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Synthesis of phase-only reconfigurable array aims at finding a common amplitude distribution and different phase distributions for
the array to form different patterns. In this paper, the synthesis problem is formulated as amultiobjective optimization problem and
solved by a new proposed algorithmMOEA/D-IWO. First, novel strategies are introduced in invasive weed optimization (IWO) to
make original IWO fit for solving multiobjective optimization problems; then, the modified IWO is integrated into the framework
of the recently well proved competitivemultiobjective optimization algorithmMOEA/D to form a new competitiveMOEA/D-IWO
algorithm. At last, two sets of experiments are carried out to illustrate the effectiveness of MOEA/D-IWO. In addition, MOEA/D-
IWO is compared with MOEA/D-DE, a new version of MOEA/D. The comparing results show the superiority of MOEA/D-IWO
and indicate its potential for solving the antenna array synthesis problems.

1. Introduction

In actual applications such as satellite communications and
radar navigations, single antenna array is generally required
to have the capability of producing a number of radiation
patterns with different shapes, so as to save space and reduce
cost. In practice, changing excitation phases is much easier
than changing excitation amplitudes in the feeding network.
Keeping this in mind, the phase-only reconfigurable array is
designed to radiate multiple radiation patterns using a single
power divider network and different phase shifters.Thanks to
its advantages, phase-only reconfigurable array attracts much
more attentions in recent years [1–10].

During the past decades, a number of design methods
for synthesizing phase-only reconfigurable arrays have been
proposed [1–10]. These methods can be divided into two
categories. One is local search algorithms, like “alternating
projections” method [1–3], which are efficient and simple,
but sensitive to initial values. The other is the evolutionary

algorithms, such as genetic algorithm (GA) [4–6], particle
swarm optimization (PSO) [6–8], and differential evolution
(DE) [9, 10], which have global searching ability. It has been
shown that the evolutionary algorithms are more effective
and flexible for synthesizing phase-only reconfigurable arrays
[4–10]. With the rapid development of high-speed computer
technology, more researchers prefer to adopt evolutionary
algorithms for designing the pattern reconfigurable arrays.

For pattern reconfigurable arrays, multiple patterns
should meet their design indexes simultaneously, and the
phase-only synthesis problem can be expressed as a typical
multiobjective optimization problem with two or more con-
flicting objectives.

In most existing literatures, multiple objectives are usu-
ally summed into a single objective function with differ-
ent weights, and the multiobjective optimization problem
is converted into a single-objective optimization problem.
Although the optimization problem is solved easily by using
this approach, someproblems arise inevitably.Theweights for
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different objectives depend on experience or lots of experi-
ments; thus, decision-makersmust have enough prior knowl-
edge of the problem. Only when the weights are set properly
can the desired patterns be achieved. In order to achieve
more optimal solutions, more experiments need to be done.
This would be a very complex and time-consuming process.
Hence, in this paper, design of phase-only reconfigurable
arrays will be formulated as a multiobjective optimization
problem (MOP).

In 2007, Zhang and Li [11] proposed a novel method for
MOPs, calledmultiobjective evolutionary algorithmbased on
decomposition (MOEA/D), which makes use of the decom-
position methods in mathematics and the optimization
paradigm in evolutionary computation. Later, a version of
MOEA/D employing the differential evolution (DE) operator
named MOEA/D-DE [12–14] was proposed and shown to
perform well on the MOPs with complicated Pareto set
shapes. Theoretically, any evolutionary operator can be used
in MOEA/D for actual problems.

Invasive weed optimization (IWO) is a numerical sto-
chastic optimization algorithm inspired from weed colo-
nization, which was proposed by Mehrabian and Lucas in
2006 [15]. The algorithm imitates seed spatial diffusion,
growth, reproduction, and competitive exclusion process of
invasive weed. With strong robustness and adaptability, IWO
converges to the optimal solution effectively. It has been
proved that IWO can be used to successfully solve many
single-objective optimization problems [16–20] and some
MOPs [21].

In order to solve the design problem of phase-only
reconfigurable arrays effectively, a new version of MOEA/D
called MOEA/D-IWO is proposed. First, in order to improve
the performance of IWO in MOEA/D-IWO, we present
an adaptive standard deviation, which changes not only
with the increase of evolution generations, but also with
the cost function value of each individual. This strategy
improves the convergence rate and helps the seeds escape
from local optimum. Then, the modified IWO with an
adaptive standard deviation is integrated into the framework
of MOEA/D for solving multiobjective problems. Then,
MOEA/D-IWO is formed. Taking advantage of the powerful
searching ability of invasive weeds, the overall performance
of the proposed MOEA/D-IWO is shown in solving the
synthesis problems. The problems are also solved by the
existing MOEA/D-DE. The superiority of MOEA/D-IWO
over MOEA/D-DE in solving array synthesis problems is
demonstrated.

The remainder of this paper is organized as follows.
Section 2 describes the definitions of multiobjective opti-
mization problems. Section 3 introduces implementation
steps of MOEA/D-IWO. In Section 4, basic principle of
pattern reconfigurable arrays is presented. In Section 5,
MOEA/D-IWO is used to design the phase-only reconfig-
urable linear array. Experimental results and discussion are
given in Section 6. Finally, Section 7 concludes this paper.

2. Multiobjective Problems

Assuming minimizing 𝑀 objectives simultaneously, a mul-
tiobjective optimization problem (MOP) can be stated as
follows:

Minimize 󳨀⇀
𝐹 (

󳨀⇀
𝑥) = (𝑓

1
(
󳨀⇀
𝑥) , 𝑓
2
(
󳨀⇀
𝑥) , . . . , 𝑓

𝑀
(
󳨀⇀
𝑥))
𝑇

subject to 󳨀⇀
𝑥 ∈ Ω,

(1)

where Ω is the decision space, 󳨀⇀𝑥 = (𝑥
1
, . . . , 𝑥

𝑁
)
𝑇 is the

decision vector, 𝐹 : Ω → 𝑅
𝑀 consists of 𝑀 real-valued

objective functions, and 𝑅
𝑀 is called the objective space. The

attainable objective set is defined as the set {𝐹(𝑥) | 𝑥 ∈ Ω}.
Being different from single-objective optimization, one best
solution (global minimum) with respect to all objectives may
not exist inMOPs. All the objectives in (1) are treatedwith the
same importance and generally no point in Ω can minimize
all the objectives simultaneously. The aim of MOPs is to find
a set of points which cannot be improved in one objective
without impairing at least one other objective. These points
are called the Pareto solution.

Definition 1 (Pareto dominance). Let 󳨀⇀
𝑢 = (𝑢

1
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𝑀
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𝑇
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1
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𝑀
)
𝑇

∈ 𝑅
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dominate V, denoted by 𝑢 ≺ V, if
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𝑖
≤ V
𝑖
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𝑗
< V
𝑗
.

(2)

Note that if Pareto dominance does not hold between two
vectors, then they are considered nondominated with each
other.

Definition 2 (Pareto optimality). 󳨀⇀
𝑥
𝑢
∈ Ω is said to be Pareto

optimal, if and only if

∄
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Definition 3 (Pareto optimal set). The Pareto optimal set,
denoted by PS, is defined as

PS := {
󳨀⇀
𝑥
𝑢
∈ Ω | �∃
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𝑥 V ∈ Ω :
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𝐹 (
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𝐹 (
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𝑥
𝑢
)} . (4)

Definition 4 (Pareto front). For a given MOP 󳨀⇀
𝐹(

󳨀⇀
𝑥) and its

Pareto optimal set PS, the Pareto front is defined as

PF := {
󳨀⇀
𝑢 =

󳨀⇀
𝐹 (

󳨀⇀
𝑥
𝑢
) |

󳨀⇀
𝑥
𝑢
∈ PS} . (5)

Instead of searching for a single or just a few optimal
solutions as in solving single-objective problems, the goal of
handling multiobjective problem is to find the Pareto front as
well as the Pareto set of the problem.

3. The Main Procedures of MOEA/D-IWO

One of the key issues of MOEA/D is that a decomposition
method is used to transform an MOP into a number of
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single-objective optimization subproblems, and MOEA/D
optimizes these subproblems collectively and simultaneously.
The objective function of each single-objective subproblem
is an aggregation of all the objective functions in MOP.
At each generation, the population is composed of the
best solutions found so far for each subproblem, which is
optimized by using information only from its neighboring
subproblems. Neighborhood relations among these single-
objective subproblems are defined based on the Euclidian
distances between their weight vectors. MOEA/D exploits
information sharing among subproblems which are neigh-
bors to accomplish the optimization task effectively and
efficiently. MOEA/D-IWOmaintains the basic framework of
MOEA/D [11], and the IWO algorithm is used for producing
new solutions. When MOEA/D-IWO is used to optimize
MOP, the following issues need to be considered.

3.1. Produce theWeightVectors. As in [11], we use the simplex-
lattice design method [22] to produce the weight vectors,
in which each individual weight takes value from {0/𝐻,

1/𝐻, . . . , 𝐻/𝐻}, where𝐻 is an integer.

3.2. Decompose an MOP into a Number of Single-
Objective Subproblems. In theory, weighted sum, Tcheby-
cheff approach, boundary intersection, and any other
decomposition approach can be used to convert anMOP into
a number of single-objective subproblems [11]. Tchebycheff
approach is mainly employed in our experimental study.
Let 𝜆1, 𝜆2, . . . , 𝜆𝑃 be a set of even spread 𝑃 weight vectors,
where 𝜆

𝑖
= (𝜆
𝑖

1
, 𝜆
𝑖

2
, . . . , 𝜆

𝑖

𝑀
)
𝑇 is the weight vector for the 𝑖th

subproblem, 𝜆𝑖
𝑗
≥ 0, 𝑗 = 1, 2, . . . ,𝑀, and ∑

𝑀

𝑗=1
𝜆
𝑖

𝑗
= 1, 𝑀 is

the number of objectives in (1), 𝑖 = 1, 2, . . . , 𝑃. 𝑧∗ represents
the reference point. The 𝑖th single-objective optimization
subproblem obtained by decomposing the given MOP can
be represented as [23]

Minimize 𝑔
𝑡𝑒
(𝑥 | 𝜆

𝑖
, 𝑧
∗
) = max
1≤𝑗≤𝑀
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𝑗

󵄨󵄨󵄨󵄨󵄨
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∗

𝑗

󵄨󵄨󵄨󵄨󵄨
}

subject to 𝑥 ∈ Ω.

(6)

The Tchebycheff approach searches solutions through min-
imizing 𝑔

𝑡𝑒 toward 𝑧
∗, which has an advantage that both

convex and concave Pareto front can be approximated
[24]. All these 𝑃 single-objective functions are optimized
simultaneously in each run. If we use a large 𝑃 and select
the weight vectors properly, all the optimal solutions of
the single-objective problems from decomposition will well
approximate the Pareto front. The optimization process is
accomplished by the collaboration of the neighbors for each
subproblem.

3.3. Confirm the Neighbors of Each Single-Objective Sub-
problem. In MOEA/D, each subproblem is optimized by
using informationmainly from its neighboring subproblems.
The neighborhood relations among these subproblems are
defined based on the distances between their weight vectors.
Compute the Euclidean distances between any two weight
vectors and thenwork out the𝑇 closest weight vectors to each

weight vector. For the 𝑖th subproblem, its neighbor is set to
𝐵(𝑖) = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑇
}, 𝑖 = 1, 2, . . . , 𝑃, where 𝜆𝑖1 , 𝜆𝑖2 , . . . , 𝜆𝑖𝑇 are

𝑇 weight vectors close to 𝜆
𝑖. Single-objective subproblems,

which are considered neighbors, will have similar fitness
landscapes and their optimal solutions should be close in
the decision space. MOEA/D exploits information sharing
among subproblems, which are neighbors, to accomplish the
optimization task effectively and efficiently.

3.4. The Selection of Evolution Strategy. The IWO operator
is integrated into MOEAD-IWO to produce new solutions.
In IWO, new solutions (seeds) produced are randomly dis-
tributed in𝐷-dimensional space around their parents (weed)
in normal distribution 𝑁(0, 𝜎

2

iter); the change rule for 𝜎iter is
expressed as

𝜎iter = 𝜎final + (
itermax − iter

itermax
)

pow
(𝜎initial − 𝜎final) , (7)

where 𝜎initial and 𝜎final are initial and final standard deviations
and pow is the nonlinear regulatory factor. It can be seen
from (7) that 𝜎iter decreases with the increase of evolution
generations, while the 𝜎iter value of each subproblem in
one generation is the same. This is not conducive to the
algorithm convergence. Thus, we modify IWO and present
an adaptive standard deviation, in which the value of 𝜎iter
in one generation changes not only with the cost function
value of each subproblem but also with the maximum and
minimum cost function values in the generation, as shown in
the following equation:

𝜎iter,𝑖 =

{{{{

{{{{

{

(1 + 𝛾
FV
𝑖
− FV
𝑎

FVmax − FV
𝑎

)𝜎iter, FV
𝑖
≥ FV
𝑎
,

(1 − 𝛾
FV
𝑎
− FV
𝑖

FV
𝑎
− FVmin

)𝜎iter, FV
𝑖
< FV
𝑎
,

(8)

where FV
𝑖
is the cost function value of the 𝑖th subproblem,

FVmax, FVmin, andFV𝑎 denote themaximum,minimum, and
average cost function values among all these subproblems,
respectively, and 𝛾 is the zoom factor controlling the variation
range of the standard deviation, which takes value from 0 to
1. In this paper, we take 𝛾 = 0.5.

It can be seen that, for the minimization problem, the
subproblems with lower cost function values have smaller
standard deviation in one generation, which enables the
seeds distributed around the better subproblems. Moreover,
the range of the adaptive standard deviation 𝜎iter,𝑖 is [1 −

𝛾, 1 + 𝛾]𝜎iter, which makes the standard deviation of one
subproblem in the younger generation likely to be larger than
that in the older generation. This will help the new produced
seeds escape from local optimum, improve the convergence
rate, and balance the global and local search capabilities
effectively at the same time.

In the present generation, the number of seeds produced
by the 𝑖th subproblem is calculated by

𝑠num = floor(
FVmax − FV

𝑖

FVmax − FVmin
(𝑠max − 𝑠min) + 𝑠min) , (9)
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where 𝑠max and 𝑠min are the largest and smallest numbers
of seeds produced, respectively, and floor() represents the
round-down function. It is clear that better population
members produce more seeds.

Suppose 𝑥
𝑖
= (𝑥
𝑖

1
, 𝑥
𝑖

2
, . . . , 𝑥

𝑖

𝑁
)
𝑇, 𝑖 = 1, 2, . . . , 𝑃, is the

present optimal solution for the 𝑖th subproblem, and each
new solution produced by 𝑥

𝑖 is 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
)
𝑇, in

which each element 𝑦
𝑘
is generated as follows:

𝑦
𝑘
= 𝑥
𝑖

𝑘
+ 𝑁(0, 𝜎

2

iter,𝑖) , 𝑘 = 1, 2, . . . , 𝑁. (10)

Then 𝑠num new solutions are used to update the 𝑖th subprob-
lem and its neighborhoods.

3.5. Metrics for Comparing Nondominated Sets. Several met-
rics have been proposed to compare the performance of
different multiobjective evolutionary algorithms quantita-
tively, such as generational distances (GD) [25], inverted
generational distance (IGD) [26], and spread [27]. When
using the above three metrics, we need to know the true
Pareto front of the optimization problem first. However, in
actual engineering problem, we cannot obtain the true Pareto
front [28]. Then, in this section, three metrics are adopted
to make a quantitative assessment of the performance of
MOEA/D-DE and MOEA/D-IWO.

Before giving the performance metrics, we first present
normalization of vectors in objective space. Assume we have
𝑝nondominated sets,𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑝
. First we set𝑍 = {𝑍

𝑖
, 𝑖 =

1, 2, . . . , 𝑝}.Then, we define 𝑓min
𝑖

= min{𝑓
𝑖
(𝑥), 𝐹(𝑥) = 𝑧 ∈ 𝑍}

and 𝑓
max
𝑖

= max{𝑓
𝑖
(𝑥), 𝐹(𝑥) = 𝑧 ∈ 𝑍}, which correspond to

the minimum and maximum values for the 𝑖th coordinate of
the objective space. Then, for all coordinates, 𝑖 = 1, 2, . . . , 𝑛,
we calculate all points according to

𝑓
𝑖
(𝑥) =

𝑓
𝑖
(𝑥) − 𝑓

min
𝑖

𝑓
max
𝑖

− 𝑓
min
𝑖

. (11)

The normalized vector of a vector 𝑧 is denoted by 𝑧; the set of
normalized vectors is shown as 𝑍.

3.5.1. 𝐷-Metric for Accuracy [29]. Suppose we have two
normalized nondominated sets 𝑍

1
and 𝑍

2
; ∀𝑎 ∈ 𝑍

1
, we

search for ∃𝑏 ∈ 𝑍
21

⊆ 𝑍
2
such that 𝑏 < 𝑎. Then we calculate

Euclidean distances from 𝑎 to all points 𝑏 ∈ 𝑍
21
. So the 𝐷-

metric is defined as

𝐷(𝑍
1
, 𝑍
2
) = ∑

𝑎∈𝑍
1

󵄩󵄩󵄩󵄩󵄩
𝑎 − 𝑏

󵄩󵄩󵄩󵄩󵄩max

√𝑛
󵄨󵄨󵄨󵄨󵄨
𝑍
1

󵄨󵄨󵄨󵄨󵄨

, (12)

where ‖𝑎 − 𝑏‖max = max{‖𝑎 − 𝑏‖, 𝑎 ∈ 𝑍
1
, 𝑏 ∈ 𝑍

21
} and 𝑛 is

the dimension of the objective space. The 𝐷-metric returns
a value among 0 and 1, where the smaller, the better. The
maximum distance from a dominating point is taken as a
basis for accuracy.

3.5.2. Δ-Metric for Uniformity [29]. For a given normalized
nondominated set𝑍, we define𝑑

𝑖
to be the Euclidean distance

between two consecutive vectors, 𝑖 = 1, 2, . . . , (|𝑍| − 1). Let
𝑑 = ∑

|𝑍|−1

𝑖=1
𝑑
𝑖
/(|𝑍| − 1).Then we define

Δ (𝑍) =

|𝑍|−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
− 𝑑

󵄨󵄨󵄨󵄨󵄨

√𝑛 (
󵄨󵄨󵄨󵄨󵄨
𝑍
󵄨󵄨󵄨󵄨󵄨
− 1)

. (13)

Note that 0 ≤ Δ(𝑍) ≤ 1 where 0 is the best.

3.5.3. ∇-Metric for Extent [29]. Given a nondominated set 𝑍,
we define

∇ (𝑍) =

𝑛

∏

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑓
max
𝑖

− 𝑓
min
𝑖

󵄨󵄨󵄨󵄨󵄨
, (14)

where 𝑛 is the dimension of the objective space. A bigger value
spans a larger portion of the hypervolume and therefore is
always better.

4. Basic Principle of Pattern Reconfigurable
Array Antennas

Design of phase-only reconfigurable antenna array aims
at finding a common amplitude distribution and different
phase distributions, such that the array can produce multiple
different patterns.

Consider a linear equispaced array with𝑁 elements. If𝑀
different patterns need to be produced only by changing the
excitation phases of the array under the common excitation
amplitude distribution, the optimization variable 𝑥 is a vector
with 𝑀𝑁 + 𝑁 elements, where 𝑥

𝑛
(𝑛 = 1, 2, . . . , 𝑁) is the

excitation amplitude for the 𝑛th antenna element denoted
by 𝐼
𝑛
and 𝑥

𝑚𝑁+𝑛
(𝑚 = 1, 2, . . . ,𝑀, 𝑛 = 1, 2, . . . , 𝑁) is the

excitation phase for the 𝑛th antenna element and the 𝑚th
pattern, denoted by 𝜑

𝑚𝑛
. Then, the complex excitation of the

𝑛th element in the𝑚th pattern is

𝑖
𝑚𝑛

= 𝐼
𝑛
⋅ 𝑒
𝑗𝜑
𝑚𝑛 = 𝑥

𝑛
𝑒
𝑗𝑥
𝑛+𝑚𝑁 . (15)

It can be seen from (15) that, in the process of optimiza-
tion, the common excitation amplitude is used for𝑀 patterns
all the time, and only phases of the excitation are different.
The𝑚th pattern produced by the antenna array for far field is
given by

𝐹
𝑚
(𝑢) =

EF (𝑢)

𝐹max

𝑁

∑

𝑛=1

𝑖
𝑚𝑛

⋅ 𝑒
𝑗2𝜋𝑛𝑑𝑢/𝜆

, (16)

where 𝑚 = 1, 2, . . . ,𝑀, 𝑑 is the spacing between array
elements, 𝜆 is the wavelength in free space, 𝑢 = sin 𝜃, 𝜃 is
the angle from ray direction to normal of array axis, EF(𝜃) is
element factor (EF(𝜃) = 1 for isotropic source), and 𝐹max is
peak value of far field pattern.

In this paper, patterns we need to reconfigure by the
phase-only reconfigurable linear arrays are presented below.

(1) A flat-top beam and a pencil beam: the design
problem is expressed as

minimize 𝐹 (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥))
𝑇

. (17)
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Table 1: Design objectives and simulated results for Problem 1.

Design parameters
Flat-top beam Pencil beam

Desired Obtained by
MOEA/D-DE

Obtained by
MOEA/D-IWO Desired Obtained by

MOEA/D-DE
Obtained by

MOEA/D-IWO
Side lobe level
(SLL, in dB) −25.00 −25.46 −26.13 −30.00 −29.56 −30.50

Half-power beam width
(HPBW, in 𝜃-space) 24∘ 24.2∘ 24∘ 6.8∘ 6.8∘ 6.8∘

Beam width at SLL
(BW, in 𝜃-space) 40∘ 41.6∘ 40.2∘ 20∘ 20∘ 20∘

Ripple
(in dB, 78∘ ≤ 𝜃 ≤ 102

∘) 0.50 0.50 0.49 N/A N/A N/A

Table 2: Design objectives and simulated results for Problem 2.

Design parameters
Flat-top beam Cosecant-squared beam

Desired Obtained by
MOEA/D-DE

Obtained by
MOEA/D-IWO Desired Obtained by

MOEA/D-DE
Obtained by

MOEA/D-IWO
Side lobe level
(SLL, in dB) −25.00 −24.0106 −24.9659 −25.00 −24.0735 −24.9060

Beam width at SLL
(BW, in 𝜃-space) 0.84 0.88 0.86 0.84 0.88 0.86

Ripple
(in dB)

0.60
|𝑢| ≤ 0.32

0.5998 0.5994 0.60
0 ≤ 𝑢 ≤ 0.64

0.8588 0.5341

The cost functions of each single pattern in (17) are

𝑓
1
(𝑥) = Cost

𝑓
=

4

∑

𝑠=1

(max {𝑄
𝑠,𝑑

− 𝑄
𝑠
(𝑥) , 0})

2

, (18)

𝑓
2
(𝑥) = Cost

𝑝
=

3

∑

𝑠=1

(max {𝑄
𝑠,𝑑

− 𝑄
𝑠
(𝑥) , 0})

2

. (19)

(2) A flat-top beam and a cosecant beam: the design
problem is expressed as

minimize 𝐹 (𝑥) = (𝑓
3
(𝑥) , 𝑓

4
(𝑥))
𝑇

. (20)

The cost functions of each single pattern in (20) are

𝑓
3
(𝑥) = Cost

𝑓
=

3

∑

𝑠=1

(max {𝑄
𝑠,𝑑

− 𝑄
𝑠
(𝑥) , 0})

2

, (21)

𝑓
4
(𝑥) = Cost

𝑐
=

3

∑

𝑠=1

(max {𝑄
𝑠,𝑑

− 𝑄
𝑠
(𝑥) , 0})

2

, (22)

where Cost
𝑓
, Cost

𝑐
, and Cost

𝑝
represent the cost functions of

the flat-top beam, cosecant-squared beam, and pencil beam,
respectively, and𝑄

𝑠,𝑑
and𝑄

𝑠
(𝑥) are the desired and calculated

values for each design specification we use. Desired and
calculated values of each design index in (18), (19), (21), and
(22) are summarized in Tables 1 and 2. The lower the cost
value is, the closer the calculated value approaches the desired
value. When the calculated values of all the indexes are less
than the corresponding desired values, the cost value is set to
zero.

5. MOEA/D-IWO for Synthesis of Phase-Only
Reconfigurable Linear Array

Suppose 𝑃 is the population size; that is to say, we need to
optimize 𝑃 subproblems in a single run; {𝜆1, 𝜆2, . . . , 𝜆𝑃} is
a set of weight vectors. The objective functions of all the
patterns are summed with assigned weights. For each single-
objective subproblem, the objective function is described as
follows:

𝑔
𝑡𝑒
(𝑥 | 𝜆

𝑖
, 𝑧
∗
) = max
1≤𝑚≤𝑀

{𝜆
𝑖

𝑚

󵄨󵄨󵄨󵄨𝑓𝑚 (𝑥) − 𝑧
∗

𝑚

󵄨󵄨󵄨󵄨} , (23)

where 𝜆
𝑖
= (𝜆
𝑖

1
, 𝜆
𝑖

2
, . . . , 𝜆

𝑖

𝑀
)
𝑇, 𝑖 = 1, 2, . . . , 𝑃. MOEAD-IWO

is used tominimize𝑃 objective functions (23) simultaneously
in a single run, and the neighborhood of 𝜆𝑖 is the several
weight vectors close to 𝜆

𝑖.
At each generation, MOEAD-IWOmaintains the follow-

ing information:

(i) a population of 𝑃 points 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑃
∈ Ω, where

Ω is the feasible solution space of the excitation
amplitude and phases;

(ii) FV1, FV2, . . . , FV𝑃, where FV𝑖 = 𝑔
𝑡𝑒
(𝑥
𝑖

| 𝜆
𝑖
), 𝑖 =

1, 2, . . . , 𝑃;

(iii) Gen: the current generation number;

(iv) 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑀
)
𝑇, where 𝑧

𝑚
is the best value found

so far for objective 𝑓
𝑚
.
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The algorithm is outlined as follows.

Input

(i) The multiobjective problem (17) or (20).
(ii) A stopping criterion.
(iii) 𝑃: the population size (the number of subproblems).
(iv) 𝑇: the number of the neighbors for each subproblem.
(v) A uniform set of 𝑃 weight vectors 𝜆1, 𝜆2, . . . , 𝜆𝑃.

Output

(i) Approximation to the PS: 𝑥1, 𝑥2, . . . , 𝑥𝑃.
(ii) Approximation to the PF: 𝐹(𝑥1), 𝐹(𝑥2), . . . , 𝐹(𝑥𝑃).

Step 1 (initialization). Consider the following.

Step 1.1. Generate the weight vectors 𝜆1, 𝜆2, . . . , 𝜆𝑃.

Step 1.2. Compute the Euclidian distances between any two
weight vectors to each weigh vector. For each 𝑖 = 1, 2, . . . , 𝑃,
set 𝐵(𝑖) = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑇
}, where 𝜆

𝑖
1 , 𝜆
𝑖
2 , . . . , 𝜆

𝑖
𝑇 are 𝑇 weight

vectors close to 𝜆
𝑖.

Step 1.3. Generate an initial population 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑃 by
uniformly random sampling from the search spaceΩ.

Set FV𝑖 = 𝑔
𝑡𝑒
(𝑥
𝑖
| 𝜆
𝑖
).

Step 1.4. Initialize 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑀
)
𝑇 by setting 𝑧

𝑚
=

min
1≤𝑖≤𝑃

𝑓
𝑚
(𝑥
𝑖
).

Step 2 (update). For 𝑖 = 1, 2, . . . , 𝑃, do the following.

Step 2.1 (selection of mating/update range). Generate a num-
ber rand from [0, 1] randomly. Then set

𝑆 = {
𝐵 (𝑖) , if rand < 𝛿,

{1, 2, . . . , 𝑃} , otherwise.
(24)

𝛿 is the probability that parent individuals are selected from
the neighborhood.

Step 2.2 (reproduction). Calculate the number of new solu-
tions 𝑠num using (9) and produce new solutions 𝑦

𝑘
(𝑘 =

1, 2, . . . , 𝑠num) using (8).

Step 2.3 (repair). If an element in 𝑦
𝑘 is out of the boundary of

Ω, its value is reset to the boundary value.

Step 2.4 (update of 𝑧). For each𝑚 = 1, 2, . . . ,𝑀, if𝑓
𝑚
(𝑦

min
) <

𝑧
𝑚
, in which 𝑦

min is the minimum solution among {𝑦
𝑘
, 𝑘 ∈

{1, 2, . . . , 𝑠num}}, then set 𝑧
𝑚

= 𝑓
𝑚
(𝑦

min
).

Step 2.5 (update of solutions). Set 𝑐 = 0 and then do the
following.

(1) If 𝑐 = 𝜂
𝑟
or 𝑆 is empty, go to Step 3. Otherwise,

randomly pick an index 𝑗 from 𝑆.

(2) If min{𝑔𝑡𝑒(𝑦1 | 𝜆𝑗), 𝑔𝑡𝑒(𝑦2 | 𝜆𝑗), . . . , 𝑔𝑡𝑒(𝑦𝑠num | 𝜆
𝑗
)} ≤

𝑔
𝑡𝑒
(𝑥
𝑗
| 𝜆
𝑗
), then set 𝑥𝑗 = 𝑦

min, FV𝑗 = 𝑔
𝑡𝑒
(𝑦

min
|

𝜆
𝑗
), in which 𝑦

min is the minimum solution among
{𝑦
𝑘
, 𝑘 ∈ {1, 2, . . . , 𝑠num}}. Set 𝑐 = 𝑐 + 1.

(3) Delete 𝑗 from 𝑆 and go to (1).

Step 3 (stopping criteria). If stopping criteria are satisfied,
then stop and output {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑃
} and 𝐹(𝑥

1
), 𝐹(𝑥

2
),

. . . , 𝐹(𝑥
𝑃
). Otherwise, go to Step 2.

In the population, optimization variables for each indi-
vidual are the common excitation amplitudes for all patterns
and different phases for forming different patterns. The
output of the algorithm is a Pareto set, in which each Pareto
optimal solution corresponds to a phase-only reconfigurable
array. In the optimization results, different weight coefficients
corresponding to various patterns form a weight vector, each
Pareto optimal solution corresponds to a weight vector, and
different Pareto optimal solutions have different weight vec-
tors. In actual applications, decision-makers select a desired
solution from the approximated PF or obey some standards
for choosing the best compromise solution.

6. Experiments Results

To demonstrate whether the proposed MOEA/D-IWO out-
performs MOEA/D-DE in the design of phase-only pattern
reconfigurable linear arrays, we carry out two experiments.

6.1. Parameter Setting. In MOEA/D, the population size and
weight vectors are controlled by an integer 𝐻. 𝜆1, 𝜆2, . . . , 𝜆𝑃
are the weight vectors in which each individual weight takes
a value from {0/𝐻, 1/𝐻, . . . , 𝐻/𝐻}; therefore the population
size is 𝑃 = 𝐶

𝑀−1

𝐻+𝑀−1
, where 𝑀 is the number of objectives. In

the experiments, population size 𝑃 is set to 201 (𝐻 = 200) for
2-objective instances. For the other control parameters, we set
𝑇 = 0.1𝑃, 𝜂

𝑟
= 0.01𝑃, and 𝛿 = 0.7 [30], which are the same

for MOEA/D-DE and MOEA/D-IWO. For DE operator, we
set the crossover rate CR = 1.0, the scalar factor 𝐹 = 0.5,
𝜂 = 20, and 𝑝

𝑚
= 1/𝑛 in mutation operators [12, 30]. For

IWO operator, we set 𝜎initial = 0.1, 𝜎final = 0.0002, pow =

3, 𝑠max = 3, and 𝑠min = 1. To be fair in the comparison,
both algorithms stop after reaching the maximum function
evaluations 500000 for all the tests. In order to restrict the
influence of random effects, both algorithms run 20 times
independently of each problem, and the best results are
presented in this section. Source codes for MOEA/D-DE are
taken from [31].

6.2. Determining the Best Compromise Solution. When facing
a set of nondominated solutions, a decision-maker’s judg-
ment may have fuzzy or imprecise goals for each objective
function, so useful quantitative measures for assessing the
quality of each nondominated solution are needed. In present
literatures, an effective method based on the concept of fuzzy
sets is proposed [25] and successfully used in some MOPs
[32–34], in which a membership function 𝜇

𝑖
is defined for

each objective 𝑓
𝑖
by taking account of the minimum and
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Table 3: The best compromise solutions for the first instance by MOEA/D-IWO and MOEA/D-DE (DRR = 4).

𝑓
1
(flat-top beam) 𝑓

2
(pencil beam) (𝜆

1
, 𝜆
2
) Cost = 𝜆

1
𝑓
1
+ 𝜆
2
𝑓
2

MOEA/D-DE with TE 0.0069 0.0059 (0.5350, 0.4650) 0.0064
MOEA/D-DE with WS 0.0086 0.0084 (0.5100, 0.4900) 0.0085
MOEA/D-IWO with TE 0.0037 0.0056 (0.5100, 0.4900) 0.0046
MOEA/D-IWO with WS 0.0062 0.0060 (0.5450, 0.4550) 0.0061

Table 4: The best compromise solutions for the second instance by MOEA/D-IWO and MOEA/D-DE (DRR = 5).

𝑓
3
(flat-top beam) 𝑓

4
(cosecant beam) (𝜆

3
, 𝜆
4
) Cost = 𝜆

3
𝑓
3
+ 𝜆
4
𝑓
4

MOEA/D-DE with TE 0.0043 0.0578 (0.5200, 0.4800) 0.0300
MOEA/D-DE with WS 0.0762 0.1702 (0.4400, 0.5600) 0.1288
MOEA/D-IWO with TE 0.0015 0.0511 (0.4750, 0.5250) 0.0275
MOEA/D-IWO with WS 0.0016 0.0516 (0.4650, 0.5350) 0.0284

maximum values of each objective function together with the
rate of increase of membership satisfaction. As in [33, 34],
we assume that 𝜇

𝑖
is a strictly monotonic decreasing and

continuous function defined as

𝜇
𝑖
=

{{{{

{{{{

{

1, if 𝑓
𝑖
≤ 𝑓

min
𝑖

,

𝑓
max
𝑖

− 𝑓
𝑖

𝑓
max
𝑖

− 𝑓
min
𝑖

, if 𝑓min
𝑖

≤ 𝑓
𝑖
≤ 𝑓

max
𝑖

,

0, if 𝑓
𝑖
≥ 𝑓

max
𝑖

,

(25)

where 𝑓
max
𝑖

and 𝑓
min
𝑖

are the maximum and minimum
values of the 𝑖th objective solutions among all nondominated
solutions, respectively. Value 𝜇

𝑖
indicates how much a non-

dominated solution satisfies the 𝑖th objective, so the sum of
𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑚) for all the objectives can be calculated

for measuring the “accomplishment” of each solution in
satisfying the 𝑀 objectives and then a membership function
𝑅
𝑢
(𝑢 = 1, 2, . . . , 𝑁

𝑠
) can be defined for nondominated

solutions as follows:

𝑅
𝑢
=

∑
𝑀

𝑖=1
𝜇
𝑖
(𝑢)

∑
𝑁
𝑠

V=1∑
𝑀

𝑖=1
𝜇
𝑖
(V)

, (26)

where𝑁
𝑠
represents the number of nondominated solutions.

The function 𝑅
𝑢
can be treated as a membership function

for the nondominated solutions in a fuzzy set. Value 𝑅
𝑢

represents the quality of a solution among all nondominated
solutions, and the one with the maximum value of 𝜇𝑞 is the
best compromise solution.

6.3. Results. Effectiveness of the MOEA/D-IWO algorithm
is verified through the design of two examples. In the
optimization process, excitation amplitudes range from 0 to
1, and phases are restricted from −180 to 180 degrees.

6.3.1. Problem 1. Consider a 20-element 0.5𝜆-equispaced
symmetrical array with EF(𝜃) = sin(𝜃) for generating a flat-
top beam and a pencil beam.The flat-top beam is realized by
the common excitation amplitudes and unknown phases, and
the phases for forming pencil beam are set to zero.Therefore,

there are 10 common excitation amplitude variables and 10
phase variables for forming flat-top beam, to be optimized in
objective function (17). The maximum dynamic range ratio
(DRR) of excitation amplitudes is controlled with 4.

The best compromise solutions obtained by MOEA/D-
IWO and MOEA/D-DE are shown in Figure 1 and Table 1. It
can be seen that, for flat-top beam, the peak SLL obtained
by MOEA/D-IWO is 0.67 dB lower than that obtained by
MOEA/D-DE. The BW value obtained by MOEA/D-DE is
1.6∘ wider than the objective value, while that obtained by
MOEA/D-IWO is just 0.2∘ wider than the design objective.
For the pencil beam, the pattern obtained byMOEA/D-IWO
has 0.94 dB lower peak SLL value, when other indexes meet
the design objectives well. The excitation amplitudes and the
phases for the synthesized radiation patterns obtained by
MOEA/D-IWO are shown in Figure 2.

6.3.2. Problem 2. Consider a 0.5𝜆-equispaced linear array
with 25 isotropic elements to generate a flat-top beam and a
cosecant-squared beam. The dimension of vector 𝑥 in objec-
tive function (20) is 75, including 25 common amplitudes
and 50 unknown phases. The maximum DRR of excitation
amplitudes is controlled with DRR = 5.

Radiation patterns of the best compromise solutions
obtained by MOEA/D-IWO and MOEA/D-DE are shown
in Figure 4 and Table 2, and the excitation amplitudes and
the phases for the synthesized radiation patterns obtained
by MOEA/D-IWO are shown in Figure 5. It can be seen
from Table 2 that, for the flat-top beam, the ripples obtained
by these two algorithms meet the design objectives well,
the peak SLL value obtained by MOEA/D-IWO is 0.9553 dB
lower than that obtained by MOEA/D-DE, and the BW
values obtained by MOEA/D-DE and MOEA/D-IWO are
0.88 and 0.86, respectively. For the cosecant beam, the BW
obtained by MOEA/D-IWO is smaller than that obtained
by MOEA/D-DE, and the ripple and peak SLL values
obtained by MOEA/D-IWO are 0.3247 dB and 0.8325 dB
lower than those obtained by MOEA/D-DE, respectively.
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Figure 1: Synthesized radiation patterns and their masks (dashed black lines) for Problem 1: (a) flat-top beam and (b) pencil beam.
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Figure 2: Excitation coefficients for the synthesized radiation patterns obtained by MOEAD-IWO for Problem 1: (a) common amplitudes
and (b) different phases.
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Figure 3: Approximate PFs obtained by MOEA/D-DE and
MOEA/D-IWO for Problem 1.

Thus, we conclude that the patterns obtained by MOEA/D-
IWO have better performance. The advantage of MOEA/D-
IWO over MOEA/D-DE can also be seen from the obtained
approximate PFs shown in Figures 3 and 6.

6.3.3. Comparisons with Different Decomposition Approaches.
In order to make further comparisons between MOEA/D-
IWO and MOEA/D-DE, weighted sum method [23] is also
used in the two algorithms to optimize Problem 1 and Prob-
lem 2. Related parameters are set the same as in Section 6.1.
All the algorithms run 20 times independently, and the best
results are compared.

Tables 3 and 4 show the best compromise solutions
obtained by MOEA/D-IWO and MOEA/D-DE for Problem
1 and Problem 2, respectively, in which TE and WS are the
abbreviations of Tchebycheff approach and weighted sum. 𝑓

1

and 𝑓
2
are the cost values of flat-top beam and pencil beam

in Problem 1; 𝑓
3
and 𝑓

4
are the cost values of flat-top beam

and cosecant beam in Problem 2. (𝜆
1
, 𝜆
2
) and (𝜆

3
, 𝜆
4
) are
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Figure 4: Synthesized radiation patterns and their masks (dashed black lines) for Problem 2: (a) flat-top beam and (b) cosecant-squared
beam.
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Figure 5: Excitation coefficients for the synthesized radiation pattern obtained byMOEAD-IWO for Problem 2: (a) common amplitudes and
(b) different phases.
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Figure 6: The approximate PFs obtained by MOEA/D-DE and
MOEA/D-IWO for Problem 2.

the weight vectors for the compromise solutions. The overall
costs are computed by𝜆

1
𝑓
1
+𝜆
2
𝑓
2
and𝜆

3
𝑓
3
+𝜆
4
𝑓
4
. Best values

are shown in bold. We can conclude that MOEA/D-IWO
with Tchebycheff approach can obtain better compromise
solutions than other algorithms.

Tables 5 and 6 present the comparison of the three
metrics obtained in the two experiments; best values are
shown in bold. It is obvious that, when using Tcheby-
cheff approach as the decomposition approach, MOEA/D-
IWO has higher accuracy (𝐷-metric), better uniformity (Δ-
metric), and larger extent (∇-metric) than MOEA/D-DE.
Among the four algorithms, MOEA/D-DE with weighted
sum shows the best mean, maximum, and minimum values
of ∇-metric. MOEA/D-IWO with Tchebycheff approach
performs better than the other three algorithms in terms
of 𝐷-metric, Δ-metric, and the standard deviation of ∇-
metric. Comparison between the four algorithms reveals the
superiority of MOEA/D-IWO and confirms its potential for
array synthesis problems.
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Table 5: Performance comparison of MOEA/D-DE and MOEA/D-IWO with different decomposition approaches for Problem 1.

Algorithm Mean Std Max Min
𝐷-metric

MOEA/D-DE with TE 8.97𝑒 − 3 5.47𝑒 − 3 9.27𝑒 − 3 6.54𝑒 − 3

MOEA/D-DE with WS 9.12𝑒 − 3 5.34𝑒 − 3 9.64𝑒 − 3 7.35𝑒 − 3

MOEA/D-IWO with TE 5.89e − 3 3.27e − 3 6.84e − 3 4.31e − 3
MOEA/D-IWO with WS 5.92𝑒 − 3 3.35𝑒 − 3 6.91𝑒 − 3 5.39𝑒 − 3

Δ-metric
MOEA/D-DE with TE 2.14𝑒 − 3 1.21𝑒 − 3 3.07𝑒 − 3 1.65𝑒 − 3

MOEA/D-DE with WS 2.04𝑒 − 3 1.02𝑒 − 3 2.98𝑒 − 3 1.32𝑒 − 3

MOEA/D-IWO with TE 5.14e − 4 3.17e − 4 6.12e − 4 3.87e − 4
MOEA/D-IWO with WS 5.23𝑒 − 4 3.24𝑒 − 4 6.35𝑒 − 4 3.97𝑒 − 4

∇-metric
MOEA/D-DE with TE 9.05𝑒 − 5 5.24𝑒 − 5 9.36𝑒 − 5 8.79𝑒 − 5

MOEA/D-DE with WS 2.89e − 4 1.02𝑒 − 5 3.02e − 4 2.39e − 4
MOEA/D-IWO with TE 9.34𝑒 − 5 2.14e − 6 9.48𝑒 − 5 9.31𝑒 − 5

MOEA/D-IWO with WS 1.61𝑒 − 4 8.32𝑒 − 6 1.64𝑒 − 4 1.51𝑒 − 4

Table 6: Performance comparison of MOEA/D-DE and MOEA/D-IWO with different decomposition approaches for Problem 2.

Algorithm Mean Std Max Min
𝐷-metric

MOEA/D-DE with TE 5.31𝑒 − 2 2.39𝑒 − 2 7.25𝑒 − 2 4.21𝑒 − 2

MOEA/D-DE with WS 6.21𝑒 − 2 4.52𝑒 − 2 7.95𝑒 − 2 5.31𝑒 − 2

MOEA/D-IWO with TE 3.58e − 2 1.54e − 2 4.31e − 2 3.01e − 2
MOEA/D-IWO with WS 4.91𝑒 − 2 2.31𝑒 − 2 6.12𝑒 − 2 3.95𝑒 − 2

Δ-metric
MOEA/D-DE with TE 3.87𝑒 − 2 1.35𝑒 − 2 4.59𝑒 − 2 2.74𝑒 − 2

MOEA/D-DE with WS 6.98𝑒 − 2 5.32𝑒 − 2 7.25𝑒 − 2 5.35𝑒 − 2

MOEA/D-IWO with TE 1.78e − 2 1.01e − 2 2.14e − 2 1.21e − 2
MOEA/D-IWO with WS 2.32𝑒 − 2 1.29𝑒 − 2 4.02𝑒 − 2 2.54𝑒 − 2

∇-metric
MOEA/D-DE with TE 6.70𝑒 − 4 4.27𝑒 − 4 6.85𝑒 − 4 5.87𝑒 − 4

MOEA/D-DE with WS 2.30e − 2 3.29𝑒 − 4 2.43e − 2 2.01e − 2
MOEA/D-IWO with TE 1.02𝑒 − 3 3.24e − 5 1.10𝑒 − 3 1.02𝑒 − 3

MOEA/D-IWO with WS 1.23𝑒 − 2 1.23𝑒 − 4 1.34𝑒 − 2 1.17𝑒 − 2

7. Conclusion

In this paper, synthesis of phase-only reconfigurable antenna
array is formulated as anMOPwhere the design objectives are
the different patterns. We integrate the modified IWO algo-
rithm in MOEA/D and propose a new version of MOEA/D,
called MOEA/D-IWO, for solving the multiobjective opti-
mization problems.The new algorithmmakes good use of the
powerful searching and colonizing ability of invasive weeds
and maintains the advantages of the original MOEA/D. Two
phase-only reconfigurable antenna array examples are syn-
thesized by the proposed algorithm, and the results have been
compared with those obtained by the existing MOEA/D-
DE algorithm. The comparing simulation results indicate
the superiority of the proposed algorithm over MOEA/D-
DE in synthesizing the phase-only reconfigurable antenna
array. The proposed algorithm opens a new prospect in
array synthesis problems. It may also be applied in other
challenging fields of MOPs for future research.
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