
E L S E V I E R Fuzzy Sets and Systems 82 (1996) 135-149

sets and systems

Learning fuzzy rules and approximate reasoning
in fuzzy neural networks and hybrid systems

N i k o l a K . K a s a b o v *

Department of lnformation Science, University of Otayo, P.O. Box 56, Dunedin, New Zealand

Abstract

The paper considers both knowledge acquisition and knowledge interpretation tasks as tightly connected and
continuously interacting processes in a contemporary knowledge engineering system. Fuzzy rules are used here as
a framework for knowledge representation. An algorithm REFuNN for fuzzy rules extraction from adaptive fuzzy neural
networks (FuNN) is proposed. A case study of Iris classification is chosen to illustrate the algorithm. Interpretation of
fuzzy rules is possible by using fuzzy neural networks or by using standard fuzzy inference methods. Both approaches are
compared in the paper based on the case example. A hybrid environment FuzzyCOPE which facilitates neural network
simulation, fuzzy rules extraction from fuzzy neural networks and fuzzy rules interpretation by using different methods
for approximate reasoning is briefly described.

Keywords: Learning fuzzy rules; Neural networks; Fuzzy neural networks; Knowledge acquisition; Approximate reason-
ing

1. Introduction

Two are the major tasks of the contemporary
research in knowledge engineering:
• knowledge acquisition/knowledge refinement,

and
• knowledge interpretation.
The two tasks are separate steps in building
a knowledge-based system, but they are strongly
connected. For example, the process starts with
initial set of prior or extracted from data rules. The
rules are interpreted. During the interpretation new
data has been entered and new results have been
obtained which should reflect in a refined know-
ledge and this process is continuous as depicted in
Fig. 1.

* Email: nkasabov@otago,ac.nz.

The above approach of tightening the two pro-
cesses together in one system is very relevant to
solving many AI tasks. It is very much human-
like, as humans learn, reason, and explain in a
continuous manner over time. Developing know-
ledge engineering tools which facilitate this ap-
proach is a major concern of the research reported
here.

The paper has the following organisation. Sec-
tion 2 presents general issues of approximate rea-
soning. Section 3 introduces fuzzy neural networks
and a model called FuNN for both rules extraction
and reasoning. Section 3 discusses issues of connec-
tionist methods for fuzzy rules extraction and also
presents an algorithm called REFuNN. The algo-
rithm is illustrated with the well-known Iris
database. Section 4 compares results obtained after
reasoning in FuNN and by using a standard

0165-0114/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
SSDI 0165-01 14(95)00300-2

136 N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135 149

max-min composition fuzzy inference method.
Both produce 100% correct classification on a se-
lected Iris test data set. Section 5 finally suggests
a knowledge engineering environment Fuzzy-
COPE for building comprehensive AI systems. It
facilitates rules extraction and different methods for
approximate reasoning. Section 6 gives conclusions
and directions for further research.

2. Approximate reasoning - issues and problems

Approximate reasoning is a process of inter-
pretation of knowledge in a presence of uncert-

ainty. The uncertainty can be present in a form of
vague and contradictory knowledge, incomplete
past data, uncertain new facts, not clear goals, etc.
Fig. 2 gives examples of three different knowledge
representation schemes which allow for represent-
ing uncertainties on a case study of three simple
rules. Different representation schemes influence
the type of approximate reasoning techniques
which can be used. Simple fuzzy rules
[-25, 24, 20, 16, 17]. weighted production rules
[20, 9, 14] and generalised fuzzy production rules
[9, 14] are shown there as representation schemes
as well as a basis for applying approximate reason-
ing mechanisms.

4,
~Knowiedge Acquisition/

Knowledge Refinement H

Knowledge Base

(Fuzzy Rules)

?
a prionmles

~ Knowledge Interpnetataon

(Approximate Re~oning)~.~ Resuht

Fig. 1. Knowledge acquisition and knowledge interpretation as two tightly coupled phases in one system,

Simple fuzzy rules
Rule 1: IF x, is Medium AND x 2 is Medium THEN y is Medium
Rule 2: IF xj is High AND x 2 is High THEN y is High
Rule 3: IF y is Medium THEN z is Medium

Weighted fuzzy production rules
Rule 1: IF x I is Medium with DI1.1=2 AND x 2 is Medium with DII.2=I THEN y is Medium (CF~=0.8);
Rule 2: IF x I is High with DI2:=5 AND x 2 is High with DI2. 2 =2 THEN y is High (CF2=0.6)
Rule 3:IF y is Medium THEN z is Medium (CF3=0.5),
where: DIij are degrees of importance attached to the condition elements; CFi are certainty factors attached to
the consequent (action) elements;

Generalised fuzzy production rules
Rule 1 :IF [x I is Medium with DIt.l=2 AND x 2 is Medium with DI~.2=I] (NTI=0.2, SF1=0.6) THEN y is Medium
(CFI=0.8)
Rule 2:IF [x I is High with DI2a=5 AND x 2 is High with DI2. 2 --2] (NT2=0.2, SF2=0.6) THEN y is High (CF2=0.6)
Rule 3:IF y is Medium (NT3=0.2, SF3=0.6) THEN z is Medium (CF3=0.5),
where: NT i are noise tolerance coefficients; SF i are sensitivity factors; DI~j are degrees of importance; CFiare
certainty factors.

Fig. 2. Examples of three different knowledge representation schemes on a case study of three simple rules.

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149 137

Approximate reasoning methods are concerned
with the following general issues:

t ! • How new facts, e.g. xl, x2 should be matched to
the condition elements in the rules and how partial
match should be evaluated;
• How to combine the partially matched by the
new facts x'l and x~ condition elements in each of
the rules R1 and R 2 and evaluate the matching of
the whole antecedent part in them;
• How to calculate the inferred through a rule new
fact Y'i for each of the rules Ri;
• How to agoregate the inferred values y'~ and Y2 in
one value y';
• How to propagate an inferred fact y' to the next
reasoning cycle in the reasoning chain, e.g. how to
match the inferred value of y' to the third rule
R3 and produce an output value z'.

In addition to the above said, the following issues
have to be considered when creating more sophis-
ticated reasoning methods:
• dynamic fact-changes, i.e. how to implement par-
tial 'forgettin 9' of nonrelevant facts;
• dynamic rule-changes, i.e. how rules can change
over time, or - as a result of new data and know-
ledge, or - as a result of changes in the environ-
ment; how new rules can be created and old
ones - corrected;
• 'communication' between rules within a know-
ledge base, i.e. how pieces of knowledge can 'com-
municate' in order to improve themselves or their
performance.

Different techniques offer different solutions to
the problems above, none of them so far being able
to meet all the requirements. The symbolic methods
of AI fail to provide comprehensive approximate
reasoning techniques. The well-established methods
of probability theory can handle uncertainties
when they are strictly represented in the terms of
this theory [2, 24]. They are not suitable for chain
reasoning or to represent subjective knowledge.
Fuzzy systems have been widely applied for control
and decision making. They use vague, linguistic,
fuzzy knowledge and numerical representation
(membership functions) to define the fuzzy terms.
Some limitations of applying fuzzy logic are experi-
enced in learning and adaptation. These are tasks
which neural networks and connectionist models
can handle. Mixing fuzzy and connectionist models

for building approximate reasoning systems is
more than a promising approach [3]. In spite of the
advances in the area of fuzzy neural networks
(FNN) (also called neuro-fuzzy systems [7, 15]) and
their applications for learning and adaptation
[1, 3, 23], for rules extraction [1, 3, 6, 7, 11, 15], for
modelling, control and decision making [7, 1, 4, 9],
etc., their potential for learning and reasoning in
a hybrid knowledge engineering environment is
still to be explored and effectively applied.

3. Fuzzy neural networks. The FuNN architecture
for rules extraction and approximate reasoning

3.1. Fuzzy neural networks - a general introduction

A fuzzy neural network (FNN) is a connectionist
model for fuzzy rules implementation and infer-
ence. There is a big variety of architectures and
functionalities of FNN. Adaptive network-based
fuzzy inference systems are discussed in
[1, 4-7, 15, 18]. Fuzzy neural networks have been
implemented and used as reported in
[19, 22, 23, 11, 13].

The FNN developed so far differs mainly in the
following parameters:
• Type of fuzzy rules implemented; this reflects in
the connectionist structure used.
• Type of inference method implemented; this re-
flects in the selection of different neural network
parameters and neuronal functions, such as
summation, activation, output function; it also
influences the way the connection weights are
initialized before training, and interpreted after
training.
• Mode of operation; we shall consider here three
major modes of operation as suggested in [11].

Fixed mode - 'fixed membership functions-fixed
set of rules', i.e. fixed set of rules is inserted in
a network; the network performs inference, but
does not change its weights. It cannot learn and
adapt. A representative of this type of systems is
NPS [9, 14].

- Learnin9 mode, i.e. a neural network is struc-
turally defined to capture knowledge in a certain
format, e.g. - some type of fuzzy rules. The net-
work architecture is randomly initialized and

138 N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149

trained with a set of data. Rules are then extrac-
ted from the structured network [8]. The rules
can be interpreted either in the same network
structure or by using other inference methods.

- Adaptation mode - A neural network is struc-
turally set according to a set of existing rules,
'hints', heuristics. The network is then trained
with new data and then updated rules are extrac-
ted from its structure. There are two cases which
can be distinguished here: ' fixed membership func-
tions - adaptable rules' [15] and 'adaptable mem-
bership functions - adaptable rules' [1, 5]. The
'catastrophic forgetting' phenomenon must be in-
vestigated in these cases, i.e. how much the net-
work forgets about previous data after having
learned from completely new data without
rehearsing the old ones [11].
To summarise the above, FNN have two major

aspects:
• Structural, i.e. a set of rules is used to define the
initial structure of a neural network; two types of
neural networks have been mainly used so far:
- multi-layer perceptrons (MLP) [1, 5, 11, 6];
- radial-basis functions networks [-11];
• functional, parametric, i.e. after having defined
the structure of a neural network and possibly
having trained it with data, some parameters
can be observed which parameters would explain

the inference which the network performs
[3, 19, 11]. Those parameters can be used to derive
a (fuzzy) rule-based system represented in linguistic
terms.

3.2. The FuNN model

The FuNN model [11] facilitates learnin9 from
data, f u z zy rules extraction, approximate reasoning.

FuNN uses a MLP network and a backpropaga-
tion training algorithm. It is adaptable FNN where
the membership functions of the fuzzy predicates,
as well as the fuzzy rules inserted before training
(adaption) malt adapt and change according to the
training data. The general architecture of FuNN
consists of the following layers (Fig. 3):
• Input layer; a node here represents an input vari-
able.
• Condition elements layer; each node here repre-
sents a fuzzy predicate of the input variables. The
activation values of the nodes represent the mem-
bership degrees of the input variables. Different
summation function Sc, activation function ac and
output function Oc can be used for the neurons of
this layer.
• Rule layer - each node in this layer represents
either an existing rule, or an anticipating after
training rule. When FuNN is used to implement

Condition
elements Action Real - values

Real values layer Rule elements output
input layer (Sc, a~, Oc) layer layer layer

Bias~). A1 (s,.a~O=) (S^, aA, 0^) (So, a~. 0o)

[~ . , ~ DI connections CF - connections

X l [~ " \ A2 \ ,"X. ~ I=11

i \ \ .)

\ \ "..

i) i / /

1 ' , /

. # t t - -~.,~ i , "

Ca

~ y

Fig. 3. An exemplar FuNN architecture for a simple set of two fuzzy rules.

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149 139

initial set of fuzzy rules, then the connections be-
tween the condition elements layer and the rule
layer are set according to normalized degrees of
importance attached to the antecedent elements in
the corresponding rules. If degrees of importance
are not attached to the condition elements of a
rule R~, then the connection weights wij to a rule
node R~ are uniformly calculated for each connec-
tion as

w~j = Neti/n,

where n is the number of condition elements in the
rule Ri; Neti is a constant which defines what the
net input to the neuron R~ should be in order to fire
the rule. The stronger the rule is as a piece of
domain knowledge, the higher Net~ should be,
which means a higher contribution of this rule to
the output value. For a weak rule R~, Neti might
take a value of 1, and for a strong rule Neti might
need to be 5, provided a sigmoid activation func-
tion is used. The other connection weights are in-
itialised to zero. The following characteristics of
this layer define the inference method performed by
the FuNN: summation function SR; activation func-
tion aR; neuronal output function OR. Additional
rule nodes may be pre-set with zero connection
weights. This may give the structure more flexibility
to adjust the initial rules and the antecedent
elements in them and to possibly capture new rules.
The way the connection weights are interpreted
here is used in the rules extraction algorithm
REFuNN presented in the next section.
• 'Action' elements layer; each node in this layer
represents one fuzzy predicate (label) in the 'action'
(consequent) elements of the rules. The connections
between the rule nodes and the 'action' nodes are
set as normalized certainty factors (CF) of the rules.
The rest of the connections are set to zero. Again,
three functions are defined for these nodes, i.e. sum-
mation function SA, activation function aA and out-
put function OA. Additional nodes may be used to
capture additional action (conclusion) predicates
during training (adaptation).
• Output variable layer; it represents the output
variables of the system. It is defined by the three
functions: summation So, activation ao and output
Oo functions.

Fig. 3 depicts a FuNN for the following two
rules:

RI: IF Xl is Ax (DI1.1) and x2 is B1 (DI2,1)
THEN y is Ca (CF1)

R2: 1F Xl is A2 (DIi.2) and x2 is B2 (DI2,2)
T H E N y is Ca (CF2)

An algorithm REFuNN for rules extraction from
a trained FuNN is presented in the next section.
The algorithm uses three layers from the FuNN
architecture shown in Fig. 3 as the fuzzy predicates
and membership functions are predefined. Fuzzy-
fication and defuzzification are supposed to be
done outside the structure.

4. Connectionist methods for learning fuzzy rules.
The REFuNN algorithm

4.1. A general discussion on learning fuzzy rules

Connectionist methods for learning rules from
data use a connectionist structure, trained with
data, and analyse the connection weights to extract
rules. There are different methods which can be
applied for rules extraction from a trained neural
network architecture. They can be grouped into
three major groups:
• Destructive learnin9 methods, this involves learn-
ing by pruning the neural network structure
during the training procedure
• Nondestructive learnin9 methods; here the net-
work structure is kept intact during training; it is
anlaysed and rules are extracted afterwards.

Learned (or articulated) initial set of rules can be
used to 'pre-wire' a neural network before its train-
ing with data as it is the case with the FuNN
architecture discussed in the previous section.

Fuzzy rules can be learned based on:
• fuzzified data and pre-defined membership func-
tions, i.e. the data used for training is fuzzified by
using pre-defined membership functions for the
fuzzy predicates [16, 8, 11];
• crisp data and pre-defined membership func-
tions, i.e. the data used for training is not fuzzified
but the membership functions are predefined
[1,5, 11]; these methods allow for tuning the

140 N,K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135 149

membership functions during further training or
adaptation of the system;
• crisp data and not pre-defined membership
functions, i.e. the number and the shape of the
membership functions are learned during training
[1, 5, 63.

Extracting rules from a trained connectionist
structure may subsequently mean loss of informa-
tion, as the way knowledge is extracted restricts the
aspects of that knowledge and also directs and
biases the knowledge acquisition process. A data
set in general, contains much more than it can be
extracted from it by using a particular connection-
ist method. Rules extraction process ends up with
an abstract, concise, condensed representation of
one aspect only, may be the most important one for
a particular application.

4.2. The REFuNN algorithm - Rules extraction
from a.fuzzy neural network

The REFuNN algorithm, which first version was
published in [8], is a simple connectionist method
for extracting weighted fuzzy rules and simple fuzzy
rules as illustrated in Fig. 2. It is based on training
a MLP architecture with fuzzified data. The
REFuNN algorithm, outlined below, is based on
the following principles [8]:

(1) simple operations are used and a low com-
putational cost achieved;

(2) hidden nodes in a MLP can learn features,
rules, groups in the training data;

(3) fuzzy quantization of the input and the out-
put variables are done in advance; the granularity
of the fuzzy representation (the number of fuzzy
lanes used) defines in the end the 'fineness' and the
quality of the extracted rules. Standard, uniformly
distributed triangular membership functions can be
used for both fuzzy input and output labels;

(4) automatically extracted rules may need addi-
tional manipulation depending on the reasoning
method applied afterwards.

The Algorithm
Step 1: Initialisation of a FuNN. A fully connec-

ted MLP neural network is constructed as shown
in the example in Fig. 3 (the internal structure only
between the two dashed vertical lines). The func-

tional parameters of the rule layer and the output
fuzzy predicates layer are set as follows: summation
input function; sigmoid activation function; direct
output function.

Step 2: Training the FuNN. Supervised training
algorithm is performed for training the network
with fuzzified data until convergence. Backpropa-
gation training algorithm can be used.

Step 3: Extracting initial set of weiqhted rules. A
set of rules {r j} is extracted from the trained net-
work as follows. All the connections to an action
element neuron Cj which contribute significantly to
its possible activation (their values, after adding the
bias connection weight if such is used, are over
a defined threshold Tha), are picked up and their
corresponding hidden nodes R j, which represent
a combination of fuzzy input lables, are analysed
further on. Only condition element nodes which
support activating the chosen hidden node Rj will
be used in the antecedent part of a rule U (the
connection weights are above a threshold The). The
weights of the connections between the condition-
element neurons and the rule-nodes are taken as
initial relative degrees of importance of the anteced-
ent fuzzy propositions. The weights of the connec-
tions between a rule node R~ and an action-element
node Cj define initial value for the certainty degree
CF i. The threshold The can be calculated by using
the formula:

The = Netm~x/k,

where Netm,x is the desired value for the net input
to a rule neuron to fire the corresponding rule; k is
the number of the input variables.

Fig. 6 shows an extracted initial set of weighted
rules for 3 fuzzy labels from a FuNN trained with
Iris fuzzified data (this is explained later in this
section).

Step 4: Extracting simple juzzy rules fi'om the set
of weighted rules. The threshold The used in Step 3
was defined in such a way that all the condition
elements in a rule should collectively trigger the
activation of this rule. This is analogues to an
"AND' connective. The number of the fuzzy predi-
cates allowed to be represented in the antecedent
part of a rule is not more than the number of the
input variables (one fuzzy predicate per variable at
the most). The initial set of weighted rules can be

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149 141

converted into a set of simple fuzzy rules by simply
removing the weights from the condition elements.
Some antecedent elements however can trigger the
rules without any support from the rest of the
condition elements, i.e. their degrees of importance
DIij = wij (connection weights) are higher than
the threshold Th,oR, = Netm,x. Such condition
elements form separate rules which transforma-
tion is analogous to a decomposition of rules with
OR-connectives into rules with AND-connectives
only.

2.5
Example. IF there is an initial weighted rule

2

IF xl is A(8.3) and x2 is B(1.2) T H E N y is C,
"~ 1.5
i=

and a threshold of Th.oR. = 5.0 is chosen, then two ~
separate simple fuzzy rules will be formed: =

IF Xl is A and x2 is B T H E N y is C,

IF xl is A T H E N y is C.

The 'AND' and 'OR' connectives used here are
vague, weak and loosely defined. An 'AND' con-
nective should rather be expressed as a 'mutual

2.5

support' between variables or - synergism [19].
Step 5: Aggregatin 9 the initial weighted rules. All 2

the initial weighted rules {ril, ri2 ..-} which have ~ 1.~
the same condition elements and the same conse-
quent elements, subject only to different degrees of
importance, are aggregated into one rule. The rela-
tive degrees of importance DIij are calculated for
every condition element Aij of a rule Ri as a nor-
malized sum of the initial degrees of importance of
the corresponding antecedent elements in the initial
rules rij.

An additional option in REFuNN is learning
N O T connectives in the rules. In this case negative
weights which absolute values are above the set
thresholds The and Tha are considered and the
input labels corresponding to the connected nodes
are included in the formed simple fuzzy rules with
a N O T connective in front.

Case example - Iris Classification Problem: As
a case example the well understood and widely
used in the machine learning community Dis data
set is chosen. The whole data set comprises 50
instances of each of the three Iris classes - Setosa,

Versicolor and Virginica. The instances are repre-
sented by four input attributes as follows: sepal
length (SL), sepal width (SW), petal length (PL) and
petal width (PW), all measured in cm. 120 examples
are used for training and for rule extraction in the
experiments below. 30 examples (10 examples of
each of the classes) are used for testing the extracted
rules. Fig. 4 shows a mapping of the whole Iris data

Iris data

0 5

0 1

__'_,1 i l i l ~ -- t ,

m

4 5

Petal length

Iris Training Data

m

1

0.5 o.

1 2

i . ! ' J , ' z "
_ , . 5 : ' " ," " "

T

4 5 6

Petal length

Iris Test Data

2.5

2

1.5

O.g

0

0

ii At, an

=IF"

a,,"
1 2 3 4 5 6

Petal length

Fig. 4. Iris data sets mapped into the input space of the last two
input attributes(diamond Setosa;square Versicolor;triangle
- Virginica)

142 N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149

INPUTS

0 . 0 ' - ~ 1 . 0 i M | MED LRG 0 . 0 ~ 1 . 0 SM ~aE D LRG

4,3000 SL 7.9000 O.IOQO I~V 2.5000

SM MED LRG oOoD<-><t
2.0000 ~ 4.4000

SM MED LRG

1.0000 PL 6.9000

INFERENCE
SM MED LRG

0.00 Vk]inica 1.00

Fig. 5. Three membership functions used to represent each of the input variables and each of the output variables (only
Virginica is shown here). The used abbreviations are as follows: SM small; MED medium; LRG large.

set, the training data and the test data into a two-
dimensional space of the last two attributes only.

By using the REFuNN algorithm several sets of
fuzzy rules were extracted. First, three fuzzy predi-
cates (Small - Sin, Medium - Med, and Large
- Lrg) were used to represent each of the four input
attributes and each of the three output variables,
the latter representing possibilities for a data
example to be classified into one of the three classes
as shown in Fig. 5.

A FuNN structure having 12 input nodes, 6 in-
termediate nodes and 9 output nodes was trained

with fuzzified Iris training data for 1000 training
cycles, a learning rate of 0.1 and momentum of 0.3
until a RMS error of 0.023. Fuzzy rules were then
extracted. Fig. 6 shows the set of initial weighted
rules, the sets of simple rules for each of the classes
and a set of rules which have the last two input
variables only. It can be seen from the list of extrac-
ted rules that the most important for the classifica-
tion task attributes are petal length and petal
width.

Another set of rules was extracted when 5 mem-
bership functions were used for the input and the

INPUTS
VSM SM MED LRG VLRG

0.0
4.3000 SL 7.9000

VSM SM MED LRG VLRG

0.1000 ~N 2.5000

VSM SM MED LRG VLRG 1 . 0 ~

0.0
2.0000 ~ 4.4000

VSM SM MED LRG VLRG

1.0000 Pt. 6.9000

INFERENCE
VSM SM MED LRG VLR

0.[
0.00 Vlrginlca 1.00

Fig. 7. Five membership functions for the input and the output variables for the Iris data set.

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149 143

Extracted Iris classification rules for 3 membership functions and thresholds Th,=TI~= 2.0
(a) Weghted Rules:
if <SL is Sm 2.5> and <SW is Sm 4.2>and<PL is Lrg 8.8> and <PW is Lrg 10.8> then <Set is Sm 4.7> if <PL
is Med 3> and <PW is Med 3.5> then <Set is Sm 2.2>
if <PL
if <PL
if <SL
if <PL
if <PL
if <PL
if <SL

is Sm 2.2> and <PW is Sm 2.21> then <Set is Lrg 2.2>
is Sm 2.3> and <PW is Sm 2.4> then <Versi is Sm 4.9>
is Sm 2.5> and <SW is Sm 4.2> and <PL is Lrg 8.8> and <PW is Lrg 10.8> then <Versi is Sm 7.8>
is Sm 2.2> and <PW is Sm 2.2> then <Versi is Sm 4.9>
is Med 3> and <PW is Med 3.5> then <Versi is Lrg 3>
is Med 3> and <PW is Med 3> then <Virgi is Sm 3.8>
is Sm 2.5> and <SW is Sm 4.2>and<PL is Lrg 8.8> and <PW is Lrg 10.8> then <Virgi is Lrg 8.3>

(b) Simple rules for Th,oR, =5.0
RULES for Setosa
if <SL is Sm> and <SW is Sin> and <PL is Lrg>and<PW is Lrg> then <Set is Sm>
if <PL is Lrg> then <Set is Sm>
if <PW is Lrg> then <Set is Sm)
if <PL is Med> and <PW is Med> then <Set is Sm>
if <PL is Sm> and <PW is Sm> then <Set is Lrg>
RULES for Versieolor
if <PL is Sm> and <PW is Sm> then <Versi is Sm>
if <SL is Sm> and <SW is Sm> and <PL is Lrg>and<PW is Lrg> then <Versi is Sm>
if <PL is Med> and <PW is Med> then <Versi is Lrg>
if <PL is Lrg> then <Versi is Sin>
if <PW is Lrg> then <Versi is Sm>
RULES for Virgiica
if <PL is Med> and <PW is Med> then <Virgi is Sin>
if <SL is Sm> and <SW is Sm> and <PL is Lrg>and<PW is Lrg> then <Virgi is Lrg>
if <PL is Lrg> then <Virgi is Lrg>
if <PW is Lrg> then <Virgi is Lrg>

(c) Sub-set of rules with two attributes only - petal length (PL) and petal width (PW)
if <PL is Lrg> then <Set is Sm>
if <PW is Lrg> then <Set is Sm)
if <PL is Med> and <PW is Med> then <Set is Sm>
if <PL is Sm> and <PW is Sm> then <Set is Lrg>
if <PL is Sm> and <PW is Sm> then <Versi is Sm>
if <PL is Med> and <PW is Med> then <Versi is Lrg>
if <PL is Lrg> then <Versi is Sin>
if <PW is Lrg> then <Versi is Sm>
if <PL is Med> and <PW is Med> then <Virgi is Sm>
if <PL is Lrg> then <Virgi is Lrg>
if <PW is Lrg> then <Virgi is Lrg>

Denotation: SL- sepal length; SW - sepal width; PL - petal length; PW - petal width; Set - Setosa; Versi -
Versicolor; Virgi - Virginica; Sm- small; Med - medium; Lrg - large.

Fig. 6. Extracted rules for the Iris classification task when three fuzzy predicates are used for representing the input and the output variables.

o u t p u t var iab les as s h o w n in Fig. 7. A M L P h a v i n g
the s t ruc tu re of a 20-20-15 F u N N was t r a ined wi th
fuzzified t r a i n i n g d a t a for 1000 cycles, wi th the
s ame l e a r n i n g ra te a n d m o m e n t u m values as above.

R M S er ro r of 0.014 was achieved this time. Some of
the rules are s h o w n in Fig. 8.

The ex t rac ted rules c an be used for r e a s o n i n g
wi th new d a t a which issue is d iscussed in the next

144 N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135 149

Iris classification rules: S membership functions; thresholds: Th~ =1.2; Th,oR,=5
RULES for Setosa
if <SL is Med> and < SW is Sin> and <PL is VRlrg>and <PW is VRlrg> then <Set is VSm>
if <PL is Med> then <Set is VSm>
if <PL is Med> and <PW is Med> then <Set is VSm>
if <PW is Med> then <Set is VSm>
if <PL is Lrg> then <Set is VSm>
if <SL is Meal> and < SW is Sin> and <PL is Lrg> and<PW is VRlrg> then <Set is VSm>
if <SL is Med> and < SW is Sin> and <PL is VRlrg> and<PW is VRlrg> then <Set is VSm>
if < SW is Sin> then <Set is VSm>
if <SL is VRlrg> and < SW is Sin> and <PL is Lrg> and<PW is VRlrg> then <Set is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and<PW is VRlrg> then <Set is VSm>
if <PL is VSm> then <Set is VRlrg>
if <PL is VSm> and <PW is VSm> then <Set is VRlrg>
RULES for Versicolor
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is VSm> and <PL
if <SL is VSm> and < SW is Med> and <PL
if <SL is VSm> and < SW is Med> and <PL
if <SL is VSm> and < SW is Med> and <PL
if <SL is VSm> and < SW is Med> and <PL
if <SL is VSm> and < SW is Med> and <PL

is VSm>and<PW is VSm> then <Versi is VSm>
is VSm>and<PW is VRlrg> then <Versi is VSm>
is Lrg>and<PW is VSm> then <Versi is VSm>
is Lrg>and<PW is VRlrg> then <Versi is VSm>
is VRlrg>and<PW is VSm> then <Versi is VSm>
is VRlrg>and<PW is VRlrg> then <Versi is VSm>
is VSm>and<PW is VSm> then <Versi is VSm>
is VSm> and <PW is VRlrg> then <Versi is VSm>
is Lrg> and <PW is VSm> then <Versi is VSm>
is Lrg> and <PW is VRlrg> then <Versi is VSm>
is VRlrg> and <PW is VSm> then <Versi is VSm>

if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is
if <SL is

VSm> and < SW is Med> and <PL is VRIrg> and <PW is VRlrg> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm>
VSm> and < SW is Lrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
VSm> and < SW is VRlrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm>
VSm> and < SW is VRlrg> and <PL
VSm> and < SW is VRlrg> and <PL
VSm> and < SW is VRlrg> and <PL
VSm> and < SW is VRlrg> and <PL
VSm> and < SW is VRlrg> and <PL
VRlrg> and < SW is VSm> and <PL
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW
VRlrg> and < SW

is VSm> and <PL
is VSm> and <PL
is VSm> and <PL
is VSm> and <PL
is VSm> and <PL
is Med> and <PL
is Med> and <PL
is Meal> and <PL
is Med> and <PL
is Med> and <PL
is Med> and <PL

is VSm> and <PW is VRlrg> then <Versi is VSm>
is Lrg> and <PW is VSm> then <Versi is VSm>
is Lrg> and <PW is VRlrg> then <Versi is VSm>
is VRlrg> and <PW is VSm> then <Versi is VSm>
is VRlrg> and <PW is VRlrg> then <Versi is VSm>
is VSm> and <PW is VSm> then <Versi is VSm>
is VSm> and <PW is VRlrg> then <Versi is VSm>
is Lrg> and <PW is VSm> then <Versi is VSm>
is Lrg> and <PW is VRlrg> then <Versi is VSm>
is VRlrg> and <PW is VSm> then <Versi is VSm>
is VRlrg> and <PW is VRlrg> then <Versi is VSm>
is VSm> and <PW is VSm> then <Versi is VSm>
is VSm> and <PW is VRlrg> then <Versi is VSm>
is Lrg> and <PW is VSm> then <Versi is VSm>
is Lrg> and <PW is VRlrg> then <Versi is VSm>
is VRlrg> and <PW is VSm> then <Versi is VSm>
is VRlrg> and <PW is VRlrg> then <Versi is VSm>

if <SL is VRlrg> and < SW is Lrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm>
(continuous to the next page)

Fig. 8. Extracted rules for the Iris classification task when five fuzzy predicates are used for representing the input and the output
variables.

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135 149 145

(continuation from the previous page)
if <SL is VRlrg> and < SW is Lrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Lrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm>
if <SL is VRlrg> and < SW is Lrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Lrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm>
if <SL is VRlrg> and < SW is Lrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is VSm> and <PW is VSm> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is VSm> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is Lrg> and <PW is VSm> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is VRlrg> and <PW is VSm> then <Versi is VSm>
if <SL is VRlrg> and < SW is VRlrg> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <PL is VSm> then <Versi is VSm>
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm>
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm>
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm>
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm>
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VSm> and < SW is VSm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VSm> and < SW is VSm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is Med> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is Med> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Versi is VSm>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Versi is VSm>
if <PL is Med> then <Versi is VRlrg>
if <PW is Med> then <Versi is VRlrg>
if <PL is Lrg> then <Versi is VSm>
RULES for Virginiea
if <PL is Med> then <Virgi is VSm>
if <PL is VSm> then <Virgi is VSm>
if < SW is Sm> and <PL is VSm> then <Virgi is VSm>
if <PL is VSm> and <PW is VSm> then <Virgi is VSm>
if <PW is Med> then <Virgi is VSm>
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg>
if <SL is VSm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg>
if <SL is VSm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg>
if <SL is Sm> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg>
if <SL is Sm> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is Lrg> then <Virgi is VRlrg>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is Lrg> then <Virgi is VRlrg>
(continuous to the next page)

Fig. 8. Conlinued.

146 N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149

(continuation from the previous page)
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is Med> and < SW is Sm> and <PIE, is Lrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is Med> and < SW is Sm> and <PL is VRIrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is VRlrg> and < SW is Sm> and <PL is Lrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SL is VRlrg> and < SW is Sm> and <PL is VRlrg> and <PW is VRlrg> then <Virgi is VRlrg>
if <SW is Sm> then <Virgi is VRlrg>

Denotation: SL- sepal length; SW - sepal width; PL - petal length; PW - petal width; Set - Setosa; Versi -
Versicolor; Virgi - Virginica; VSm- very small; Sin- small; Med- medium; Lrg - large; VLgr - very large.

Fig. 8. Continued.

Setosa Versicolor Virginica

Setosa 10

Versicolor 10

Virginica 10
a)

b)

Setosa Versicolor Virginica

Setosa 10

Versicolor 10

Virginica 1 (2) 7 (2)

Setosa Versicolor Virginica

Setosa 10

Versicolor 10

Virginica 2 (1) 7 (1)

ic)

Fig. 9. Classification results for the Iris test data when 3 fuzzy labels are used: (a) fuzzy neural network FuNN; (b) max min composition
fuzzy inference with centroid defuzzification over the full set of extracted simple fuzzy rules; (c) the same method applied on a subset of
simple rules (for the last two input variables only). The figures in brackets show the number of ambiguously classified instances.

section. As it is shown there, bo th F u N N p roduce
correct classif icat ion for the test data . W h e n simple
rules are used a bet ter classif icat ion is ob ta ined for
the rules having five member sh ip functions. This
can be expla ined as follows: the loss of in fo rmat ion
when 'cut t ing the weights ' for the pu rpose of s imple
rules extract ion, needs to be c o m p e n s a t e d by
a higher g ranu la r i ty in the fuzzy representa t ion.

5. Approximate reasoning with extracted fuzzy rules

Extrac t ing weighted fi~zzy rules and simple fuzzy
rules in the R E F u N N a lgor i thm al lows for different
fuzzy inference techniques to be tr ied on the extrac-
ted rules as expla ined below.

(i) Using the existing trained FuNN. The
t ra ined F u N N , a l ready used for the rules ex t rac t ion

N.K. Kasabov / Fuzzy Sets and Systems 82 (1996) 135-149 147

procedure, can be used for reasoning over new
data. When the two FuNN (12-6-9 and 20-20-15)
from the previous section were tested with the Iris
test data, all the test examples were classified
correctly.

(ii) Inserting weighted fuzzy rules after their
extraction from F u N N , in a new F u N N . Weighted
rules can be inserted in a new FuNN architecture
and the network then can be used for approximate
reasoning or for further training. All the connections
which do not appear in any of the weighted rules
are set to 0 [11].

(iii) Using standard fuzzy inference methods with
extracted simple fuzzy rules. Extracted simple rules
can be used for inference when different standard
fuzzy inference methods are applied [24, 21, 16]. In
our experiment the max-min composition fuzzy infer-
ence method is used with a centroid defuzzification
applied [20, 17 16]. The classification results for
a full set of extracted rules and the set of the two-
input variables simple rules for the 3-membership
functions FuNN (see Fig. 6) are shown in Fig. 9.
The figures in brackets show the number of am-
biguously classified instances (two classes equally
'win' the classification). When the simple fuzzy
rules for 5 fuzzy labels (Fig. 8) were used with the
same method, all the test examples were classified
correctly.

Rules extraction and approximate reasoning
modules should be tightly connected in a know-
ledge engineering environment as it was pointed
out in the introduction to this paper (see Fig. 1).
The next section introduces such an environment.

6. FuzzyCOPE - a Fuzzy COnnectionist Produc-
tion system Environment

FuzzyCOPE [10, 13] is a knowledge engineering
environment which is based on five main modules
as shown in Fig. 10 and explained below.
• Rules extraction module - it includes methods for
rules extraction from fuzzy neural networks.
• Fuzzy inference module - it offers different fuzzy
inference methods for experimenting with while
tuning the fuzzy reasoning over a set simple fuzzy
rules. Compositional inference methods as well as
decompositional methods for reasoning with fuzzy

FuzzyCOPE
produ~on language]

I

i rules I networks .orr.a,is,~ I | data I

I Fu=y I Rules Neural I I Data I

Fig. 10. A block architecture of FuzzyCOPE.

inputs and fuzzy outputs are implemented
[24,20, 17]. This module processes a set of fuzzy
rules either designed by the users, or by the experts,
or automatically extracted from raw or pre-pro-
cessed data through the rules extraction module.
• Neural network module - it consists of several
neural network simulators which can be initialised,
trained with raw or fuzzified data, and tested
either separately, or as a part of production rules
written and executed at a higher level. Fuzzy neural
networks can be created and used. Fuzzification
of raw data can be done in the data processing
module.
• Data processing module - it does operations over
raw data, such as fuzzification, normalization, clus-
terization. The output of this module can be used as
an input to other modules in the environment.
• F u z z y C O P E production system module - it is
a rule-based production system [2] extended with
functions to call fuzzy inference methods, to call
rules extraction methods, to call neural networks
and to call data processing methods, all of them
being available for experimenting with in the cor-
responding modules of the environment. A user
program written in FuzzyCOPE can realize a hy-
brid multi-modular and multi-paradigm system.

A major characteristic of FuzzyCOPE is that
the different AI paradigms, realised as different
modules, can be either used as separate tools, or
mixed in one production system. For mixing them
in one system all of the available functions in the
different modules can be called from a production

148 N.K. Kasabov / Fuzzy Sets and Systems 82 H996) 135 149

;; A program in FuzzyCOPE for training a fuzzy neural network,
;; for fuzzy rules extraction and approximate reasoning with new data
(defrule initialisation_of_a_FuNN(fuzzy_neural_network)

(start)
=>

(bind $?status (newbp "iris.wgt" 12 6 9))
(assert (FuNNexists)))

(defrule fuzzily. Iris data
(start)

=>
(bind $?status (fuzzify "iris.trn" "iris-fz.trn" 3))
(assert (DataFuzzified)))

(defrule Training_FuNN
(FuNNexists)
(DataFuzzified)

=>
(bind $?error (trainbp "iris.wgt" "iris-fz.trn" 1000 0.1 0.3 0.001))
(assert (FuNNtrained)))

(defrule Fuzzy_rules-extraction_from_FuNN
(FuNNtraineA)

=>
(bind $?status (extract "iris.wgt" "iris-fz.rul" 2 2.0))

;, (defrule input-new-data ;this rule is only commented here
;; this rule reads input data for a new instance and asserts
;; a fact (F $?new_iris) in the working memory

(defrule reasoning_in_FuNN
(F $?new_iris)

=>
(bind $?resultsl (recallbp "iris.wgt" $?new iris))
(printout t $?resultsl))

;;; separation of the set of fuzzy rules "iris-fz.rur' into three sets of
;;; rules - "iris_se.rul", "iris_ve.rul" and "iris_vi.rul" has to be done
;;; before the following rule is fired

(defrule one_fuzzy_inference_method for._approximate_reasoning
(F $?new_iris)

=>
(bind ?se (fidfuzzy "c:iris_se.ml" $?new_iris))
(bind ?ve (fidfuzzy "c:iris_ve.rul" $?new_iris))
(bind ?vi (fidfuzzy "c:iris_vi.rul" $?new_iris))
(bind $?results2 ?se ?ve ?vi) (printout t $?results2 crlf))

Fig. 11. A FuzzyCOPE program for: fuzzification of training data, initialisation of a fuzzy neural network, training the network with
fuzzified data, rules extraction, reasoning in the fuzzy neural network and in a standard fuzzy inference engine.

rule in the product ion system module. Fig. 11
shows an example of a F u z z y C O P E program for
fuzzification of training data, initialisation of
a F u N N structure, training the network with fuzzi-
fled data, rules extraction, approximate reasoning
in the trained F u N N and approximate reasoning

with a s tandard fuzzy inference method when new
data has been entered.

Such knowledge engineering environments bring
all the benefits of the symbolic AI systems, the
connectionist systems and the fuzzy systems into
one comprehensive hybrid system.

N.K. Kasabov / Fuzzy' Sets and Systems 82 (1996) 135 149 149

7. Conclusions and directions for further research

Issues of knowledge acquisition and approxim-
ate reasoning in hybrid neuro-fuzzy systems are
discussed in the paper. Fuzzy neural networks and
one particular architecture called FuNN are intro-
duced for realising this approach.

An algorithm for rules extraction from FuNN,
called REFuNN, is proposed in the paper.
Weighted fuzzy rules as well as simple fuzzy rules
can be extracted and used further for approximate
reasoning either in FuNN or in a fuzzy inference
engine. This is illustrated with the Iris classification
problem.

Environments which facilitate different rule ex-
traction methods and different approximate rea-
soning methods are needed to implement the main
idea of this paper. Such an environment
FuzzyCOPE is introduced and illustrated in the
last section of the paper.

Further research can be done in the following
directions:
• developing new rules extraction algorithms from
FuNN, e.g. extracting generalisedfuzzy production
rules (see Fig. 2);
• developing new algorithms for training and ad-
aptation of FuNN which allow for 'growing' and
'shrinking' of the initial FuNN structure;
• further development of FuzzyCOPE-like integ-
rated knowledge engineering environments by in-
troducing more paradigms in them such as genetic
algorithms, chaotic data analysis, etc.

References

[1] T. Furuhashi, T. Hasegawa, S. Horikawa, and Y.
Uchikawa, An adaptive fuzzy controller using fuzzy neural
networks, in: Proc. 5th IFSA World Congr. (1993) 769 772.

[2] J. Giarratano and G. Riley, Expert Systems. Principles and
Programming (PWS PubL Boston, 1989).

[3] M.M. Gupta and D.H. Rao, On the principles of fuzzy
neural networks, Fuzzy Sets and Systems 61 (1994) 1-18.

[4] T. Hashiyama, T. Furuhashi and Y. Uchikawa, A decision
making model using a fuzzy neural network, in: Proc. 2nd
lnternat. Conf. on Fuzz), Logic and Neural Networks,
Iizuka, Japan, (1992) 1057-1060.

[5] W. Hauptmann and K. Heesche, A neural net topology for
bidirectional fuzzyoneuro transformation, in: Proc. F UZZ-
IEEE/IFES, Yokohama, Japan (IEEE Press, New York,
1995) 1511 1518.

[6] H. Ishibuchi, H. Tanaka and H. Okada, Interpolation of
fuzzy if-then rules by neural networks, Int. J. Approximate
Reasoning 10 (1994) 3 27.

[7] J.S.R. Jang and C.T. Sun, Neuro-fuzzy modelling and
control, Proc. IEEE (1995) to appear.

[8] N. Kasabov, Learning fuzzy production rules for approx-
imate reasoning, in: S. Gielen and B. Kappen, Eds., Con-
nectionist production systems, Proc. lmernat. Conf. on
Artificial Neural Networks ICANN "93, Amsterdam, 1993
(Springer, Berlin, 1993) 337 342.

[9] N. Kasabov, Connectionist Fuzzy Production Systems,
Lecture Notes in Artificial Intelligence, 847 A. Ralescu,
Ed., Fuzzy Logic in Artificial Intelligence (Springer, Berlin
1994) 114-128.

[10] N. Kasabov, Hybrid connectionist fuzzy production sys-
tems - towards building comprehensive AI, Internat. J.
Intelligent Automation and Soft Computing, AutoSoft
(1995) to appear.

[l l] N. Kasabov, Adaptable Neuro Production Systems, to
appear in Neurocomputino (Elsevier, Amsterdam, 1995).

[12] N. Kasabov, Hybrid Connectionist Fuzzy Rule-based Sys-
tems for Speech Recognition, to appear in: Lecture Notes
in Computer Science/Artificial Intelligence (Springer,
Berlin 1995)

[13] N. Kasabov, Neural Networks, Fuzzy Systems and Know-
ledge Engineerin 9 (MIT Press, Cambridge, 1996) to appear.

[14] N. Kasabov and S. Shishkov, A connectionist production
system with partial match and its use for approximate
reasoning, Connection Sci. 5 (1993) 275-305.

[15] A. Kawamura, N. Watanabe, H. Okada and K. Asakawa,
A prototype of neuro-fuzzy cooperation system, in: Proc.
1st IEEE Conf. on Fuzzy Systems (1992) 1275-1280.

[16] B. Kosko, Neural Networks and Fuzzy Systems: A Dynam-
ical Approach to Machine Intelligence (Prentice-Hall,
Englewood Cliffs, NJ, 1992).

[17] M. Mizumoto and H. Zimmermann, Comparison of fuzzy
reasoning methods. Fuzzy Sets and Systems (1982) 253 283.

[18] K. Nakamura, T. Fujimaki, R. Horikawa and Y. Ageishi,
Fuzzy network production system, in: Proc. 2nd lnternat.
Co~ on Fuzzy Logic & Neural Networks, Iizuka, Japan
(1992) 127-130.

[19] S. Tano, T. Oyama, T. Arnould and A. Bastian, Definition
and tuning of unit-based fuzzy systems in FINEST,
1EEE, 0-7803-1896-X/94 (1994) 436-440.

[20] T. Terano, K. Asai and M. Sugeno, Fuzzy Systems Theory
and Its Applications (Academic Press, New York, 1992).

[21] T. Terano, Long-term view on fuzzy technology and LIFE
projects, LIFE Tech. News, 4 (November 1993) 1 10.

[22] R. Yager, Modelling and formulating fuzzy knowledge bases
using neural networks, Neural Networks 7 (1994) 1273-1283.

[23] T. Yamakawa, H. Kusanagi, E. Uchino and T. Miki,
A new effective algorithm for neofuzzy neuron model, in:
Proc. 5th IFSA World Congr. (1993) 1017-1020.

[24] L. Zadeh, The role of fuzzy logic in the management of
uncertainty in expert systems, in: M. Gupta, A. Kandel,
W. Bandler and J. Kiszka, Eds., Approximate Reasoning in
Expert Systems (North-Holland, Amsterdam, 1985).

[25] L. Zadeh, Fuzzy sets, Inform. and Control8(1965) 338-353.

