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In this paper, we present an algorithm for solving the bicriteria traffic equilibrium problem
with variable demand and nonlinear path costs. The path cost function considered is com-
prised of two attributes, travel time and toll, that are combined into a nonlinear general-
ized cost. Travel demand is determined endogenously according to a travel disutility
function. Travelers choose routes with the minimum overall generalized costs. The algo-
rithm involves two components: a bicriteria shortest path routine to implicitly generate
the set of non-dominated paths and a projection and contraction method to solve the non-
linear complementarity problem (NCP) describing the traffic equilibrium problem. Numer-
ical experiments are conducted to demonstrate the feasibility of the algorithm to this class
of traffic equilibrium problems.

Published by Elsevier Inc.
1. Introduction

It is generally accepted that travelers consider a number of criteria (e.g., time, money, distance, safety, route complexity,
etc.) when selecting routes. Presumably, these criteria are then combined in some manner to form a generalized cost for each
particular route or path under consideration, and a route selected based on minimization of the generalized cost of the trip.
Most commonly, it is assumed that travelers select the ‘best’ route based on either a single criterion, such as travel time, or
several criteria using a linear (or additive) path cost function. The linearity assumption offers the advantage that the traffic
equilibrium problem can be solved without the need to store paths, which is a significant benefit, since it allows solution of
large-scale network problems for which path enumeration is practically infeasible. However, as pointed out by Gabriel and
Bernstein [1], there are many situations in which the linear path cost function is inadequate for addressing factors affecting a
variety of transportation policies. Such factors include:

(i) Nonlinear valuation of travel time – small amounts of time are valued proportionately less than larger amounts of
time.

(ii) Emissions fees – emissions of hydrocarbons and carbon monoxide are a nonlinear function of travel times.
(iii) Path-specific tolls and fares – most existing fare and toll pricing structures are not directly proportional to either travel

time or distance.
er Inc.
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These, and other such factors, are generally difficult to accommodate without explicitly using path flows in the formula-
tion and solution, particularly for traffic equilibrium problems involving multi-dimensional nonlinear path costs.

Despite the obvious usefulness of incorporating multiple criteria and relaxing the assumption of linear path costs for an
important class of traffic equilibrium problems, there have been relatively few attempts to incorporate multiple criteria
within route choice modeling. Recently, Dial [2,3] formulated a bicriteria user equilibrium assignment model based on
out-of-pocket costs and travel time using a linear generalized path cost, and provided efficient algorithms for solving prac-
tical problems in planning applications. Blue et al. [4] proposed an algorithm for the bicriteria shortest path problem that
considers two criteria: travel time and route complexity, represented by turning maneuvers. The algorithm uses a simple
weighting method and assumes that all members of a particular user class use the same value of weight. Nagurney [5]
and Nagurney and Dong [6] developed a multiclass, multicriteria traffic equilibrium model for fixed and elastic demands
in which travelers for a class perceive their generalized cost on a route as a weighting of travel time and travel cost, where
the weights are not only class-dependent but also link-dependent. Under the assumption that the nonlinear path cost func-
tion is known a priori, Scott and Bernstein [7] solved a constrained shortest path problem (CSPP) to generate a set of Pareto
optimal paths and then identify the best path by evaluating the cost values of the alternative paths. In a later study, Scott and
Bernstein [8] embedded the CSPP into the gradient projection method to solve the non-additive traffic equilibrium problem.
Mixed results led the authors to conclude that the diagonalized subproblem was a poor approximation for the non-additive
problem. Using a new gap function recently proposed by Facchinei and Soares [9], Lo and Chen [10] reformulated the non-
additive traffic equilibrium problem as an equivalent unconstrained optimization and solved a special case involving fixed
demand and route-specific costs. Chen et al. [11] provided a projection and contraction algorithm for solving the elastic traf-
fic equilibrium problem with route-specific costs. Recently, some formulations and properties of the non-additive traffic
equilibrium models were also explored, such as the nonlinear time/money relation [12], the uniqueness and convexity of
the bicriteria traffic equilibrium problem [13], and the monotonicity of the mixed complementarity problem formulation
[14]. Furthermore, Altman and Wynter [15] discussed the non-additive cost structures in both transportation and telecom-
munication networks.

In this paper, we consider the traffic equilibrium problem with variable demand, fixed tolls, and a nonlinear path cost
function. We first discuss the bicriteria traffic equilibrium problem and its equivalent nonlinear complementarity formula-
tion, and present the associated bicriteria shortest path problem (BCSSP) and solution algorithm. We then explore a class of
projection and contraction (PC) methods developed by He [16] to solve the nonlinear complementarity problem (NCP) that
characterizes this class of traffic equilibrium problem. The PC method is simple and can handle a general monotone mapping.
Unlike the non-smooth equations/sequential quadratic programming (NE/SQP) method proposed by Gabriel and Bernstein
[1] to solve the non-additive traffic equilibrium problem, the PC method does not require the mapping to be differentiable.
It only assumes a monotone condition on the mapping. It uses three fundamental inequalities to construct the search direc-
tion and a self-adaptive scaling scheme to ensure convergence without the need to assume that the mapping satisfies the
Lipschitz condition. For the bicriteria shortest path problem with nonlinear path costs, we use an exact method by Hansen
[17] to automatically generate paths as needed. For purposes of illustration, we apply the combined BCSSP and PC algorithm
to two networks and make comparisons with two linear path cost models.

2. The bicriteria traffic equilibrium problem and its equivalent nonlinear complementarity formulation

Consider a strongly connected network ½N;A�, where N and A denote the sets of nodes and arcs, respectively. Let R and S
denote subsets of N, for which travel demand qrs is generated from origin r 2 R to destination s 2 S. The independent variables
are a set of path flows, denoted as f rs

p , that must satisfy
X
p2Prs

f rs
p ¼ qrs; 8r 2 R; s 2 S; ð1Þ
where Prs is a set of simple paths connecting r to s. Further, all path flows are restricted to be non-negative to ensure a mean-
ingful solution, that is,
f rs
p P 0; 8r 2 R; s 2 S; p 2 Prs: ð2Þ
Let va denote the traffic flow on link a. Then, the total flow on link a is simply the sum of all paths using that link
va ¼
X
r2R

X
s2S

X
p2Prs

f rs
p drs

pa; 8a 2 A; ð3Þ
where drs
pa ¼ 1 if link a is on path p connecting r and s, and 0, otherwise.

A typical link cost function incorporating congestion effects expresses the travel time along the link as a function of the
total link flow, that is,
ta ¼ taðvaÞ; 8a 2 A: ð4Þ
For the single-criterion traffic equilibrium problem, the path cost is then simply the sum of the link travel times
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grs
p ¼

X
a2A

drs
pata; 8r 2 R; s 2 S; p 2 Prs: ð5Þ
For the bicriteria traffic equilibrium problem with linear path costs based on travel time and toll, the generalized path cost
can be obtained by a linear combination of the two criteria as follows:
grs
p ¼ a

X
a2A

drs
pata þ

X
a2A

drs
pasa; ð6Þ
where a is a ‘‘value-of-time” parameter (i.e., the amount that a traveler would be willing to pay in order to save time) and sa is
the toll on link a.

The linearity assumption in (6) allows the traffic equilibrium problem to be formulated as a mathematical program that
can be solved without the need to store paths (see Sheffi [18] for details). As pointed out by Gabriel and Bernstein [1], this
assumption is rather restrictive and cannot adequately model certain important applications. For example, Hensher and
Truong [19] showed that the valuation of travel time savings is nonlinear rather than linear. That is, small amounts of time
are valued proportionally less than larger amounts of time. A possible nonlinear path cost function can be the following
form:
grs
p ¼ gp

X
a2A

drs
pata

 !
þ
X
a2A

drs
pasa; 8r 2 R; s 2 S; p 2 Prs; ð7Þ
where gp is a nonlinear function describing the value-of-time for path p. For this situation, the traffic equilibrium problem
can only be formulated and solved in the path-flow domain.

For the associated travel demand, we assume variable demand with known travel disutility functions [20]. For each OD
pair (r; s), there is a travel disutility prs given as a function of travel demand q (a vector of {. . .,qrs, . . .}), i.e.,
prs ¼ prsðqÞ; 8r 2 R; s 2 S: ð8Þ
We note that the path costs and travel disutilities are functions of the path-flow pattern f (a vector of f. . . ; f rs
p ; . . .g). Therefore,

the traffic equilibrium problem with variable demand is to find a path-flow pattern f*, which induces a demand pattern
q* = q(f*) such that, for every OD pair (r; s) and each path p 2 Prs, the following conditions hold:
grs
p ðf �Þ � prsðqðf �ÞÞ

¼ 0 if f rs�
p > 0

P 0 if f rs�
p ¼ 0

(
; 8r 2 R; s 2 S; p 2 Prs: ð9Þ
That is, when the travel cost on path p is larger than the travel disutility, the flow on that path is zero. When the travel cost
on path p is equal to the travel disutility, its flow is greater than or equal to zero. These conditions are equivalent to War-
drop’s Principle: all of the used paths have equal and minimum travel times; all of the unused paths have equal or higher
travel times [21].

As observed by Aashtiani [22], the above equilibrium conditions are equivalent to the nonlinear complementarity prob-
lem (NCP):
x P 0; FðxÞP 0; xT FðxÞ ¼ 0; ð10Þ
obtained by setting x = f and letting F(x) = g � p, where g is a vector of f. . . ;grs
p ; . . .g and p is a vector of {. . .,prs, . . .}. Aashtiani

established that the above NCP is equivalent to the traffic equilibrium problem. The proof is for the travel demand function,
but it is also valid for the travel disutility function adopted in this paper, which is the inverse of the travel demand function
(see Chapter 4 in Nagurney [20] for details).

This NCP formulation offers the flexibility of relaxing the assumption of linear path costs, while including the linear path
cost function as a special case – a feature used in most existing formulations. For purposes here, the principal benefit of this
formulation is its ability to accommodate nonlinear path costs with multiple criteria.
3. Bicriteria shortest path problem and algorithm

A difficulty in solving the bicriteria shortest path problem (BCSPP) is that there may be no single optimal solution that
satisfies both objectives simultaneously. If there were, the solution to the BCSPP would be straightforward because the best
path will dominate all other paths in terms of both objectives. Furthermore, when the path cost function is nonlinear (or
non-additive), conventional labeling-based algorithms may not be applicable because they may violate Bellman’s Principle
of Optimality. In other words, monotonicity may not hold and therefore no general efficient method exists to obtain the opti-
mal path without first generating all non-dominated paths.

Here we describe an exact approach, based on Hansen’s method, to generate the entire set of non-dominated paths. It
extends the generic label-setting shortest path algorithm (such as Dijkstra algorithm) into a multiple-labeling scheme.
For simplicity, we consider only two labels (travel time and toll), but the algorithm can be generalized to any number of la-
bels. Consider that each link (i, j) has two-label vector cij = (tij, sij)T. Denote lk

j as a two-label vector of the kth path from origin
node r to node j; ccki

j a cost of ith attribute of the kth path from origin node r to node j; and Rj the set of indices i of the
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non-dominated temporary vector labels of node j. In addition, let T denote the set of nodes for which Rj – ; and V the set of
indices for which j 2 T or Rj was –;. The algorithm is defined as follows:

STEP 1. Initialization

Set l1

r ¼ ð0; 0Þ; l1
j ¼ ð1;1Þ for all nodes j – O; T = {r}, Rr = {1}, V = {1}, Rj = Ø for all nodes j – O;

STEP 2. Selection of a node with the smallest vector labels

IF T = ; THEN

GOTO Step 4.
ELSE

Compute c ¼min cci;1
j j 2 T; i 2 Rj

��n o
and select node j such that j ¼ max k ccii;1

k ¼ c; k 2 T; ii 2 Rk

���n o
. Delete ii

from Rj and j from T if Rj = ;. If j is equal to the destination, STOP.
OTHERWISE

GOTO Step 3.
STEP 3. Computation of new labels
For each node k emanating from node j, calculate new vector labels of the ii-path (i.e., l ¼ lii
j þ cjk) and do the

followings:
IF k R V THEN

Introduce a new vector labels for node k, set Rk = {1}, T = T [ {k}, V = V [ {k}. Return to Step 2.
ELSE IF k 2 V and k R T THEN

Compare the new vector labels with the non-dominated vector labels of node k; if it is dominated, erase it;
otherwise add it to the list; choose i the first value not yet used in Rk; set Rk = {i}, T = T [ {k}. Return to Step 2.
ELSE IF k 2 V and k 2 T THEN

Compare the new vector labels with the non-dominated unselected vector labels of node k; if some of them
are dominated by the new vector labels, erase them and delete their index from Rk. Then compare the new vector
labels with all the non-dominated vector labels of node k and if it is dominated, erase it; otherwise, add it to the list;
choose i the first value not yet used in Rk; set Rk = Rk [ {i}. Return to Step 2.

STEP 4. Selection of optimal path

Since a path cost function is known, and all non-dominated paths sought for have been found from Step 2, it is trivial
to select the optimal path based on the least cost value.
4. Projection and contraction method

Let X be a nonempty subset of Rn, and F be a monotone mapping to itself. The variational inequality problem, denoted as
VI(X,F), is to find a vector x* 2X such that
Fðx�ÞTðx� x�ÞP 0; 8x 2 X: ð11Þ
When X ¼ fx 2 Rnjx P 0g ¼ Rn
þ, (11) can be reformulated as a nonlinear complementarity problem as follows:
x P 0; FðxÞP 0; xT FðxÞ ¼ 0: ð12Þ
The nonlinear complementarity problem, denoted as NCPðRn
þ; FÞ, is a special case of VI(X,F). Every solution of the NCP is also

a solution for the VI (see [20]) for details). Thus, the projection and contraction methods developed for VI(X,F) are also appli-
cable for NCPðRn

þ; FÞ.
A basic property of projection mapping on a closed convex set (see [23] for details) is
ðv � PXðvÞÞTðPXðvÞ � xÞP 0; 8v 2 Rn; 8x 2 X; ð13Þ
which will be used later in the qualitative analysis of the PC methods. It is well known that NCPðRn
þ; FÞ is equivalent to the

following projection equation:
x ¼ PX½x� FðxÞ�: ð14Þ
Thus, solving the NCPðRn
þ; FÞ is equivalent to solving the non-smooth equation, i.e., finding a zero point of the residual of the

projection equation
eðxÞ ¼ x� PX½x� FðxÞ�: ð15Þ
In fact, ke(x)k can be viewed as an error bound for NCPðRn
þ; FÞ that measures the deviation of x from X*. Naturally, ke(x)k1 can

also be used as a stopping criterion to monitor the convergence.

Fundamental inequalities
Let x* 2X* be a solution to (14). For any x 2 Rn,PX[x � F(x)] 2X. It follows from (11) that
ðFI1Þ Fðx�ÞTðPX½x� FðxÞ� � x�ÞP 0; 8x 2 Rn: ð16Þ
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Setting v = x � F(x) and x = x* in inequality (13) and using the notation e(x), we obtain
ðFI2Þ feðxÞ � FðxÞgTðPX½x� FðxÞ� � x�ÞP 0; 8x 2 Rn: ð17Þ
Under the assumption that F is monotone, we have
ðFI3Þ fFðPX½x� FðxÞ�Þ � Fðx�ÞgTðPX½x� FðxÞ� � x�ÞP 0; 8x 2 Rn: ð18Þ
As the basis for the development of different PC algorithms, Inequalities (16)–(18) are called the three fundamental inequal-
ities (FI), labeled here as FI1, FI2, and FI3, respectively, for easy reference. FI1 follows directly from the definition of varia-
tional inequalities; FI2 results from the basic property of projection mapping; and FI3 is based on the assumption of
monotonicity of the mapping F.

As observed by He [16], the search directions of many projection and contraction methods are constructed based on the
FI. If F is a monotone affine mapping, the search direction can be constructed based on either FI1 alone [24,25] or FI1 + FI2
together [26,27]. Both methods are simple minimization methods without line search and their implementations are simple.
For a nonlinear monotone mapping F, the extra-gradient method by Korplelevich [28] and the extra-gradient method with
Armijo’s line search by Sun [29] use FI1 + FI3 to obtain the search direction. In this paper, we use all three fundamental
inequalities to construct the search direction proposed by He [16] and independently discovered by Solodov and Tseng
[30] and Sun [31]. By adding FI1 + FI2 + FI3, we obtain
feðxÞ � ½FðxÞ � FðPX½x� FðxÞ�Þ�gTfðx� x�Þ � eðxÞgP 0; 8x 2 Rn: ð19Þ
Denote
dðxÞ ¼ eðxÞ � fFðxÞ � FðPX½x� FðxÞ�Þg: ð20Þ
It follows from (19) that
ðx� x�ÞT dðxÞP eðxÞT dðxÞ; 8x 2 Rn: ð21Þ
For convenience, we first assume that mapping F is Lipschitz continuous with a constantL 2 [0,1), i.e.,
kFðxÞ � FðPX½x� FðxÞ�Þk 6 LkeðxÞk; 8x 2 Rn: ð22Þ
Under this assumption, we have
eðxÞT dðxÞ ¼ keðxÞk2 � eðxÞTfFðxÞ � FðPX½x� FðxÞ�ÞgP keðxÞk2 � keðxÞkkFðxÞ � FðPX½x� FðxÞ�Þk: P ð1� LÞkeðxÞk2 ð23Þ
and via (21), it follows that
ðx� x�ÞT dðxÞP ð1� LÞkeðxÞk2
; 8x 2 Rn: ð24Þ
This inequality is the foundation for constructing a contraction method. That is, because
r 1
2
kx� x�k2

� �� �T

dðxÞ 6 �ð1� LÞkeðxÞk2
; 8x 2 Rn: ð25Þ
In other words, �d(x) is a descent direction that minimizes the error of kx � x*k. Although the solution point x* is unknown,
we can find a new iterate, which reconstruct along the descent direction �d(x) to yield a new point that reduces the value of
the distance function 1

2 kx� x�k2. This new iterate is a better approximate than the current point x. Thus, the sequence {xn}
generated by the projection and contraction method using FI1 + FI2 + FI3 as the search direction is convergent. Because a
projection is made in every iteration and the Euclidean distance of the iterates to the solution set monotonically contracts
to zero, the method is called projection and contraction. See He [26, Theorem 3], for a detailed proof of convergence of the PC
method. Here we only sketch out the main ideas underlying the PC method.

For a general continuous monotone mapping F, the Lipschitz assumption may not be satisfied. Note that the NCP is invari-
ant under the multiplication of F by some positive scalar b. We denote
eðx;bÞ ¼ x� PX½x� bFðxÞ� ð26Þ
and
dðx; bÞ ¼ eðx;bÞ � bfFðxÞ � FðPX½x� bFðxÞ�Þg: ð27Þ
It follows that
ðx� x�ÞT dðx; bÞP eðx;bÞT dðx; bÞ; 8x 2 Rn: ð28Þ
Because the mapping F is continuous, we can find a small enough b > 0, such that
kbFðxÞ � bFðPX½x� bFðxÞ�Þk 6 Lkeðx; bÞk: ð29Þ
Similar to (23) and (24), we have
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ðx� x�ÞT dðx; bÞP eðx; bÞT dðx;bÞP ð1� LÞkeðx;bÞk2
: ð30Þ
In practice, we use an additional procedure to get a suitably scaled F satisfying (22) before constructing the search direction.
This is accomplished by using an adaptive scaling procedure to find a suitable b. The self-adaptive projection and contraction
algorithm is given as follows:

Self-adaptive projection and contraction (SA-PC) algorithm

Step 0. Let e > 0, c 2 (0,2), and b0 = 1. Given x0 2X and set n :¼ 0.
Step 1. WHILE kbnF(xn) � bnF(PX[xn � bnF(xn)])k2 > 0.95ke(xn,bn)k2

DO bn :¼ bn �
ffiffiffi
2
p

ENDIF.
xnþ1 :¼ xn � cdðxn;bnÞ:
Step 2. IF kbnF(xn) � bnF(PX[xn � bnF(xn)])k2 < 0.20ke(xn,bn)k2

THEN bnþ1 :¼ bn=
ffiffiffi
2
p

, ELSE bn+1 :¼ bn ENDIF.
Step 3. IF ke(xn,bn)k1 6 e, THEN terminate.

OTHERWISE, set n :¼ n + 1 and GOTO Step 1.

From the above solution procedure, it should be noted that only two function evaluations and a simple projection on the
non-negative orthant are required in each iteration. The self-adaptive stepsize rule allows the sequence bn to be non-mono-
tone (i.e., bn can decrease as well as increase to fulfill the Lipschitz condition). Furthermore, the global convergence can be
shown under the monotone assumption on the underlying mapping F without the need to know the Lipschitz constant L in
advance. For more details about the self-adaptive stepsize updating scheme and the convergence properties of the SA-PC
algorithm, we refer to He [16], Solodov and Tseng [30], and Sun [31].

5. Implementation of bicriteria traffic equilibrium problem with variable demand and nonlinear path costs

Based on the BCSSP and PC method discussed above, we now can assemble the two components together to solve the
bicriteria traffic equilibrium problem with variable demand and nonlinear path costs. At each iteration, Hansen’s method
is used to generate optimal paths using a nonlinear path cost function that combines time and toll. This step acts as a column
generation procedure to automatically generate paths in each iteration as needed. Then, the self-adaptive PC method is used
to solve the equilibration problem by distributing flows to paths such that the Wardrop’s principle is satisfied. We also men-
tion that the computational effort required for the PC method is very modest. It consists of a trivial projection onto the non-
negative orthant and two evaluations of the mapping F. Recall that our mapping F for the bicriteria traffic equilibrium prob-
lem with variable demand and nonlinear path costs is
FðxÞ ¼ gðf Þ � pðqÞ; ð31Þ
where g(f) and p(q) are the path cost functions and travel disutility functions, respectively. For a given path p 2 Prs between
OD pair (r, s), the corresponding component of F(x) to f rs

p is given as
Frs
p ðxÞ ¼ grs

p ðf Þ � prsðqÞ: ð32Þ
Similarly, the component of e(x) is
ers
p ðxÞ ¼ f rs

p � PX½f rs
p � Frs

p ðxÞ�: ð33Þ
The detailed algorithmic steps are described as follows:

Step 0. Initialization: Start with free-flow travel times

0.1 Set j > 0, e > 0, v 2 (0,0_.5), and m = 0.
0.2 Perform incremental assignment to generate an initial set of paths: Prs(m), "r 2 R, s 2 S.
Step 1. Column generation

1.1 Update link travel times and path costs: grs

p ; 8r 2 R; s 2 S; p 2 PrsðmÞ.
1.2 Solve the bicriteria shortest path problem: lrs and �prs; 8r 2 R; s 2 S, where lrs is the optimal path cost

resulting from solving the BCSSP and �prs is the arc sequence denoting the optimal path.

Step 2. Convergence P rs rs rs� �
2.1 IF maxrs p
fp

qrs

gp �l
grs

p
6 j, THEN terminate.

2.2 OTHERWISE, set m = m + 1, update path set: PrsðmÞ ¼ �prs [ Prsðm� 1Þ IF �prs R Prsðm� 1Þ; 8r 2 R; s 2 S;
reduce e = e�m, and GOTO the equilibration procedure.
Step 3. Equilibration

3.1 Use SA-PC algorithm to solve the NCP using e as the terminating threshold and path set Prs(m),

"r 2 R, s 2 S.
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3.2 Drop unused paths: if f rs
p ¼ 0, then Prs(m) = Prs(m) � p, "r 2 R, s 2 S, p 2 Prs(m).

3.3 Return to Step 1.
Remark 1. In the initialization procedure, we adopted an incremental assignment procedure (see [18] for details) to
incrementally generate an initial set of paths. This technique is typically used in traffic assignment to create a good initial
path set.

Remark 2. In the column generation procedure, we used the Hansen’s method as an exact method to generate the entire set
of non-dominated paths. It may not be an efficient method since the number of non-dominated paths grows exponentially
with the number of criteria and/or network size. Work is currently in progress to develop an approximation method using
piecewise linearization and branch and bound techniques to avoid generating the entire set of non-dominated paths.

Remark 3. In the equilibration procedure, the convergence error e is progressively reduced to provide further efficiency. This
idea is also implemented in the disaggregate simplicial decomposition algorithm for solving the traffic assignment problem
[32]. In addition, unused paths (i.e., f rs

p ¼ 0) are dropped to keep the path set compact.

6. Numerical tests

We test the proposed algorithm on two test networks. The basic data for these two networks are summarized in Table 1.
Network characteristics for network 1 are provided in Fig. 1. A one-unit toll was imposed on links 2 ? 3 and a two-unit toll
was added on link 3 ? 6. The links with toll are highlighted in Fig. 1. Network 2 is the classical Sioux Falls network provided
in Fig. 2. Link characteristics can be found in LeBlanc et al. [33].

For both networks, we adopt the standard Bureau of Public Road (BRP) as the link cost function:
ta ¼ aa 1þ 0:15
va

ca

� �4
 !

; ð34Þ
where ta, aa, va, and ca are the travel time, free-flow travel time, flow, and capacity on link a, respectively. The demands are
elastic with known OD travel disutility functions of the following functional form:
prsðqÞ ¼ �mrsqrs þ hrs: ð35Þ
The numerical tests are not only aim at demonstrating the computational efficiency, but also at verifying the validity of
the algorithm and examining the differences between using travel time as the sole criterion in route selection and incorpo-
rating a second criterion (e.g., toll) to assess the tradeoff in both linear and nonlinear path costs.

For network 1, we use the following three path costs for the comparison:

(i) Single-criterion linear (SCL) path cost function
grs
p ¼

X
a2A

drs
pata: ð36Þ
(ii) Bicriteria linear (BCL) path cost function
grs
p ¼ 1:2

X
a2A

drs
pata

 !
þ
X
a2A

drs
pasa: ð37Þ
(iii) Bicriteria nonlinear (BCN) path cost function
grs
p ¼ 2:0

P
a2Ad

rs
pata

10

 !2

þ
P

a2Ad
rs
pata

10

 !
þ 3:0

X
a2A

drs
pasa

 !
: ð38Þ
In order to have a meaningful comparison among the three path cost models, parameter mrs is fixed at the same value,
while parameter hrs is individually adjusted so that all three models produce approximately the same level of OD travel de-
mand. The parameters mrs and hrs used in the travel disutility function for network 1 are provided in Table 2.
Table 1
Data for test networks.

Network 1 Network 2

Nodes 9 24
Links 12 76
OD pairs 1 528
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The complete link-flow patterns of the three path cost functions are shown in Fig. 3. The numbers in the figure represent
the three link-flow patterns resulting from the SCL, BCL, BCN path cost models, respectively. As can be seen from Table 3,
although the total demands remain relatively constant for all three path cost models, the link-flow patterns are different.
Both BCL and BCN assign less traffic on the two toll links, particularly on link 3 ? 6 that has a higher toll, and between these
two models BCN assigns even less traffic compared to BCL. This reflects the tradeoff between single-criterion and bicriteria
route choices as well as the differences between BCL and BCN path costs.

For completeness, we also provide the path-flow patterns in Table 3. One should be careful when comparing path-flow
solutions since they are generally not unique. A different set of equilibrium path flows could have been generated if a dif-
ferent initial solution were used. However, Table 3 provides useful information that can be used to check the correctness of
Table 2
Travel disutility parameters.

SCL BCL BCN

mrs 0.25 0.25 0.25
hrs 100.00 89.35 91.14
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the assignment results. First, the path flows sum to up to the OD’s travel demand. Second, the costs on all used paths be-
tween the OD pair are equal to its travel disutility for all three path cost models. These two factors demonstrate that the
solution is valid.

At termination, the algorithm found 4, 5, and 5 used paths for SCL, BCL, and BCN, respectively. Three of the used paths are
common to all three path cost models, but the flow allocations to these paths are different. The total flow allocations to the
common paths are 93.41, 79.25, and 73.41 for SCL, BCL, and BCN, respectively. When tolls are considered in the route selec-
tion, both BCL and BCN found two other used paths as shown in Table 3. Because the path cost functions are different, the
flow allocations are also different. These results basically show that adopting a bicriteria route choice with different func-
tional path costs leads to different results that may be useful for describing drivers’ route choice behaviors.
Table 3
Comparison of used path flows.

Model Demand Travel disutility Path (node sequence) Path flow Path cost

SCL 100 52.97 1–2–3–6–8–9 47.37 52.98
1–2–4–7–8–9 37.88 52.97
1–2–3–5–6–8–9 8.16 52.98
1–2–4–5–7–8–9 6.59 52.97

BCL 99.73 64.51 1–2–3–6–8–9 28.45 64.50
1–2–4–7–8–9 37.87 64.50
1–2–3–5–6–8–9 12.93 64.49
1–2–4–5–6–8–9 11.89 64.51
1–2–3–5–7–8–9 8.60 64.51

BCN 99.75 65.56 1–2–3–6–8–9 18.96 65.56
1–2–4–7–8–9 38.31 65.55
1–2–3–5–6–8–9 16.14 65.55
1–2–4–5–6–8–9 15.19 65.56
1–2–3–5–7–8–9 11.16 65.56
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Fig. 4. The logarithm of residual error of BCN path cost model for network 1.
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The convergence behavior of the algorithm, which is given in terms of the logarithm of e(x), is provided in Fig. 4. The
residual error reported here is for the BCN path cost model at each iteration before the equilibration procedure begins. As
can be seen, the algorithm quickly finds the zero point of the error bound within four iterations. For each iteration, we
use the PC method to repeatedly solve the equilibration procedure until it satisfies its terminating criterion (see Step 3.1).
Similarly, the trajectory of the OD travel disutility is depicted in Fig. 5.

A measure of the computational performance of the algorithm is provided in Tables 4 and 5, as represented by the cumu-
lative number of inner iterations and cumulative number of evaluations of mapping F given in (32), for different stopping
accuracies as well as different starting scaling factor, respectively. The results show that the algorithm is quite robust in
achieving very accurate solution and is insensitive to the initial scaling factor. Using the BCN path cost model, Table 6 further
shows the variable demand as a function of travel disutility for network 1. As the tolls on link 2 ? 3 and link 3 ? 6 increase,
travel disutility increases which in return lowers the travel demand.

For network 2, we present only the convergence results to demonstrate that the proposed algorithm is also applicable to
medium-sized networks. Fig. 6 shows the logarithm of e(x) at each iteration. It starts with a huge error (i.e.,
log(5333) = 3.727) at iteration 0, but quickly reduces in the next iteration and finds the zero point within five iterations.
Table 4
Computational performance with different stopping accuracies.

Error 0.1 0.01 0.001 0.0001 0.00001 0.000001

# of inner iterations 362 864 865 1065 1351 1538
# of function evaluations 385 958 959 1186 1522 1740

Table 5
Computational performance with different starting scaling factors.

Initial b 0.01 0.1 1.0 2.0 5.0 10.0 20.0

# of inner iterations 881 888 865 859 889 880 877
# of function evaluations 955 925 959 958 956 975 983

Table 6
Variable demand of BCN path cost model for network 1.

Tolls Travel disutility Travel demand

Link 2–3 Link 3–6

0.5 1.0 65.01 101.94
1.0 2.0 65.56 99.75
1.5 3.0 66.35 96.59
2.0 4.0 67.00 94.01
3.0 6.0 68.89 93.89
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We also show the trajectories of the travel disutility for a few randomly selected OD pairs in Fig. 7. Similar to the residual
error, the OD travel disutilities converge in five iterations.

7. Conclusions

In this paper, we have presented an algorithm for solving the bicriteria traffic equilibrium problem with variable demand
and nonlinear path costs. The algorithm generates nonlinear cost paths, as needed, using a bicriteria shortest path algorithm,
and equilibrates path flows via a projection and contract (PC) method. The main advantages of the PC method are simplicity
and ability to handle a general monotone mapping F. Differentiability of mapping F is not required. The computational effort
required per iteration is very modest. It consists of two function evaluations to construct the search direction and a simple
projection on the non-negative orthant. The scaling factor b is self-adaptive in the sense that it automatically adjusts to sat-
isfy the Lipschitz condition. Initial results indicate that the algorithm is capable of solving a class of traffic equilibrium prob-
lem with multi-dimensional nonlinear path costs.

Although the algorithm is capable of being extended to any number of criteria, more work needs to be performed on lar-
ger networks to demonstrate the efficiency of the algorithm, particularly relative to the shortest path routine with multiple
criteria. Since the number of non-dominated paths may grow exponentially with the number of criteria and/or network size,
an efficient approximation method should be developed to avoid generating the entire set of non-dominated paths. Work is
currently in progress to develop an approximation method using piecewise linearization and branch and bound techniques.
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