

Available online at www.sciencedirect.com

Physica B 326 (2003) 431-435

www.elsevier.com/locate/physb

Spin-freezing in the two-dimensional spin-gap systems $SrCu_{2-x}Mg_x(BO_3)_2$ (x = 0, 0.04, 0.12)

A. Lappas^{a,*}, A. Schenck^b, K. Prassides^c

^a Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion 711 10, Greece ^b Institute for Particle Physics, Swiss Federal Institute of Technology (ETH) Zurich, CH-5232 Villigen PSI, Switzerland ^c School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 90J, UK

Abstract

The magnetic properties of the two-dimensional dimer spin-gap system $SrCu_2(BO_3)_2$ were investigated by the μ^+SR technique. The relatively slow fluctuations of spin-dimers slow down with decreasing temperature and an unusual spinfreezing process is unraveled at $T_{\rm f} < 3.75$ K, well within the spin-gap temperature range ($T_{\rm SG} \approx 20$ K). This quasi-static phase displays a Gaussian field distribution with a remarkable stability with applied longitudinal fields. In support of the criticality of the SrCu₂(BO₃)₂ spin-gap ground state towards an antiferromagnetic transition, Knight-shift measurements suggest that implanted muons may liberate spin density at $T < T_{SG}$ that undergoes spin-freezing at very low temperatures. On the other hand, non-magnetic impurity-doping of the copper sublattice does not suppress the spin-gap ground state and does not lead to magnetic ordering effects of static nature. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Low-dimensional solids; Spin gap; Knight shift

Recent years have seen a great deal of research exploring complicated quantum mechanical phenomena associated with the mechanism of high- $T_{\rm c}$ superconductivity in two-dimensional (2D) copper oxides. Prominent features of these systems include the presence of a pseudo-gap and its evolution with doping [1]. Low-dimensional chemical analogues of the cuprates with spin-gap ground states offer opportunities to study prototypical systems with unconventional low-temperature behavior.

 $SrCu_2(BO_3)_2$ is a spin-gap ($\Delta \approx 30$ K) system [2] in which the Cu^{2+} ions form a 2D network of

rectangular CuO₄ units with triangular BO₃ group connectivity [3]. Nearest-neighbor Cu^{2+} (S = 1/2) ions form dimers ($d \approx 2.90$ Å), arranged orthogonally to each other, while the sheets are separated by non-magnetic Sr^{2+} ions. An illustration of the tetragonal unit cell of the structure [3] is presented in Fig. 1. The magnetic exchange pathways in $SrCu_2(BO_3)_2$ are topologically similar to the dimer model of Shastry and Sutherland [4]. In this, a 2D Heisenberg model allowing for nearest-neighbor (NN; J) and next-nearest-neighbbor (NNN; J') magnetic exchange interactions was employed, leading to the conclusion that the singlet dimer state is an exact eigenstate of the spin Hamiltonian. At $T < T_{SG} \approx 20$ K, the bulk magnetic susceptibility of SrCu₂(BO₃)₂ (shown in the inset of Fig. 4) shows a characteristic thermally activated

^{*}Corresponding author. Tel.: +30-2810-391300; fax: +30-2810-391305.

E-mail address: lappas@iesl.forth.gr (A. Lappas).

^{0921-4526/03/\$ -} see front matter (C) 2002 Elsevier Science B.V. All rights reserved. PII: S0921-4526(02)01669-1

Fig. 1. Layered arrangement of the Cu^{2+} ions in the tetragonal unit cell of $SrCu_2(BO_3)_2$.

behavior consistent with the opening of an excitation gap, Δ . In addition, high-temperature susceptibility measurements [2,5] find that the NN Cu²⁺ interactions are strongly antiferromagnetic, $J \approx -100$ K, while the NNN interactions are sizeable ($J' \approx 0.68J$) and with important consequences for the stability of the ground state. Theory predicts [5] that the SrCu₂(BO₃)₂ dimer ground state is at the borderline of the transition from disordered spin-gap to antiferromagnetically (AF) ordered state with the quantum critical phase transition expected to occur at $(J'/J)_c \approx 0.7$.

Bearing the above in mind, we employed the μ^+ SR technique to authenticate the nature of the magnetic ground state in SrCu_{2-x}A_x(BO₃)₂ (A=Mg²⁺; x <0.12), search for static magnetic order, follow the *T*-dependence of small moment spin fluctuations, investigate the spatial inhomogeneity of the ground state, find out if the spin-gap is modified by non-magnetic impurity dopants (Mg²⁺), and answer questions regarding possible muon-induced break-up of the dimer spin-singlets.

 μ^+ SR measurements were carried out at the Paul Scherrer Institute (PSI), Villigen, Switzerland. Datasets were collected in the zero-field (ZF), longitudinal-field (LF = 10 mT to 0.4 T), and transverse-field (TF = 0.6 T) variants of the technique. Polycrystalline samples were pressed into pellets (\emptyset 13 mm) and mounted on a silver sample holder which was then attached on the sample

Fig. 2. Zero field μ^+ SR time spectrum of SrCu_{1.96}Mg_{0.04}(BO₃)₂ at 2 K ($< T_{SG}$). The line is the fit to Eq. (3). Inset: Longitudinal-field μ^+ SR decoupling experiment (T = 2 K) showing the persisting character of the Gaussian field distribution.

stick of a continuous flow cryostat operating between 1.7 and 300 K.

Fig. 2 shows the $ZF-\mu^+SR$ spectrum of $SrCu_{1.96}Mg_{0.04}(BO_3)_2$ at 2K which is representative of all samples studied. This is very unusual for systems with disordered non-magnetic singlet ground states for which the only means of μ^+ spin depolarization is through the disordered nuclear moments [6]. In the present cases, the low-temperature $ZF-\mu^+SR$ data were described well by two-component depolarization functions, incorporating a strongly relaxing Gaussian (σ_1) and a slow exponential (λ_2) component.¹ The following functional forms were employed in the analysis of ZF time-spectra for different temperature ranges:

$$P_{\mu}(t) = A \exp(-\lambda t) \exp(-\frac{1}{2}\sigma^{2}t^{2}) \quad 4.5 \le T < 10 \text{ K},$$
(1)

$$P_{\mu}(t) = A \exp(-\lambda t) \quad 3.75 \le T < 4.5 \,\mathrm{K},$$
 (2)

$$P_{\mu}(t) = A_1 \exp(-\frac{1}{2}\sigma_1 t^2) + A_2 \exp(-\lambda_2 t) \quad T < 3.75 \text{ K.}$$
(3)

Fig. 3 compiles the temperature dependence of the fitted parameters. We find that at high

¹Similar behavior has been observed by A. Fukaya et al. (this conference) on a different batch of samples.

Fig. 3. Temperature dependence of the fitted parameters (Eqs. (1)–(3)) for $\text{SrCu}_{2-x}\text{Mg}_x(\text{BO}_3)_2$ (x = 0, 0.04, 0.12) in zero field: (a) the sample volume fractions ($A_1 + A_2 = A_{\text{total}}$) involved in the μ^+ spin-depolarization and (b) the corresponding relaxation rates. At T > 3.75 K, σ is on average ~ 0.12 µs⁻¹, whereas λ becomes smaller with increasing temperature—the line through σ_1 is a power-law fit to determine T_f (≈ 3.75 K).

temperatures the Cu nuclei of $\text{SrCu}_{2-x}\text{Mg}_{x}(\text{BO}_{3})_{2}$ dominate the depolarization ($\sigma = 0.121(6) \,\mu\text{s}^{-1}$) behavior (Eq. (1)), while relatively fast spin fluctuations that are already present above 4.5 K appear to slow down (Eq. (2)) as we approach the characteristic temperature of 3.75 K from above, with the exponential relaxation rates (Eqs. (1)–(3)) increasing smoothly from 0.168(4) μs^{-1} at 5 K to 0.23(2) μs^{-1} at 2.1 K.

On the other hand, below 3.75 K the Gaussian depolarization component begins to grow quickly at the expense of the exponential one. The corresponding relaxation rate, σ_1 approaches saturation at the lowest temperatures (~2.7(1) µs⁻¹) and gives rise to a sizeable field width which varies little among the different compositions, i.e. $\langle \Delta B^2 \rangle^{1/2} = 31_{x=0}$, $29_{x=0.04}$,

and $26.5_{x=0.12}$ G at 2 K. The rapid growth of the relaxation rate and the Gaussian field spread are consistent with component #1 of Eq. (3) reflecting a quasi-static volume fraction (A_1) which diminishes with increasing Mg-content from 44% in the parent compound to $\approx 26\%$ for x = 0.12. Component #1 cannot arise from paramagnetic S=1/2 impurities present in the samples, as magnetic susceptibility measurements put an upper limit of 0.1% to such impurities. By fitting a power-law expression to the T-dependence of the Gaussian (Eq. (3)) depolarization rate, $\sigma_1 =$ $\sigma_0[1-(T/T_f)]^{\beta}$, a freezing temperature, $T_f =$ 3.75(2) K ($\beta \approx 0.22 - 0.3$) for the electronic magnetic moments can be extracted. In order to explore further the nature of the Gaussian component of Eq. (3), we performed additional LF- μ^+ SR experiments at $T < T_f$. The time-dependence of the muon spin depolarization at applied LFs is similar for all compositions. A good description of the LF spectra at T < 3.75 K was achieved with Eq. (3), while at higher-Ts Eq. (2) was more appropriate. The inset of Fig. 2 shows a typical decoupling experiment. The exponential component (A_2) represents the dominant volume fraction in the presence of an applied LF and the corresponding relaxation rates appear to diverge when approaching $T_{\rm f}$. The maximum depolarization rate is reached at about 3.5 K (e.g. for x = 0: $\lambda \sim 0.23 \,\mu s^{-1}$ in ZF and $\lambda \sim 0.08 \,\mu s^{-1}$ in 0.2 T LF) and then diminishes at lower temperatures (e.g. at 2 K: $\lambda_{ZF} \sim 0.22 \,\mu s^{-1}$, $\lambda_{0.1 T} \sim 0.06 \,\mu s^{-1}$, $\lambda_{0.2 \text{ T}} \sim 0.02 \,\mu\text{s}^{-1}$). Very surprisingly though, the Gaussian component, σ , survives even after the application of $H_{\rm LF} \sim 0.05 \, {\rm T} \ (\gg \Delta/\gamma_{\rm u})$, while its volume fraction appears to shrink somewhat. Only when fields of the order of $H_{\rm LF} \sim 0.2 \,\rm T$ are reached, component #1 of Eq. (3) is completely decoupled. Such a very unusual, persisting Gaussian relaxation has been seen before in other systems with spin-singlet ground states. For example, in the frustrated Kagomé lattice system SrCr₈Ga₄O₁₉, a similar behavior was observed and was attributed to a dilute source of a magnetic local field, which migrates spatially through the lattice [7].

In an attempt to understand the origin of the slowing down and eventual freezing of the electronic magnetic moments at $T < T_{SG}$, we

Fig. 4. Knight shifts of the muon precession frequencies observed in $SrCu_2(BO_3)_2$ as a function of temperature. The lines through the data for components #2 and #3 are Curie-law fits. Inset: Temperature dependence of the Knight shift, K_1 , of component #1 and of the bulk molar dc susceptibility (H=1T) in $SrCu_2(BO_3)_2$.

performed TF- μ^+ SR (at 0.6 T) measurements between 5 and 90 K. We find that at $T \leq 20$ K, while entering the spin-gap regime, the local field distribution, initially centered at $v_0 \sim 81.3$ MHz, becomes broader and two additional lines (#2, #3) gradually separate out while approaching 5 K. We calculated the Knight shift (Fig. 4) for the three components according to the formula:

$$K_{s,i} = \frac{\gamma_{\mu} B_{s,i}}{v_0} = \frac{v_i(T) - v_0}{v_0} - 4\pi \left(\frac{1}{3} - N_{xx}\right) \chi(T),$$
(4)

where v_0 is the frequency of the external field, v_i (i = 1, 2, 3) is the frequency of each component, N_{xx} is the demagnetization factor, and $\chi(T)$ is the volume susceptibility. The *T*-variation of the corresponding sample volume fractions and relaxation rates are similar to those shown in Fig. 3 for the ZF measurements, i.e. TF #1 is associated with the ZF exponential component, whereas TF #2 and #3 are related to the ZF Gaussian component. With ZF/LF and TF experiments probing effects of the same nature, we note the similarity of $K_1(T)$ to $\chi(T)$, as shown in the inset of Fig. 4. Assuming that component #1 of the TF data reflects roughly the bulk susceptibility around T_{SG} , then the Curie-like behavior ($v_i = v_{0,i} + C/T$) exhibited by the spins associated with components #2 and #3 may be ascribed to some spin-density, which is liberated by the muon itself.

In summary, μ^+ SR investigations of the $SrCu_{2-x}Mg_x(BO_3)_2$ ground state indicate that the spins associated with the dimer singlet state are fluctuating relatively slowly $(v \sim 1/\langle \lambda \rangle_{LF=0.1 \text{ T}} \sim$ 66 MHz) at 7.5 K before slowing down (\sim 9 MHz) at 3.5 K close to a characteristic temperature, $T_{\rm f}$ that is 5 times smaller than T_{SG} . Interestingly, this point is also marked by the appearance of a secondary process, which sets in abruptly and is consistent with the freezing of spins liberated from the dimer state. This transition is marked by a persisting (non-decouplable upon the application of $H_{\rm LF}$) Gaussian field distribution and points to a μ^+ -induced effect suggested before for other lowdimensional spin-gap systems [8]. It is presumably an indication of how close $SrCu_2(BO_3)_2$ is to a quantum critical phase transition from a spin-gap to an AF ordered state. In addition, Mg-dilution of the Cu-sublattice does not induce static magnetic order; instead, it decreases the volume fraction associated with the free-spins in accord with the picture of a μ^+ -associated perturbation of the SrCu₂(BO₃)₂ quantum critical ground state.

Acknowledgements

We thank A. Amato for technical assistance with the μ^+ SR experiments, I. Mastoraki for help with the measurements and Paul Scherrer Institute for the provision of muon beamtime. We acknowledge support by NATO (KP, AL), the General Secretariat for Research & Technology (Greece) through a "Greece-Slovenia Joint Research & Technology Program" (AL) and the Marie-Curie Fellowship program of the European Union (Contract no. HPMD-CT-2000-00050) (AL).

References

[1] S. Sachdev, Phys. World 12 (1999) 33.

- [2] H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C.P. Slichter, T. Goto, Y. Ueda, Phys. Rev. Lett. 82 (1999) 3168.
- [3] R.W. Smith, D.A. Keszler, J. Solid State Chem. 93 (1991) 430.
- [4] B.S. Shastry, B. Sutherland, Physica B 108 (1981) 1069.
- [5] S. Miyahara, K. Ueda, Phys. Rev. Lett. 82 (1999) 3701.
- [6] A. Lappas, K. Prassides, A. Amato, R. Feyerherm, F.N. Gygax, A. Schenck, Z. Phys. B 96 (1994) 223.
- [7] Y.J. Uemura, A. Keren, K. Kojima, L.P. Le, G.M. Luke, W.D. Wu, Y. Ajiro, T. Asano, Y. Kuriyama, M. Mekata, H. Kikuchi, K. Kakurai, Phys. Rev. Lett. 73 (1994) 3306.
- [8] D. Andreica, N. Cavadini, H.U. Güdel, F.N. Gygax, K. Krämer, M. Pinkpank, A. Schenck, Physica B 289 (2000) 176.