Iris data set. 
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Extracted Iris classification rules for 3 membership functions and thresholds Th,=TI~= 2.0 
(a) Weghted Rules: 
if <SL is Sm 2.5> and <SW is Sm 4.2>and<PL is Lrg 8.8> and <PW is Lrg 10.8> then <Set is Sm 4.7> if <PL 
is Med 3> and <PW is Med 3.5> then <Set is Sm 2.2> 
if <PL 
if <PL 
if <SL 
if <PL 
if <PL 
if <PL 
if <SL 

is Sm 2.2> and <PW is Sm 2.21> then <Set is Lrg 2.2> 
is Sm 2.3> and <PW is Sm 2.4> then <Versi is Sm 4.9> 
is Sm 2.5> and <SW is Sm 4.2> and <PL is Lrg 8.8> and <PW is Lrg 10.8> then <Versi is Sm 7.8> 
is Sm 2.2> and <PW is Sm 2.2> then <Versi is Sm 4.9> 
is Med 3> and <PW is Med 3.5> then <Versi is Lrg 3> 
is Med 3> and <PW is Med 3> then <Virgi is Sm 3.8> 
is Sm 2.5> and <SW is Sm 4.2>and<PL is Lrg 8.8> and <PW is Lrg 10.8> then <Virgi is Lrg 8.3> 

(b) Simple rules for Th,oR, =5.0 
RULES for Setosa 
if <SL is Sm> and <SW is Sin> and <PL is Lrg>and<PW is Lrg> then <Set is Sm> 
if <PL is Lrg> then <Set is Sm> 
if <PW is Lrg> then <Set is Sm) 
if <PL is Med> and <PW is Med> then <Set is Sm> 
if <PL is Sm> and <PW is Sm> then <Set is Lrg> 
RULES for Versieolor 
if <PL is Sm> and <PW is Sm> then <Versi is Sm> 
if <SL is Sm> and <SW is Sm> and <PL is Lrg>and<PW is Lrg> then <Versi is Sm> 
if <PL is Med> and <PW is Med> then <Versi is Lrg> 
if <PL is Lrg> then <Versi is Sin> 
if <PW is Lrg> then <Versi is Sm> 
RULES for Virgiica 
if <PL is Med> and <PW is Med> then <Virgi is Sin> 
if <SL is Sm> and <SW is Sm> and <PL is Lrg>and<PW is Lrg> then <Virgi is Lrg> 
if <PL is Lrg> then <Virgi is Lrg> 
if <PW is Lrg> then <Virgi is Lrg> 

(c) Sub-set of rules with two attributes only - petal length (PL) and petal width (PW) 
if <PL is Lrg> then <Set is Sm> 
if <PW is Lrg> then <Set is Sm) 
if <PL is Med> and <PW is Med> then <Set is Sm> 
if <PL is Sm> and <PW is Sm> then <Set is Lrg> 
if <PL is Sm> and <PW is Sm> then <Versi is Sm> 
if <PL is Med> and <PW is Med> then <Versi is Lrg> 
if <PL is Lrg> then <Versi is Sin> 
if <PW is Lrg> then <Versi is Sm> 
if <PL is Med> and <PW is Med> then <Virgi is Sm> 
if <PL is Lrg> then <Virgi is Lrg> 
if <PW is Lrg> then <Virgi is Lrg> 

Denotation: SL- sepal length; SW - sepal width; PL - petal length; PW - petal width; Set - Setosa; Versi - 
Versicolor; Virgi - Virginica; Sm- small; Med - medium; Lrg - large. 

Fig. 6. Extracted rules for the Iris classification task when three fuzzy predicates are used for representing the input and the output variables. 

o u t p u t  var iab les  as s h o w n  in Fig. 7. A M L P  h a v i n g  
the  s t ruc tu re  of  a 20-20-15 F u N N  was t r a ined  wi th  
fuzzified t r a i n i n g  d a t a  for 1000 cycles, wi th  the 
s ame  l e a r n i n g  ra te  a n d  m o m e n t u m  values  as above.  

R M S  er ro r  of 0.014 was achieved this time. Some  of 
the rules are s h o w n  in  Fig.  8. 

The  ex t rac ted  rules c an  be used for r e a s o n i n g  
wi th  new d a t a  which  issue is d iscussed in the  next  
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Iris classification rules: S membership functions; thresholds: Th~ =1.2; Th,oR,=5 
RULES for Setosa 
if <SL is Med> and < SW is Sin> and <PL is VRlrg>and <PW is VRlrg> then <Set is VSm> 
if <PL is Med> then <Set is VSm> 
if <PL is Med> and <PW is Med> then <Set is VSm> 
if <PW is Med> then <Set is VSm> 
if <PL is Lrg> then <Set is VSm> 
if <SL is Meal> and < SW is Sin> and <PL is Lrg> and<PW is VRlrg> then <Set is VSm> 
if <SL is Med> and < SW is Sin> and <PL is VRlrg> and<PW is VRlrg> then <Set is VSm> 
if < SW is Sin> then <Set is VSm> 
if <SL is VRlrg> and < SW is Sin> and <PL is Lrg> and<PW is VRlrg> then <Set is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and<PW is VRlrg> then <Set is VSm> 
if <PL is VSm> then <Set is VRlrg> 
if <PL is VSm> and <PW is VSm> then <Set is VRlrg> 
RULES for Versicolor 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is VSm> and <PL 
if <SL is VSm> and < SW is Med> and <PL 
if <SL is VSm> and < SW is Med> and <PL 
if <SL is VSm> and < SW is Med> and <PL 
if <SL is VSm> and < SW is Med> and <PL 
if <SL is VSm> and < SW is Med> and <PL 

is VSm>and<PW is VSm> then <Versi is VSm> 
is VSm>and<PW is VRlrg> then <Versi is VSm> 
is Lrg>and<PW is VSm> then <Versi is VSm> 
is Lrg>and<PW is VRlrg> then <Versi is VSm> 
is VRlrg>and<PW is VSm> then <Versi is VSm> 
is VRlrg>and<PW is VRlrg> then <Versi is VSm> 
is VSm>and<PW is VSm> then <Versi is VSm> 
is VSm> and <PW is VRlrg> then <Versi is VSm> 
is Lrg> and <PW is VSm> then <Versi is VSm> 
is Lrg> and <PW is VRlrg> then <Versi is VSm> 
is VRlrg> and <PW is VSm> then <Versi is VSm> 

if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 
if <SL is 

VSm> and < SW is Med> and <PL is VRIrg> and <PW is VRlrg> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm> 
VSm> and < SW is Lrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
VSm> and < SW is VRlrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm> 
VSm> and < SW is VRlrg> and <PL 
VSm> and < SW is VRlrg> and <PL 
VSm> and < SW is VRlrg> and <PL 
VSm> and < SW is VRlrg> and <PL 
VSm> and < SW is VRlrg> and <PL 
VRlrg> and < SW is VSm> and <PL 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 
VRlrg> and < SW 

is VSm> and <PL 
is VSm> and <PL 
is VSm> and <PL 
is VSm> and <PL 
is VSm> and <PL 
is Med> and <PL 
is Med> and <PL 
is Meal> and <PL 
is Med> and <PL 
is Med> and <PL 
is Med> and <PL 

is VSm> and <PW is VRlrg> then <Versi is VSm> 
is Lrg> and <PW is VSm> then <Versi is VSm> 
is Lrg> and <PW is VRlrg> then <Versi is VSm> 
is VRlrg> and <PW is VSm> then <Versi is VSm> 
is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
is VSm> and <PW is VSm> then <Versi is VSm> 
is VSm> and <PW is VRlrg> then <Versi is VSm> 
is Lrg> and <PW is VSm> then <Versi is VSm> 
is Lrg> and <PW is VRlrg> then <Versi is VSm> 
is VRlrg> and <PW is VSm> then <Versi is VSm> 
is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
is VSm> and <PW is VSm> then <Versi is VSm> 
is VSm> and <PW is VRlrg> then <Versi is VSm> 
is Lrg> and <PW is VSm> then <Versi is VSm> 
is Lrg> and <PW is VRlrg> then <Versi is VSm> 
is VRlrg> and <PW is VSm> then <Versi is VSm> 
is VRlrg> and <PW is VRlrg> then <Versi is VSm> 

if <SL is VRlrg> and < SW is Lrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm> 
(continuous to the next page) 

Fig. 8. Extracted rules for the Iris classification task when five fuzzy predicates are used for representing the input and the output 
variables. 
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(continuation from the previous page) 
if <SL is VRlrg> and < SW is Lrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Lrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Lrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Lrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Lrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm> 
if <SL is VRlrg> and < SW is VRlrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <PL is VSm> then <Versi is VSm> 
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VSm> and < SW is VSm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VSm> and < SW is VSm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is Med> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is Med> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm> 
if <PL is Med> then <Versi is VRlrg> 
if <PW is Med> then <Versi is VRlrg> 
if <PL is Lrg> then <Versi is VSm> 
RULES for Virginiea 
if <PL is Med> then <Virgi is VSm> 
if <PL is VSm> then <Virgi is VSm> 
if < SW is Sm> and <PL is VSm> then <Virgi is VSm> 
if <PL is VSm> and <PW is VSm> then <Virgi is VSm> 
if <PW is Med> then <Virgi is VSm> 
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg> 
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg> 
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg> 
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg> 
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg> 
(continuous to the next page) 

Fig. 8. Conlinued. 
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(continuation from the previous page) 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is Med> and < SW is Sm> and <PIE, is Lrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is Med> and < SW is Sm> and <PL is VRIrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg> 
if <SW is Sm> then <Virgi is VRlrg> 

Denotation: SL- sepal length; SW - sepal width; PL - petal length; PW - petal width; Set - Setosa; Versi - 
Versicolor; Virgi - Virginica; VSm- very small; Sin- small; Med- medium; Lrg - large; VLgr - very large. 

Fig. 8. Continued. 
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Fig. 9. Classification results for the Iris test data when 3 fuzzy labels are used: (a) fuzzy neural network FuNN; (b) max min composition 
fuzzy inference with centroid defuzzification over the full set of extracted simple fuzzy rules; (c) the same method applied on a subset of 
simple rules (for the last two input variables only). The figures in brackets show the number of ambiguously classified instances. 

section. As it is shown there, bo th  F u N N  p roduce  
correct  classif icat ion for the test data .  W h e n  simple 
rules are used a bet ter  classif icat ion is ob ta ined  for 
the rules having  five member sh ip  functions.  This  
can be expla ined  as follows: the loss of in fo rmat ion  
when 'cut t ing the weights '  for the pu rpose  of s imple 
rules extract ion,  needs to be c o m p e n s a t e d  by  
a higher  g ranu la r i ty  in the fuzzy representa t ion.  

5. Approximate reasoning with extracted fuzzy rules 

Extrac t ing  weighted fi~zzy rules and  simple fuzzy  
rules in the R E F u N N  a lgor i thm al lows for different 
fuzzy inference techniques to be tr ied on the extrac-  
ted rules as expla ined below. 

(i) Using the existing trained FuNN.  The 
t ra ined  F u N N ,  a l ready  used for the rules ex t rac t ion  
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procedure, can be used for reasoning over new 
data. When the two FuNN (12-6-9 and 20-20-15) 
from the previous section were tested with the Iris 
test data, all the test examples were classified 
correctly. 

(ii) Inserting weighted fuzzy  rules after their 
extraction from F u N N ,  in a new F u N N .  Weighted 
rules can be inserted in a new FuNN architecture 
and the network then can be used for approximate 
reasoning or for further training. All the connections 
which do not appear in any of the weighted rules 
are set to 0 [11]. 

(iii) Using standard fuzzy  inference methods with 
extracted simple fuzzy  rules. Extracted simple rules 
can be used for inference when different standard 
fuzzy inference methods are applied [24, 21, 16]. In 
our experiment the max-min composition fuzzy  infer- 
ence method is used with a centroid defuzzification 
applied [20, 17 16]. The classification results for 
a full set of extracted rules and the set of the two- 
input variables simple rules for the 3-membership 
functions FuNN (see Fig. 6) are shown in Fig. 9. 
The figures in brackets show the number of am- 
biguously classified instances (two classes equally 
'win' the classification). When the simple fuzzy 
rules for 5 fuzzy labels (Fig. 8) were used with the 
same method, all the test examples were classified 
correctly. 

Rules extraction and approximate reasoning 
modules should be tightly connected in a know- 
ledge engineering environment as it was pointed 
out in the introduction to this paper (see Fig. 1). 
The next section introduces such an environment. 

6. FuzzyCOPE - a Fuzzy COnnectionist Produc- 
tion system Environment 

FuzzyCOPE [10, 13] is a knowledge engineering 
environment which is based on five main modules 
as shown in Fig. 10 and explained below. 
• Rules extraction module - it includes methods for 
rules extraction from fuzzy neural networks. 
• Fuzzy  inference module - it offers different fuzzy 
inference methods for experimenting with while 
tuning the fuzzy reasoning over a set simple fuzzy 
rules. Compositional inference methods as well as 
decompositional methods for reasoning with fuzzy 

FuzzyCOPE 
produ~on language ] 

I 

i rules I networks .orr.a,is,~ I | data I 

I Fu=y I Rules Neural I I Data I 

Fig. 10. A block architecture of FuzzyCOPE. 

inputs and fuzzy outputs are implemented 
[24,20, 17]. This module processes a set of fuzzy 
rules either designed by the users, or by the experts, 
or automatically extracted from raw or pre-pro- 
cessed data through the rules extraction module. 
• Neural network module - it consists of several 
neural network simulators which can be initialised, 
trained with raw or fuzzified data, and tested 
either separately, or as a part of production rules 
written and executed at a higher level. Fuzzy neural 
networks can be created and used. Fuzzification 
of raw data can be done in the data processing 
module. 
• Data processing module - it does operations over 
raw data, such as fuzzification, normalization, clus- 
terization. The output of this module can be used as 
an input to other modules in the environment. 
• F u z z y C O P E  production system module - it is 
a rule-based production system [2] extended with 
functions to call fuzzy inference methods, to call 
rules extraction methods, to call neural networks 
and to call data processing methods, all of them 
being available for experimenting with in the cor- 
responding modules of the environment. A user 
program written in FuzzyCOPE can realize a hy- 
brid multi-modular and multi-paradigm system. 

A major characteristic of FuzzyCOPE is that 
the different AI paradigms, realised as different 
modules, can be either used as separate tools, or 
mixed in one production system. For mixing them 
in one system all of the available functions in the 
different modules can be called from a production 
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;; A program in FuzzyCOPE for training a fuzzy neural network, 
;; for fuzzy rules extraction and approximate reasoning with new data 
( defrule initialisation_of_a_FuNN(fuzzy_neural_network) 

(start) 
=> 

( bind $?status (newbp "iris.wgt" 12 6 9) ) 
( assert (FuNNexists))) 

( defrule fuzzily. Iris data 
(start) 

=> 
( bind $?status (fuzzify "iris.trn" "iris-fz.trn" 3)) 
( assert (DataFuzzified))) 

( defrule Training_FuNN 
(FuNNexists) 
(DataFuzzified) 

=> 
( bind $?error (trainbp "iris.wgt" "iris-fz.trn" 1000 0.1 0.3 0.001)) 
( assert (FuNNtrained))) 

( defrule Fuzzy_rules-extraction_from_FuNN 
(FuNNtraineA) 

=> 
( bind $?status (extract "iris.wgt" "iris-fz.rul" 2 2.0)) 

;, (defrule input-new-data ;this rule is only commented here 
;; this rule reads input data for a new instance and asserts 
;; a fact (F $?new_iris) in the working memory 

(defrule reasoning_in_FuNN 
(F $?new_iris) 

=> 
(bind $?resultsl (recallbp "iris.wgt" $?new iris)) 
(printout t $?resultsl)) 

;;; separation of the set of fuzzy rules "iris-fz.rur' into three sets of 
;;; rules - "iris_se.rul", "iris_ve.rul" and "iris_vi.rul" has to be done 
;;; before the following rule is fired 

(defrule one_fuzzy_inference_method for._approximate_reasoning 
(F $?new_iris) 

=> 
(bind ?se (fidfuzzy "c:iris_se.ml" $?new_iris )) 
(bind ?ve (fidfuzzy "c:iris_ve.rul" $?new_iris )) 
(bind ?vi (fidfuzzy "c:iris_vi.rul" $?new_iris )) 
(bind $?results2 ?se ?ve ?vi) (printout t $?results2 crlf)) 

Fig. 11. A FuzzyCOPE program for: fuzzification of training data, initialisation of a fuzzy neural network, training the network with 
fuzzified data, rules extraction, reasoning in the fuzzy neural network and in a standard fuzzy inference engine. 

rule in the product ion system module. Fig. 11 
shows an example of  a F u z z y C O P E  program for 
fuzzification of  training data, initialisation of 
a F u N N  structure, training the network with fuzzi- 
fled data, rules extraction, approximate  reasoning 
in the trained F u N N  and approximate  reasoning 

with a s tandard  fuzzy inference method when new 
data  has been entered. 

Such knowledge engineering environments  bring 
all the benefits of the symbolic AI systems, the 
connectionist  systems and the fuzzy systems into 
one comprehensive hybrid system. 
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7. Conclusions and directions for further research 

Issues of knowledge acquisition and approxim- 
ate reasoning in hybrid neuro-fuzzy systems are 
discussed in the paper. Fuzzy neural networks and 
one particular architecture called FuNN are intro- 
duced for realising this approach. 

An algorithm for rules extraction from FuNN, 
called REFuNN, is proposed in the paper. 
Weighted fuzzy rules as well as simple fuzzy rules 
can be extracted and used further for approximate 
reasoning either in FuNN or in a fuzzy inference 
engine. This is illustrated with the Iris classification 
problem. 

Environments which facilitate different rule ex- 
traction methods and different approximate rea- 
soning methods are needed to implement the main 
idea of this paper. Such an environment 
FuzzyCOPE is introduced and illustrated in the 
last section of the paper. 

Further research can be done in the following 
directions: 
• developing new rules extraction algorithms from 
FuNN, e.g. extracting generalisedfuzzy production 
rules (see Fig. 2); 
• developing new algorithms for training and ad- 
aptation of FuNN which allow for 'growing' and 
'shrinking' of the initial FuNN structure; 
• further development of FuzzyCOPE-like integ- 
rated knowledge engineering environments by in- 
troducing more paradigms in them such as genetic 
algorithms, chaotic data analysis, etc. 
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