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Abstract: The reading of this article will allow the readers to appropriate the
data  analysis  approach which is  proposed.  The first  paragraph gives the  basic
tools: the triplet (X, Q, D), the operator related to a data matrix and the coefficient
RV. The two following paragraphs show how these tools are used for reading out
and solving the problems of joint analysis of several data matrices and of principal
component  analysis  with  respect  to  instrumental  variables.  The  conclusion  re-
minds of the construction of this approach along the past thirty five years.

1 The initial choices

1.1First choice: the triplet (X,Q,D)

When a researcher collects an nxp data array, X, of the values taken by n
individuals on p variables, he generally has two objectives:

1. The comparison of  the variables.  If  he  chooses  to  conduct  this
comparison by the way of a linear correlation coefficient, he will use
a positive diagonal matrix D which defines the weights attached to
each individual.

2. The comparison of the individuals. If he chooses for that to compute
a  distance  between the  individuals,  he will  need a  pxp symmetric
positive  definite  matrix  Q.  In  the  simplest  case,  Q  is  a  diagonal
positive pxp matrix defining the scale of the different variables. In the
general case, Q=LtL where L is a pxp matrix of rank p which can be
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viewed as a linear transformation of X such that Y=XL is substituted
to X.

From the preceding considerations it follows that when we speak of a data
analysis, we must considered the triplet (X, Q, D) to describe the data and
their use.

1.2 Second choice: the operator XQtXD

Let us consider now that we are mainly concerned by the dispersion of the
individuals showed by the transformed data array Y. A usual way to study
the dispersion is to realize a principal component analysis of Y. The map-
ping of the individuals in the space spanned by the principal components
will give a way for studying the likeness of the individuals. For simplicity,
we suppose that Y= (Inxn-1nDt1n) Y, which means that the columns of Y are
centred for the weights given by D. Because Y= XL, it is the same for X.
Let S= tYDY, the covariance matrix of Y and {(zα,λα), α= 1,p} the eigen-
vectors  and eigenvalues  of  S  such that  Szα=λαzα with  tzαzβ= δαβ..  Then,
{(ψα= Yzα/√λα), α= 1, p} are the principal components and tψαDψβ= δαβ.

Proposition 1.2.1: 

For the principal components we have: XQtXDψα= λαψα

Proof:   from  tYDYzα = λαzα it comes: YtYD(Yzα/√λα) = λα(Yzα/√λα) and
thus  XQtXDψα = λαψα

So, as long as our interest  for studying the dispersion of the individuals
lies in the principal components of (X,Q,D), all the needed information is
given by the eigenvectors and eigenvalues of the operator WD= XQtXD
which will be called the operator related to the study (X,Q,D).

Proposition 1.2.2

If φα= tL-1zα then:

1. tXDXQφα= λαφα
2. tφαQφβ= δαβ
3. ψα= XQφα/√λα
4. φα= tXDψα/√λα
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Proof: 
1. tYDYzα = λαzα <=> tLtXDXLzα = λαzα
                              <=> tXDXLtL(tL-1zα) = λα (tL-1zα)
2. tφαQφβ = tzαL-1(LtL)tL-1zβ = tzαzβ = δαβ
3. ψα = Yzα/ √λα = XL tLφα / √λα = XQφα / √λα
4. tXDψα = tXDXQφα / √λα = √λαφα 

Proposition 1.2.3

Let Ψ (respectively Φ) be the matrix with ψα as column α (respectively φα)
and Λ the diagonal matrix with  Λαα= λα. We will note Ψ[k] and Φ[k] the k
first  columns of Ψ and Φ and Λ[k] the kxk diagonal  matrix constructed
from the first k rows and columns of Λ. Then:

1. Ψ[k]Λ[k]tΨ[k] is the best approximation of XQtXD and 
            Tr[(XQtXD - Ψ[k]Λ[k]tΨ[k]D)2]= Σ i=k+1, I λi2

2. Φ[k]Λ[k]tΦ[k]Q is the best approximation of tXDXQ and
             Tr[tXDXQ - Φ[k]Λ[k]tΦ[k]Q)2]= Σi= k+1,I λi2

3. D½Ψ[k]Λ[k]tΦ[k]Q½ is the best approximation of D½XQ½ and
           Tr[D½Ψ[k]Λ[k]½tΦ[k]Q - D½XQ½)2]= Σ i=k+1, I λi

The proof is a part of more general results given in ( Sabatier et al. 1984).It
is easy to see that the usual practices of principal components analysis on
the covariance matrix and on the correlation matrix correspond respect-
ively to the choices Q= Ipxp and Q= [diag(tXDX)]-1

1.
Consider now a contingency table P= (Pij, i= 1,I; j= 1,J)  with the usual
notations for the margins (Pi.,i= 1,I) and (P.j, j= 1,J).With the Pi. (respect-
ively the P.j) we construct a diagonal matrix DI (respectively DJ). Let X=
DI

-1(P – DI1It1JDJ) DJ
-1. It is easy to see that XDJ1J = 0 and t1IDIX = 0.

The well-known correspondence analysis  method can be viewed as the
principal components analysis of the triplet (X, DJ, DI).
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1.3 Third choice: the RV coefficient

Consider now two studies E1= (X1, Q1, D) and E2= (X2, Q2, D) for the same
individuals and the same D matrix. This is the usual situation when you
want to study the links between two sets of variables.
The respective principal component analyses of E1 and E2 lead to two con-
figurations of the individuals  constructed with the two sets of principal
components of W1D and W2D. It is natural to look for a comparison of
these two operators.
Let S (D) be the set of the D – symmetric nxn matrices, i.e the set of matri-
ces nxn A such that DA = tAD. S (D) contains all the operators WD.
The  symmetrical  bilinear  form Tr(AB)  is  positive  on  S  (D).  Hence,  it
defines a scalar product on S (D).By similarity with the usual statistical
vocabulary, we define:

1. COVV(W1D, W2D) = Tr(W1DW2D)

2. VAV(W1D) = Tr[(W1D)2]

3. RV(W1D,W2D) = TR(W1DW2D)/[Tr[(W1D)2]Tr[(W2D)2]]½

The followings results help fort  he understanding of the significance of
RV. Their proofs are given in (Escoufier 1986)

1. For any (X1, Q1, D ) and (X2, Q2, D ): 0≤ RV(W1D,W2D)≤ 1
2. RV (W1D, W2D) = 1 if and only if W1 = kW2 for some non zero scalar
k.

3. If Q1 and Q2 are positive definite, RV (W1D, W2D) = 0 if and only if
tX1DX2 = 0.

4. Let X1 and X2 be single variables and Q1 = Q2 = 1.Then:
      COVV (W1D, W2D) = [cov(X1, X2)] 2

       RV (W1D, W2D) = r2(X1, X2)
5. Let  X1 be a  single  variable  and Q1 =  1.  Let  p2 be  the  number  of
variables in X2. We choose Q2 = (tX2DX2)-1. Then:

       RV (W1D, W2D) = R2
X1/X2/√p2

       where  RX1/X2 is the multiple correlation coefficient between X1 and
the variables in X2.
6. Let E1 = ( X1, (tX1DX1)-1, D) and E2 = (X2,(tX2DX2)-1, D) then:
        RV (W1, W2) = Σi=1,p2 ρi2/√p1p2 
        where  ρi is the canonical correlation coefficient of rank I between
X1 and X2.
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7. Let X1 be a single variable and Q1 = 1. We suppose that X2 is the nxp2
array of the indicators variables for a qualitative variable x2 with p2
modalities. If the individual i takes the modality j, X2i

j = 1 and X2i
k = 0

for k≠j. We choose Q2 = (tX2DX2) -1 = D2
-1 the inverse of the diagonal

matrix of the weights of the modalities. Then:
         RV (W1D, W2D) = η X1/X2 2/√p2
          where η X1/X22 is the rate of correlation between the quantitative
variable X1 and the qualitative variable x2.
8. X1(respectively  X2)  is  the  array  nxp1 (respectively  nxp2)  of  the
indicator variables of the qualitative variable x1(respectively x2). We
choose Q1 = D1

-1 and Q2 = D2
-1. Then:

RV (W1D, W2D) = (χ2/n+1)/√P1P2
9. If moreover, the columns of X1 and X2 are centred for D, we have:
RV (W1D, W2D) = χ2/ (n√ ((p1-1) (p2-1)) = T2

where T2 is the Tchupprov coefficient.

1.4 Bibliographical hints

The two concepts of operator related to a data matrix and RV coefficient
have been first introduced in (Escoufier 1970) and (Escoufier 1973).The
distribution of the RV coefficient has been studied in (Cléroux and Duch-
arme 1989). The study has been enlarged to rank data in (Cléroux et al.
1994).Going from matrices language to linear applications language allows
to introduce the duality diagram for which the triplet (X, Q, D) can be seen
as a summary. We do not follow this point of view here. Interested readers
will find detailed presentation of this approach either in the book written
by its pioneers (Caillez and Pagès 1976) either in (Escoufier 1987). A very
complete recent  R package and courses are available at  http://pbil.univ-
lyon1.fr/R/enseignement.html with comments in French and in English; a
large collection of sets of data is proposed .See also (Chessel et al. 2004).



6      Yves Escoufier

2 .Joint analysis of several data matrices (the STATIS
method)

Let us consider a set of data analyses {(Xi, Qi, D); i= 1,I }on the same indi-
viduals provided with the same weights and the family of related operators
{WiD,  i=1,I}.  Our  aim  is  to  study  the  proximities  and  the  differences
between these I analyses.

2.1 Global comparison of the data analyses (Intrastucture)

Let C be the IxI matrix with elements Cij=COVV (WiD, WjD). Let r be the
rank of C (r ≤ I). We note Γ the Ixr matrix of the eigenvectors of C and Θ
the rxr diagonal matrix of the eigenvalues. By the spectral decomposition
theorem, we have: C = ΓΘtΓ with tΓΓ= Irxr.
So there exists a configuration of points (Pi;i=1,I)) in Rr such that each data
analysis is represented by a point. The coordinates of Pi are the elements of
the ith row of  ΓΘ½. In this configuration the distance between Pi and Pj  is
d(Pi,Pj) = (Cii + Cjj – 2Cij)½. Of course practical thought leads to limit the
representation to two or three eigenvectors of C associated with the largest
eigenvalues. The quality of the approximation is appreciated by the usual
tools: rate between the extracted eigenvalues and Tr( C ) for example.
If the norms of the operators are very different, it could be better to con-
duct the same analysis with the matrix R with elements RV (Wid,WjD). In
this case the distance between Pi and Pj is (2(1 – RV (Wid,WjD))½.

2.2 Looking for a summary (the compromise)

We have seen that the quantities COVV are always non negative. So, the
matrix C has a first eigenvector,  γ1, the elements of which can be chosen
non negative. Let (γ1i, i=1, I) these elements.

Proposition 2.2.1

For all (βi, i=1,I) such that βi≥0 and Σi=1,Iβi2 = Σi=1,Iγ1i2 = 1, we have:
1. VAV(Σi=1,IβiWiD) ≤ VAV(Σi=1,Iγ1iWiD) = θ1
2. Σi=1,I [COVV (Σj=1,IβjWjD, WiD)]2 
≤ Σi=1,I[COVV(Σj=1,Iγ1jWjD,WiD)]2 = θ12
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The proof comes from the two following equalities:
1. VAV(Σi=1,IβiWiD) = Tr [(Σi=1,IβiWiD)2] = tβCβ
2. Σi=1,I[COVV(Σj=1,IβjWjD,WiD)]2 = tβC2β

These results look like the results obtained in principal component analysis
for the first component. As a matter of fact, they are analogous. In princip-
al component analysis, the objects are the variables and the inner product
is the usual covariance. Here, the objects are the operators related to the
statistical studies and the inner product is COVV.
2.

WD =Σi=1,I  γ1iWiD which has the largest norm and which maximizes the
sum of squares of the inner products with the initial operators is named the
compromise of the I studies. As a non negative linear combination of semi
definite positive operators, WD is semi definite positive. So let ν the num-
ber of non zero eigenvalues of WD and let Ψ the nxν matrix of its eigen-
vectors such that tΨDΨ = Iνxν and Λ the νxν diagonal matrix of its eigenval-
ues. The ΨΛ½ coordinates give a representation of n points. One point rep-
resents one initial individual. The proximity of two points is interpreted as
an average likeness of the associated individuals.

2.3 Comparison of the initial studies with the compromise
(Interstructure)

2.3.1 Representation of the individuals

Let λα½Ψα =WDΨα/√λα the coordinates of the individuals on the axis α in
the representation associated to the compromise.

We define λα½Ψk
α =WkDΨα/√λα.

If WkD = WD then Ψk
α = Ψα and the representation of the individuals given

by WkD is exactly similar to the representation obtained from the com-
promise WD .When WkD goes away from WD, the similarity of the rep-
resentations decreases.

Moreover, WD = Σk=1,I γ1kWkD and thus λα½Ψα = Σk=1,Iγ1kλα½Ψα

The coordinate of one individual given by the compromise is the bary-
centre of the coordinates of this individual given by the different studies on
the same axis. When the index of the initial studies is the time, it is usual
to speak of the trajectories of the individuals in the representation obtained
by the compromise.



8      Yves Escoufier

2.3.2 Representation of the variables

All the variables of the initial studies and all the linear combinations of
these variables (for instance the principal components of the initial vari-
ables) can be represented as supplementary variables in the compromise.
As in principal component analysis, the proximity between one variable’s
projection and one axis is used form the interpretation of the axis. The co-
ordinate of a variable Xj on the axis  α is given by the covariance cαj =
tXjDΨα between Xj and Ψα.

From a practical point of view we must keep in mind that at this step the
number of points in the representations is very large: nx(I+1) for the indi-
viduals only .So there is a hard work at the border of mathematic and com-
puter to construct efficient tools.

2.4 Bibliographical hints

The first publication on this topic is (Escoufier 1977). The two following
papers consider the situation of a set of similarity or covariance matrices
(Escoufier  and L’Hermier  1978),  (Escoufier  1980).  A very detailed ap-
proach of the practical problems can be found in (Lavit et al. 1994); in an
application , we must choose between the COVV approach and the RV ap-
proach; but choices are also necessary for the representations: they could
be centred or not. All the situations are explained carefully .The book writ-
ten by (Lavit 1988) gives many examples and suggest some software. An
application in the field of sensometrics is the subject of the paper by (Sch-
lich 1996). STATIS has been developed for a family of data array. This
means that in STATIS we have three indices: one for each array, one for
the individuals and one for the variables. So, we can use the term of three –
way multiblock for the data. (Vivien and Sabatier 2003) and (Sabatier and
Vivien 2OO4) explore extension of STATIS for the joint analysis of two
three – way multiblocks or for a four – way multiblock.
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3 Principal component analysis with respect to
instrumental variables

3.1 The problem and its linear solution

We are concerned now with situations in which we have two sets of data
observed on the  same individuals  provided with the same weights.  We
suppose that the two sets do not play the same role. One of them is a refer-
ence, a target. The objective is to know if the variables of the second set
can reconstruct the principal component analysis of the target set. We will
note  (Y,  Q,  D) the  target  study where  Y is  nxp .The pxp Q matrix  is
known. Let WyD = YQtYD the operator related to this study. From the
second set, we only know the data array X, nxq, and we use the same diag-
onal matrix of the weights D. We consider the following problem:

Find M a qxq semi definite symmetric matrix such that 
Tr[(YQtYD – XMtXD)2] is minimum.

Proposition 3.1.1  

Let R = (tXDX)-1tXDYQtYDX(tXDX)-1 then :

3. Tr[(YQtYD – XMtXD)2] = 
Tr[(YQtYD – XRtXD)2] + Tr[(YRtYD – XMtXD)2]

The proof is given in (Bonifas et al. 1984).The result shows that the dis-
crepancy between YQtYD and XMtXD is the sum of two terms. The first
one does not depend on M .It assesses the part of the representation of the
individuals given by (Y, Q, D) which will never be reconstructed from a
study based on X. The second term depends of the selected M. It shows
obviously that the best choice for M is R.

Let PX = X (tXDX)-1tXD the D-orthogonal projector on the subspace of Rn

spanned by the columns of X .We have:

XRtXD = PXYQt(PXY)D

Thus, the operators related to the studies (X, R, D) and (PXY, Q, D) are
identical .They give the same representation of the individuals. This means
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that the best reconstruction of the representation of the individuals given
by (Y, Q, D) is obtained when applying the same Q matrix to the projec-
tions of the variables Y on the subspace of Rn  spanned by the variables in
X.

3.2 Quality of the linear solution

From the properties of the projectors and of the trace, we obtain:

Proposition 3.2.1

1. Tr(tYDYQ) =
 Tr(t(PXY)D(PXY)Q)+Tr(t((Inxn-PX)Y)D((Inxn-PX)Y)Q)

2. Tr(YQtYD) =
Tr((PXY)Qt(PXY)D) + Tr(((Inxn – PX)Y)Qt((Inxn – PX)Y)D)

The proposition shows that the total inertia of the study (Y, Q, D) can be
cut in two parts, one given by the projections of the variables Y on the sub-
space of Rn spanned by the variables X and one part given by the projec-
tions in the orthogonal sub-space.
The second result of the proposition says that the decomposition is true for
each diagonal element of YQtYD which is the norm of this element multi-
plied by its weight. This quantity is the inertia of the individual with re-
spect to the origin.
The first result shows that, when Q is diagonal, an analogous decomposi-
tion is available for the variances and this is well-known.

The ratio Tr(t(PXY)D(PXY)Q) / Tr(tYDYQ) can be used for appreciating
the quality of the reconstruction. When Q = Ipxp, this ratio is the coeffi-
cient of Stewart and Loeve. It can be used as a basis for a permutation test
of  significance  for  the  reconstruction.  The following proposition  shows
that RV (YQtYD, (PXY) Qt (PXY) D) can be also used for such an appreci-
ation.

Proposition 3.2.2

TR((YQtYD – (PXY)Qt(PXY)D)2) = 
Tr((YQtYD)2) x (1 – (RV(YQtYD, (PXY)Qt(PXY))2)
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Let Z a third data array observed on the same individuals provided with the
same weights .We can do for PZ and(Inxn – PX)Y what we did for PX and Y.
We will obtain a decomposition of the inertia contained in the subspace or-
thogonal to the space spanned by the variables in X. It is clear that all the
results traditionally used in variance analysis for the decomposition of the
variance with respect to factors, orthogonal or not, can be called here for
the decomposition of the inertia of (Y, Q, D).

3.3 Non linear solution

We consider a finite set of functions (bk;k=1,l) and F the set of the linear
combinations  of  these  functions.  Let  Bj the  matrix  nxl  in  which  Bi

jk =
bk(Xi

j) where Xi
j is the value taken by the individual i for the variable j. Let

tj a vector with l elements. We consider the non linear transformation of Xj

defined by: f (Xj) = Σk=1,l tjkBjk = Bjtj.

Let  Β the nx(qxl) matrix obtained by the juxtaposition of the matrices Bj

and  Τ, the (qxl)xq matrix constructed  with the (tj; j=1,q) in such a way
that the column j of ΒΤ is Bjtj.

We can look for the solution of the following problem: Find Τ and R such
that Tr((YQtYD – ΒΤRtΤtΒD)2) is minimum.

For a given Τ, we obtain from the preceding paragraphs an explicit solu-
tion for R. When R is known, Τ can be computed through a numerical al-
gorithm. The solution will be obtained by an iterative algorithm based on
these two steps.

3.4 Bibliographical hints

The method of principal components with respect to instrumental variables
is a part of the basic paper by (Rao 1965).It has been presented through the
use of the RV coefficient in (Robert and Escoufier 1976). Canonical ana-
lysis and discriminant analysis are also presented in that paper through a
problem of RV optimisation. Here we have followed the presentation pub-
lished  in  (Bonnifas  et  al.  1984).For  the  paragraph  3.2,  we recommend
(Fraile et al. 1993) which gives the details of an application in the corres-
pondence analysis context and also the paper by (Kazi – Aoual et al. 1995)
which gives the explicit first three moments for the distribution of the per-
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mutation test.  The non linear approach is mainly based on the work of
(Durand 1992, 1993). (Imam et al. 1998; Schlich and Guichard 1989) are
applications. In the beginning of the research on RV, the choice of vari-
ables in principal components analysis was a cause of concern. This topic
has been presented as a contributed paper  in Compstat  1974 in Vienna
(Escoufier et al. 1974).See also (Escoufier and Robert 1979).
We have considered before the operator (Inxn-PXY) Q t(Inxn – PXY)D related
to the study ((Inxn – PX)Y, Q, D).In such a study, all the information ortho-
gonal to the X variables has been deleted. Consider Z a qxr matrix and PZ
=Z (tZQZ)-1ZQ. The array (Inxn – PX) Y t(Iqxq – PZ) has its columns  D – or-
thogonal to X and its rows Q – orthogonal to Z. Some authors use these
results in correspondence analysis to avoid linear, quadratic or cubic com-
ponents. They introduce suitable constraints matrices X and Z (Beth 1997),
(D’Ambra et al. 2002).

4 Conclusions

It could be useful in this survey to remind of the construction of the results
along the years. 
1. First Steps: The initial work (Escoufier 1970) was concerned by the
sampling  of  variables  in  a  family  of  variables.  The  aim  was  to
quantify the discrepancy between the principal component analysis of
the  family  and  the  principal  component  analysis  of  the  sample  of
variables.   The  not  yet  called  RV  coefficient  was  proposed.  The
immediate consequence was an interest for the choice of variables in
principal  component  analysis (Escoufier  et  al.  1974).   The applied
orientation of these works must be underlined.

2. Then two theoretical orientations appeared. The first was the use of
the  RV coefficient  as  a  unifying  tool  for  the  presentation  of  the
different  methods  of  multivariate  analysis  (Robert  and  Escoufier
1976).They  were  presented  as  solutions  of  optimization  problems
under  various  constraints.  The  second  orientation  sprang  to  mind
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from collaboration with JP. Pagés and F. Caillez. It appeared that the
operator related to a data matrix found a natural place in the duality
diagram which was at the centre of their own work on data analysis.
All  the  works  made  after  for  presenting  the  different  multivariate
analysis  methods  through a  particular  triplet  (X,  Q,  D)  have their
beginning in this convergence.

3. STATIS came from on other  convergence.  Two topics  were  often
discussed in the statistical publications: multidimensional scaling and
joint analysis of several data matrices. The operators related to data
matrices and their scalar product COVV gave a very straightforward
solution for the global comparison of the studies. The property of the
solution (the compromise is also an operator) has been exploited for
the definition of the two other steps of the method.

4. In France, the use of supplementary individuals and supplementary
variables  was  frequent  in  principal  component  analysis  and
correspondence  analysis.  This  practice  which  uses  at  the  end of  a
study information known at its beginning is rather questionable from
a logical point of view even if it is useful. The principal component
analysis with respect to instrumental variables method allows taking
in account the instrumental variables from the beginning of the study
and moreover gives a quantification of their effects. This is the reason
of its development. 

The reader will recognize three types of references in this article. The old-
est, often in French, are given for an historical reason. They had opened a
line. The second, in English, can be found more easily. They have been
chosen for the interested readers who will want to go further in this ap-
proach  of  data  analysis.  The third,  the  most  recent,  concern  colleagues
younger than me, who have been actors of this story and who are always
very active. When I name then, I know that I commit two injustices: One
towards them because their works do not find in my article a sufficient
place and one towards other researchers who made important contributions
to the topic. I hope that they will forgive me.

Acknowledgements: I  wish  to  thank  the  scientific  committee  of  Compstat
2006 and its president, Professor Alfredo Rizzi, who invited me for this contribu-
tion. They have given to me the opportunity to go back over what has been written
about operator related to a data matrix. This exercise has been a pleasure for me.
Several colleagues help me for finding appropriate references: I thank them very
much.
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