
Exact and Approximate Strategies for Symmetry

Reduction in Model Checking

Alastair F. Donaldson⋆ and Alice Miller

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

{ally,alice}@dcs.gla.ac.uk

Abstract. Symmetry reduction techniques can help to combat the state
space explosion problem for model checking, but are restricted by the
hard problem of determining equivalence of states during search. Con-
sequently, existing symmetry reduction packages can only exploit full

symmetry between system components, as checking the equivalence of
states is straightforward in this special case. We present a framework for
symmetry reduction with an arbitrary group of structural symmetries.
By generalising existing techniques for efficiently exploiting symmetry,
and introducing an approximate strategy for use with groups for which
fast, exact strategies are not available, our approach allows for significant
state-space reduction with minimal time overhead. We show how compu-
tational group theoretic techniques can be used to analyse the structure
of a symmetry group so that an appropriate symmetry reduction strat-
egy can be chosen, and we describe a symmetry reduction package for
the SPIN model checker which interfaces with the computational alge-
bra system GAP. Experimental results on a variety of Promela models
illustrate the effectiveness of our methods.

Keywords

Promela/SPIN; model checking; symmetry; computational group theory; GAP

1 Introduction

Symmetry reduction techniques can help to combat the state space explosion
problem when model checking systems with replicated structure. Replication of
components in a concurrent system frequently induces replication, or symmetry,
in a Kripke structure modelling the system, which partitions the states of the
model into equivalence classes. To model check temporal logic properties it is
often sufficient to search one state per equivalence class, potentially resulting
in more efficient verification. Given a symmetry group G, a common approach
to ensure that equivalent states are recognised during search is to convert each

⋆ Supported by the Carnegie Trust for the Universities of Scotland.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357579566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

newly encountered state s into min[s]G the smallest state in its equivalence class
(under a suitable total ordering) before it is stored. However, the problem of
computing min[s]G for an arbitrary group, called the constructive orbit problem
(COP), is NP-hard [5].

Existing symmetry reduction packages, such as SymmSpin [1] and SMC [19],
are limited as they can only exploit full symmetry between identical components
of a system. Such symmetry arises in systems where all components of the same
type are interchangeable, and has been of primary interest since the COP can
be efficiently solved in this special case. However, many other kinds of symme-
try commonly occur in models of concurrent systems with a regular structure.
For example, cyclic/dihedral groups are typically associated with systems which
have uni-/bi-directional ring structures and wreath product groups occur when
dealing with tree topologies.

In this paper we generalise existing techniques for efficiently exploiting sym-
metry, and give an approximate strategy for use with symmetry groups for which
fast, exact strategies cannot be found. We use computational group theory to
automatically determine the structure of a group before search so that an ap-
propriate symmetry reduction strategy can be chosen, and give encouraging
experimental results to support our techniques using TopSPIN, a new symmetry
reduction package for the SPIN model checker [15] which interfaces with the GAP

computational algebra system [13]. In the spirit of previous works on symmetry
reduction [5, 10–12], we use a simple model of computation when reasoning about
concurrent systems. We then illustrate the problems associated with extending
this simple model to apply to Promela specifications, where full symmetry re-
duction may no longer be guaranteed.

2 Symmetry in Model Checking

2.1 Model of Computation

We use a simple model of computation to represent the computation of a system
comprised of n communicating components, interleaving concurrently [10, 11].
Let I = {1, 2, . . . , n} be the set of component identifiers, and for some k > 0,
let {1, 2, . . . , k} denote the possible local states of the components. A Kripke
structure is a pair M = (S,R), where S ⊆ {1, 2, . . . , k}n, is a non-empty set of
states, and R ⊆ S×S is a total transition relation. The lexicographical ordering
of vectors in {1, 2, . . . , k}n provides a total ordering on S. If s = (l1, l2, . . . , ln) ∈
S then we use s(i) to denote li, the local state of component i.

This model of computation allows us to reason about concurrent systems
consisting of processes and channels, since a positive integer can be assigned to
each valuation of the local variables of a process or the contents of a channel.
We assume that the local variables of components do not refer to component
identifiers. We discuss the implications of lifting this assumption in Section 5.1.

2.2 Group Theoretic Notation

We assume some knowledge of basic group theory, but recap some notation
here. Let G be a group, and let α1, α2, . . . , αn ∈ G. The smallest subgroup of G
containing the elements α1, . . . , αn is denoted 〈α1, α2, . . . , αn〉, and is called the
subgroup generated by α1, α2, . . . , αn. The elements αi (1 ≤ i ≤ n) are called
generators for this subgroup. Let X = {α1, . . . , αn} be a finite subset of G. Then
we use 〈X〉 to denote 〈α1, . . . , αn〉, the subgroup generated by X . Let H be a
subgroup of G, denoted H ≤ G, and let α ∈ G. The set Hα = {βα : β ∈ H} is
called a (right) coset of H in G. The set of all cosets of H in G partitions G into
disjoint equivalence classes.

Let I = {1, 2, . . . , n} for some n > 0. The set of all permutations of I forms
a group under composition of mappings, denoted Sn (the symmetric group on
n points). If J ⊆ I and α ∈ Sn, then α(J) = {α(i) : i ∈ J}. For H ≤ Sn

and α ∈ Sn, we define moved(H) = {i ∈ I : β(i) 6= i for some β ∈ H}, and
moved(α) = {i ∈ I : α(i) 6= i}. For i ∈ I, the stabiliser of i under H is the
subgroup stabH(i) = {α ∈ H : α(i) = i}, and the orbit of i under H is the set
orbH(i) = {α(i) : α ∈ H}. The orbit orbH(i) is non-trivial if |orbH(i)| > 1, and
H is said to act transitively on I if it induces a single orbit.

2.3 Symmetry Reduction

Let M = (S,R) be a Kripke structure, and let α ∈ Sn (the group of all permuta-
tions of the set {1, 2, . . . , n}). Then α acts on a state s = (l1, l2, . . . , ln) ∈ S in the
following way: α(s) = (lα−1(1), lα−1(2), . . . , lα−1(n)). If (α(s), α(t)) ∈ R ∀ (s, t) ∈
R, α is an automorphism of M. The set of all automorphisms of M forms a
group Aut(M) ≤ Sn under composition of mappings.

A subgroup G ≤ Aut(M) induces an equivalence relation ≡G on the states
of M thus: s ≡G t ⇔ s = α(t) for some α ∈ G. The equivalence class under
≡G of a state s ∈ S, denoted [s], is called the orbit of s under the action of
G (so G induces orbits on both the set I of component identifiers and the set
S of states), and min[s]G denotes the smallest element of [s]G under the total
ordering discussed in Section 2.1. The quotient Kripke structure for M with
respect to G is a pair MG = (SG, RG) where SG = {min[s]G : s ∈ S}, and
RG = {(min[s]G,min[t]G) : (s, t) ∈ R}. In general MG is a smaller structure
than M, but MG and M are equivalent in the sense that they satisfy the same
set of logic properties which are invariant under the group G (that is, properties
which are “symmetric” with respect to G). For a proof of the following theorem,
together with details of the temporal logic CTL∗, see [6].

Theorem 1. Let M be a Kripke structure, G a subgroup of Aut(M) and φ a
CTL∗ formula. If φ is invariant under G then

M, s |= φ ⇔ MG,min[s]G |= φ

Thus by choosing a suitable symmetry group G, model checking can be per-
formed over MG instead of M, often resulting in considerable savings in memory

and verification time [2, 11]. Algorithm 1, adapted from [16], explores a quotient
Kripke structure given an initial state s0. An extension of this algorithm for
on-the-fly model checking of LTL properties using a nested depth first search is
presented in [1].

Algorithm 1 Algorithm to explore a quotient Kripke structure

reached := {min[s0]G};
unexplored := {min[s0]G};
while unexplored 6= ∅ do

remove a state s from unexplored;
for all successor states t of s do

if min[t]G is not in reached then

add min[t]G to reached;
add min[t]G to unexplored;

end if

end for

end while

In practice, for an arbitrary group G, it may be infeasible to implement the
function min exactly. In such cases the requirements of min can be relaxed so
that min[s]G yields some state t ∈ [s]G with t ≤ s. This does not compromise
the safety of symmetry reduced model checking since at least one state per orbit
is searched, but does not result in memory-optimal verification. However, an effi-
cient implementation of min which maps any element s to one of a small number
of orbit representatives can result in fast verification, maintaining a significant
reduction in model states (this use of multiple representatives is employed in e.g.
[2, 5]). We refer to such an implementation of min as an approximate symmetry
reduction strategy, whereas a true implementation of min is an exact strategy.
Note that exact verification results are still obtained using an approximate sym-
metry reduction strategy, if enough memory is available.

Throughout the rest of the paper, let G be a subgroup of Aut(M), where
M = (S,R) is a Kripke structure which models a concurrent system comprised
of n components with identifiers I = {1, 2, . . . , n}.

2.4 Symmetry Detection

In this paper, we are concerned with techniques for exploiting component sym-
metries during model checking, rather than detecting symmetry before search.
Structural symmetries of a model M are typically inferred by extracting a com-
munication graph from the initial specification. The vertex set of this graph is
the set I, representing the components of the system. Provided that the speci-
fication obeys certain restrictions so that components of the same type are not
explicitly distinguished, automorphisms of the communication graph induce au-
tomorphisms of M. Since the communication graph is typically small, these

automorphisms can be computed automatically using a package such as saucy
[7]. Practical examples of communication graphs include the static channel di-
agram of a Promela specification, which has been introduced in previous work
[8], and the coloured hypergraph [5] of a shared variable concurrent program.

For illustration, throughout the paper we consider a system with a three-
tiered architecture consisting of a database, a layer of server components, and a
layer of client components, each of which communicates with exactly one server.
Figure 1 shows a possible communication graph for this system, which we as-
sume has been extracted from a specification of the system by some symmetry
detection tool. Let M3T be a model of the system. Using the saucy program,
we compute generators for G3T , the automorphism group of the communication
graph:

G3T = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (10 11),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

Note that the last two elements of the generating set of G3T are products of
transpositions. We assume that G3T ≤ Aut(M3T), and will use this group and
its subgroups as examples to illustrate some of our techniques.

1 2 3

12

4 5 6

13

7 8 9

14

10 11

15

16

clients

servers

database

Fig. 1. Communication structure for a three-tiered architecture.

3 Exploiting Basic Symmetry Groups

3.1 Enumerating Small Groups

The most obvious strategy for computing min[s]G is to consider each state in
[s]G, and return the smallest. This can be achieved by enumerating the elements
α(s), ∀α ∈ G. If G is small then this strategy is feasible in practice, and pro-
vides an exact symmetry reduction strategy. The SymmSpin package provides an
enumeration strategy for fully symmetric groups, which is optimised by gener-
ating permutations incrementally by composing successive transpositions. This
is more efficient than applying permutations to s directly.

We generalise this optimisation for arbitrary groups using stabiliser chains.
A stabiliser chain for G is a series of subgroups of the form G = G(1) ≥ G(2) ≥
· · · ≥ G(k) = {id}, for some k > 1, where G(i) = stabG(i−1)(x) for some x ∈
moved(G(i−1)) (2 ≤ i ≤ k). If U (i) is a set of representatives for the cosets of
G(i) in G(i−1) (2 ≤ i ≤ k), then each element of G can be uniquely expressed as
a product uk−1uk−2 . . . u1, where ui ∈ U (i) (1 ≤ i < k) [3]. Permutations can be
generated incrementally using elements from the coset representatives, and the
set of images of a state s under G computed using a sequence of partial images
(see Algorithm 2). To ensure efficient application of permutations, the coset
representatives are stored as a list of transpositions, applied in succession. GAP

provides functionality to efficiently compute a stabiliser chain and associated
coset representatives for an arbitrary permutation group. This approach still
involves enumeration of G, so is infeasible for large groups, but the experimental
results of Section 5.3 show an improvement over basic enumeration. Additionally,
it is only necessary to store coset representatives, rather than all elements of G.

Algorithm 2 Computing min[s]G using a stabiliser chain.

min[s]G := s

for all u1 ∈ U1 do

s1 := u1(s)
for all u2 ∈ U2 do

s2 := u2(s1)
...
for all uk ∈ Uk do

sk := uk(sk−1)
if sk < min[s]G then

min[s]G := sk
end if

end for
...

end for

end for

3.2 Minimising Sets for G if G ∼
= Sm (m ≤ n)

For systems where there is full symmetry between components, the smallest
state in the orbit of s = (l1, l2, . . . , ln) can be computed by sorting the tuple
(l1, l2, . . . , ln) under the lexicographical ordering so that the smallest li appears
in the first position, the second smallest in the second position etc. [2, 5]. For
example, for a system with four components, sorting equivalent states (3, 2, 1, 3)
and (3, 3, 2, 1) yields the state (1, 2, 3, 3), which is clearly the smallest state in
the orbit. Since sorting can be performed in polynomial time, this provides an
efficient solution for the COP for this group.

Recall the group G3T of automorphisms of the communication graph of Fig-
ure 1. Consider the subgroup

H = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

This group permutes server components 12, 13 and 14, with their associated
blocks of client components. It is clear that H is isomorphic to S3, the symmetric
group on 3 objects. However, we cannot compute min[s]H by sorting s in the
obvious way, since this is equivalent to applying an element α ∈ S16 to s, which
may not belong to H .

In some cases we can deal with groups of this form using a minimising set
for G. Using terminology from [11], G is said to be nice if there is a small set
X ⊆ G such that, for any s ∈ S, s = min[s] ⇔ s ≤ α(s) ∀ α ∈ X . If G is
nice with respect to a subset X , then we call X a minimising set for G. In this
case, min[s]G can be computed using Algorithm 3. If a small minimising set X
can be found for a large group G, then computing the representative of a state
involves iterating over the small set X , minimising the state until a fix-point
is reached. At this point, no element of the minimising set maps the state to a
smaller image, thus the minimal element has been found.

We show that, for a large class of groups which are isomorphic to Sm for some
m ≤ n, a minimising set with size polynomial in m can be efficiently found. This
minimising set is derived from the swap permutations used in a selection sort
algorithm.

Algorithm 3 State minimisation using a minimising set X
min := s

repeat

min′ := min

for α ∈ X do

if α(min) < min then

min := α(min)
end if

end for

until min′ = min

Theorem 2. Suppose that, for each i ∈ I such that orbG(i) is non-trivial,
stabG(i) fixes exactly one element from each non-trivial orbit of G acting on
I, and that G ∼= Sm, where m = |orbG(i)| > 1 for some i ∈ I. Then there is an
isomorphism θ : Sm → G such that {(i j)θ : 1 ≤ i < j ≤ m} is a minimising set
for G.

Proof. Since for each i ∈ I such that |orbG(i)| > 1 the set of elements fixed by
stabG(i) contains exactly one element from each orbit, there is a set of columns
C1, C2, . . . , Cm such that each column contains one element from each orbit of
G, and G permutes the columns. There is an isomorphism θ from G′ (the action

of G on the columns) to G acting on I. Since G ∼= Sm, G′ contains all column
transpositions (i j) where i < j, so (i j)θ ∈ G. The element (i j)θ maps all
elements of column i to elements of column j.

Now consider states s and s′, where s′ = α(s) for some α ∈ G. Let i be the
smallest index for which s(i) 6= s′(i). Let j be the index such that j = α−1(i).
All of the elements in the column containing j (column j′ say) are mapped via
α to the column containing i (column i′ say). Then s′ < s iff (i′ j′)θs < s. Hence
s is minimal in its orbit iff (i j)θ(s) ≥ s for all i < j. So the set {(i j)θ : 1 ≤ i <
j ≤ m} is a minimising set for G.

Note that the minimising set is much smaller than G, and the conditions of
Theorem 2 can be easily checked using GAP. It may seem that these conditions
are unnecessary, and that, given any isomorphism θ : Sm → G, the set {(i j)θ :
1 ≤ i < j ≤ m} is a minimising set for G. However, the group

G = 〈(1 2)(5 6)(9 10)(13 14), (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11)〉 ≤ S14

is isomorphic to S4. An isomorphism θ : S4 → G is defined on generators by
(1 2 3 4)θ = (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11), (1 2)θ = (4 8)(5 9)(6 10)(7 11),
and can be shown to be the only isomorphism between these groups. The state
s = (8, 14, 4, 8, 4, 7, 9, 14, 6, 10, 3, 1, 11, 4) ∈ {1, 2, . . . , 14}14 cannot be minimised
using the set {(i j)θ : 1 ≤ i < j ≤ 4}. The group G is a subgroup of the
symmetry group of a hypercube (see Section 5.3). However, Theorem 2 allows
us to find minimising sets for commonly occurring fully symmetric groups.

3.3 Local Search for Unclassifiable Groups

If G is large group then computing min[s]G by enumeration of the elements of
G may be infeasible, even with the group-theoretic optimisations discussed in
Section 3.1. If no minimising set is available for G, and G cannot be classified
as a composite symmetry group (see Section 4) then we must exploit G via an
approximate symmetry reduction strategy.

We propose an approximate strategy based on hillclimbing local search, which
has proved successful for a variety of search problems in artificial intelligence [18,
Chapter 4]. The function min works by performing a local search of [s]G starting
at s, using the generators of G as operations from which to compute a successor
state. The search starts by setting t = s, and proceeds iteratively. On each
iteration, α(t) is computed for each generator α of G. If t ≤ α(t) for all α then
a local minimum has been reached, and t is returned as a representative for
[s]G. Otherwise, t is set to the smallest image α(t), and the search continues. In
Section 5.3 we show that this local search algorithm is effective when exploring
the state spaces of various configurations of message routing in a hypercube
network.

There are various local search techniques which could be employed to attempt
to improve the accuracy of this strategy. Random-restart hill-climbing [18] works
by picking several random elements of [s]G in addition to s, and performing local

search from each of them, returning the smallest result. This could be achieved
by applying distinct, random elements of G to s (GAP provides functionality for
generating random group elements). Another potential improvement would be
to use simulated annealing [17] to escape local minima.

4 Exploiting Composite Symmetry Groups

Certain kinds of symmetry groups can be decomposed as a product of subgroups.
In this case solving the COP separately for each subgroup provides a solution
to the COP for the whole group. In particular, if a symmetry group permutes
disjoint sets of components independently then the group can be described as the
disjoint product of the groups acting on these disjoint sets. On the other hand,
if the symmetry group partitions the components into subsets such that there
is analogous symmetry within each subset, and symmetry between the subsets,
then the group can be described as the wreath product of the group which acts
on one of the subsets, and the group which permutes the subsets. It has been
shown that, if G is known to be a disjoint or wreath product of subgroups, then
the COP can be solved for G by restricting attention to these subgroups [5]. We
now present solutions to the problem of detecting, before search, whether or not
G can be decomposed.

4.1 Disjoint Products

Definition 1. Let H ≤ Sn. Suppose that H1, H2, . . . , Hk are subgroups of H
(1 ≤ i ≤ k, k > 1). If H = H1H2 . . .Hk = {α1α2 . . . αk : α ∈ Hi (1 ≤ i ≤ k)}
then H is called the product of the Hi. If moved(Hi) ∩ moved(Hj) = ∅ for all
1 ≤ i 6= j ≤ k then H is written H1•H2•· · ·•Hk, and called the disjoint product
of the Hi. The disjoint product is said to be non-trivial if H 6= Hi 6= {id} for all
1 ≤ i ≤ k.

Disjoint products occur frequently in model checking problems. For example,
the symmetry group associated with a model of the readers writers problem [10]
may be a disjoint product of two groups, which independently permute reader
and writer components respectively. In our three-tiered architecture example (see
Section 2.4), the group G3T can be shown to decompose as a disjoint product
G3T = H1 •H2 where:

H1 = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9),

(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉

H2 = 〈(10, 11)〉.

If G is a disjoint product of subgroups H1, H2, . . . , Hk then min[s]G = min[. . .
min[min[s]H1]H2 . . .]Hk

[5], so the COP for G can be solved by considering
each subgroup Hi in turn. This result is only useful when designing a fully au-
tomatic symmetry reduction package if it is possible to efficiently determine,

before search, whether or not G decomposes as a disjoint product of subgroups.
We present two solutions to this problem.

Efficient, sound, incomplete approach
Let G = 〈X〉 for some X ⊆ G with id /∈ X . Define a binary relation B ⊆ X2

as follows: for all α, β ∈ X , (α, β) ∈ B ⇔ moved(α) ∩moved(β) 6= ∅. Clearly B
is symmetric, and since for any α ∈ G with α 6= id, moved(α) 6= ∅, reflexive. It
follows that the transitive closure of B, denoted B∗, is an equivalence relation
on X . We now show that if B∗ has multiple equivalence classes then each class
generates a subgroup of G which is a non-trivial factor for a disjoint product
decomposition of G.

Lemma 1. Suppose that α, β ∈ X, and that (α, β) /∈ B∗. Then moved(α) ∩
moved(β) = ∅ and α and β commute.

Theorem 3. Suppose C1, C2, . . . , Ck are the equivalence classes of X under B∗

where k ≥ 2. For 1 ≤ i ≤ k let Hi = 〈Ci〉. Then G = H1 • H2 • · · · • Hk, and
Hi 6= {id} (1 ≤ i ≤ k).

Proof. Clearly H1H2 . . . Hk ⊆ G. If α ∈ G then α = α1α2 . . . αd for some
α1, α2, . . . , αd ∈ X , d > 0. By Lemma 1 we can arrange the αl so that ele-
ments of Ci appear before those of Cj whenever i < j. It follows that G =
H1H2 . . . Hk. By Lemma 1, moved(Hi) ∩moved(Hj) = ∅ for 1 ≤ i 6= j ≤ k and
so G = H1 •H2 • · · · •Hk, where (since id /∈ X) the Hi are non-trivial.

The approach is incomplete as it does not guarantee the finest decomposition of
G as a disjoint product. However, in practice we have not found a case in which
the finest decomposition is not detected when generators have been computed
by a graph automorphism program. The approach is very efficient as it works
purely with the generators of G, of which there are typically few.

Sound and complete approach
It is straightforward to show that if G = H • K, then H and K are normal
subgroups of G. Thus a complete method for determining whether or not G is
a non-trivial disjoint product of subgroups H and K involves the computation
of all normal subgroups of G and searching for a pair such that G = H • K.
This method could be applied recursively to the factors of the disjoint product
to compute the finest disjoint product decomposition of G. Although for certain
groups (e.g. abelian groups), all subgroups are normal, in many cases the num-
ber of normal subgroups of a group is significantly smaller than the number of
arbitrary subgroups.

4.2 Wreath Products

Definition 2. For r > 1 let B1, B2, . . . , Br be disjoint subsets of I, where Bi =
{bi,1, bi,2, . . . , bi,m} for some m > 1. Let H ≤ Sn with moved(H) ⊆ B1. For any
α ∈ H and 1 ≤ i ≤ r, define α(i) by: α(i)(x) = x if x /∈ Bi; α(i)(bi,j) = bi,l

where α(b1,j) = b1,l. For β′ ∈ Sr, define β ∈ Sn by: β(x) = x if x /∈
⋃

1≤i≤r Bi;
β(bi,j) = bβ′(i),j. Let K = 〈β1, β2, . . . , βd〉 where β′

i ∈ Sk (1 ≤ i ≤ d, d > 0). If

every element of G can be expressed in the form βα
(r)
r . . . α

(2)
2 α

(1)
1 , where β ∈ K

and α1, α2, . . . , αr ∈ H, then G is the wreath product of H and K, denoted
H ≀K.

Intuitively, an element of G applies a permutation to each set Bi, then applies
a permutation which permutes the sets. This definition of wreath products is
specific to those that occur in model checking problems, typically when a system
has a tree structure. For a more general definition, see [4]. In Section 4.1, we
showed that the group G3T decomposes as a disjoint product. Consider the
factor H1 of this product. This group itself decomposes as a wreath product
H1 = H ≀K where:

H = 〈(1 2), (2 3)〉

K = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)(10, 11)〉.

Here, the sets are B1 = {1, 2, 3, 12}, B2 = {4, 5, 6, 13} and B3 = {7, 8, 9, 14}. If
G = H ≀ K then, for 1 ≤ i ≤ k define Hi by {α(i) : α ∈ K. Then min[s]G =
min[min[. . .min[min[s]H1]H2 . . .]Hr

]K [5].
We sketch an approach for detecting whether an arbitrary group is a wreath

product of subgroups. If G acts transitively on I, a subset B of I is a block if,
for any α ∈ G, α(B) = B or B ∩ α(B) = ∅. The set B = {α(B) : α ∈ G} is a
block system for G. Given block systems B, C for G, C is strictly coarser than B
if ∀ B ∈ B ∃ C ∈ C such that B ⊂ C, and B is maximal for G if each B ∈ B
is a proper subset of I, and the only block system strictly coarser than B is the
trivial system {I}.

If {B1, B2, . . . , Br} is a block system for a transitive group G, where Bi =
{bi,1, bi,2, . . . , bi,m} then G ≤ H ≀ K, where H =

⋂
i/∈B1

stabG(i), and K =⋂
1≤i≤m stabG({b1,i, b2,i, . . . , br,i}) [4]. To check whether or not G = H ≀K it is

sufficient to compare orders, and it can be shown that |H ≀K| = |H |r|K|. How-
ever, in general G does not act transitively on I. We solve the general problem of
determining whether or not G is a wreath product of subgroups by considering
the action of G separately on each non-trivial orbit of I.

Lemma 2. If G = H ≀K then each non-trivial orbit O of I under G has a single
maximal block system: {O ∩moved(Hi) : 1 ≤ i ≤ r)}.

If G can be shown to have exactly one maximal block system per orbit, then
candidate groups H and K can be constructed. Suppose the non-trivial or-
bits are O1, O2, . . . , Od. For 1 ≤ i ≤ d, the group Ki is computed as follows:
Ki =

⋂
1≤i≤m stabG({b1,i, b2,i, . . . , br,i}), where the elements bi,j are taken from

the maximal block system for G on Oi. The candidate group K is the inter-
section of the Ki. Candidate group H is initially set to G. For each orbit Oi a
maximal block B is chosen such that B ⊆ moved(H). Then H is recomputed as⋂

i∈Oi\B
stabH(i). We now have groups H and K with G ≤ H ≀K, and we can

check whether G = H ≀K by comparing orders, as before.

4.3 Choosing a Strategy for G

The strategies which we have presented for minimising a state with respect to
basic and composite groups can be combined to yield a symmetry reduction
strategy for the arbitrary group G by classifying the group using a top-down
recursive algorithm.

The algorithm starts by searching for a minimising set for G of the form
prescribed in Theorem 2. Such a minimising set means that min[s]G can be
computed using Algorithm 3. If no such minimising set can be found, a decom-
position of G as a disjoint/wreath product is sought. In this case the algorithm
is applied recursively to obtain a minimisation strategy for each factor of the
product so that min[s]G can be computed using these strategies as described
in Sections 4.1 and 4.2 respectively. If G remains unclassified and |G| ≤ n2

say, where n is the number of components, enumeration is used, otherwise local
search is selected.

5 Symmetry Reductions in Practice

5.1 Extending the Model of Computation

When components do not hold references to other components, the simple model
of computation and the action of a permutation on a state (described in Sec-
tions 2.1 and 2.3 respectively) are sufficient to reason about concurrent systems,
since it is always possible to represent the local state of a component using an
integer. However, if components can hold references to one another then any
permutation that moves component i will also affect the local state of any com-
ponents which refer to component i.

Sophisticated specification languages, such as Promela, include special data-
types to represent process and channel identifiers. An extended model of com-
putation for Promela is presented in [8]. Both the results presented in [5] on
solving the COP for groups which decompose as disjoint/wreath products, and
our results on minimising sets for fully symmetric groups (see Section 3.2) do
not hold in general for this extended model of computation.

Thus for Promela specifications where local variables refer to process and
channel identifiers, the efficient symmetry reduction strategies presented above
are not always exact—in some cases they may yield an approximate implementa-
tion of the function min, as discussed in Section 2.3. This does not compromise
the safety of symmetry reduced model checking, and in any case, for a large
model, there will be many states for which the strategies will give exact repre-
sentatives in an extended model of computation as the experimental results in
Section 5.3 show.

For the simple case of full symmetry between identical components, the
SymmSpin package deals with local variables which are references to compo-
nent identifiers by dividing the local state of each component into two portions,
one which does not refer to other components (the insensitive portion say), and
another which consists entirely of such references (the sensitive portion). A state

is minimised by first sorting it with respect to the insensitive portion. Then, for
each subset of components with identical insensitive portions, every permuta-
tion of the subset is considered, and the permutation which leads to the smallest
image is applied. This is known as the segmented strategy. Our approach using
minimising sets is similar to the sorted strategy which SymmSpin also provides.
Here a state is minimised only with respect to the insensitive portions of the
local states. This strategy is much faster than the segmented strategy, but is ap-
proximate. It may be possible to extend our approach to be exact by generalising
the segmented strategy.

5.2 A Symmetry Reduction Package for SPIN

We have implemented the strategies discussed in Sections 3 and 4 as TopSPIN,
a fully automatic symmetry reduction package for SPIN [9]. In order to check
properties of a Promela specification, SPIN first converts the specification into a
C source file, pan.c, which is then compiled into an executable verifier. The state
space thus generated is then searched. If the property being checked is proved
to be false, a counterexample is given. TopSPIN follows the approach used by
the SymmSpin symmetry reduction package, where pan.c is generated as usual
by SPIN, and then converted to a new file, sympan.c, which includes algorithms
for symmetry reduction. With TopSPIN, because we allow for arbitrary system
topologies, symmetry must be detected before sympan.c can be generated. This
is illustrated in Figure 2.

First, the static channel diagram (SCD) of the Promela specification is ex-
tracted by the SymmExtractor tool, which is described in detail in [8]. The SCD
is a graphical representation of potential communication between components of
the specification. The group of symmetries of the SCD, Aut(SCD), is computed
using the saucy tool [7], which we have extended to handle directed graphs. The
generators of Aut(SCD) are checked against the Promela specification for va-
lidity (an assurance that they induce symmetries of the underlying state space).
TopSPIN uses GAP to compute, from the set of valid generators, the largest group
G ≤ Aut(SCD) which can be safely used for symmetry-reduced model checking.
GAP is then used to classify the structure of G in order to choose an efficient
symmetry reduction strategy. The chosen strategy is merged with pan.c to form
sympan.c, which can be compiled and executed as usual. In order to compare
strategies it is possible to select the strategy used (rather than let TopSPIN

choose the most efficient). For experimental purposes, TopSPIN also allows gen-
erators of an arbitrary group of component symmetries to be specified manually,
as long as the group elements do not permute components with different types.

5.3 Experimental Results

In Table 1 we present experimental results applying TopSPIN to four families
of Promela specifications. For each specification, we give the number of model
states without symmetry reduction (orig), with full symmetry reduction (red),
and using the strategy chosen by TopSPIN (best). If the latter two are equal,

Fig. 2. The symmetry reduction process.

‘=’ appears for the TopSPIN strategy. The use of state compression, provided by
SPIN, is indicated by the number of states in italics. For each strategy (basic
for enumeration without the optimisations described in Section 3.1, enum for
optimised enumeration, and best for the strategy chosen by TopSPIN), and when
symmetry reduction is not applied (orig), we give the time taken for verification
(in seconds). Verification attempts which exceed available resources, or do not
terminate within 5 hours, are indicated by ‘-’. All experiments are performed
on a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main memory,
running SPIN version 4.2.3.

The first family of specifications model flow of control for a system similar to
the three-tiered architecture example of Section 2.4, but with a layer of p servers
with q clients connected to each server (a D-S-C system). Here models exhibit
wreath product symmetry: there is full symmetry between the q clients in each
block, and the blocks of clients, with their associated servers, are interchangeable.
A configuration with p servers and q clients per server is denoted p/q. The second
family of specifications model a resource allocator process which controls access
to a resource by a competing set of prioritised clients (an R-C system). Models
of these specifications exhibit disjoint product symmetry: there is full symmetry
between each set of clients with the same priority level. A configuration with pi
clients of priority level i is denoted p1, . . . , pk, where k is the number of priority
levels. The next family consists of specifications which model an email system
where client processes exchange messages via a mailer process. The symmetries
of models of these specifications permute the client processes, simultaneously
permuting their input channels, and can be handled using a minimising set. A
configuration with p clients is simply denoted p. Finally, we consider specifica-
tions modelling message routing in an n dimensional hypercube network (an HC
system). The symmetry group here is isomorphic to the group of geometrical
symmetries of a n dimensional hypercube, which cannot be decomposed as a

product of subgroups, and thus must be handled using either the enumeration
or local search strategies. An n-dimensional hypercube specification is denoted
nd. For all specifications, we verify deadlock freedom, and check the satisfaction
of basic safety properties expressed using assertions.

system config. states time |G| states time time states time

orig orig red basic enum best best

D-S-C 2/3 103105 5 72 2656 7 4 = 2

D-S-C 2/4 1.1 × 106 37 1152 5012 276 108 = 2

D-S-C 3/3 2.54×107 4156 1296 50396 4228 1689 = 19

D-S-C 3/4 - - 82944 - - - 130348 104

R-C 3,3 16768 0.2 36 1501 0.9 0.3 = 0.1

R-C 4,4 199018 2 576 3826 57 19 = 0.4

R-C 5,5 2.2 × 106 42 14400 8212 4358 1234 = 2

R-C 4,4,4 2.39 × 107 1587 13824 84377 - 12029 = 17

R-C 5,5,5 - - 1728000 - - - 254091 115

email 3 23256 0.1 6 3902 0.9 0.8 3908 0.2

email 4 852641 9 24 36255 13 6 38560 2

email 5 3.04×107 3576 120 265315 679 253 315323 40

email 6 - - 720 1.7× 106 - 13523 2.3× 106 576

email 7 - - 5040 - - - 1.53× 107 6573

HC 3d 13181 0.3 48 308 0.6 0.3 468 0.2

HC 4d 380537 18 384 1240 58 34 6986 13

HC 5d 9.6×106 2965 3840 3907 7442 5241 90442 946

Table 1. Experimental results for various configurations of the three-tiered (D-S-C),
resource allocator (R-C), email (email) and hypercube (HC) specifications

In all cases, the basic enumeration strategy is significantly slower than the
optimised enumeration strategy, which is in turn slower than the strategies cho-
sen by TopSPIN. For the three-tiered and resource allocator configurations the
symmetry reduction strategies chosen by TopSPIN, which decompose the sym-
metry group as a wreath/disjoint product of groups which are then handled by
minimising sets, provide exact symmetry reduction, despite the potential prob-
lems discussed in Section 5.1. This is not the case for email configurations, for
which TopSPIN uses minimising sets. Nevertheless, a large factor of reduction is
gained by exploiting symmetry in this way, and verification is fast. For hyper-
cube configurations, TopSPIN chooses the local search strategy, which requires
storage of more states than the enumeration strategy, but still results in a greatly
reduced state space.

6 Related Work

The simple model of computation which we have used throughout the paper
is common to numerous works on symmetry reductions for model checking, for
example [5, 10–12], and is adequate for reasoning about input languages where
components do not individually hold references to other components, e.g. the in-
put languages of SMC [19], SYMM [5] and UTOOL [12], or where components are
specified using synchronisation skeletons [10]. The problem of extending sym-
metry reduction techniques to a model of computation where such references
are allowed is tackled, for the simple case of full symmetry between identical
components, by the segmented strategy of the SymmSpin package.

Methods for exploiting the disjoint/wreath product structure of symmetry
groups were proposed in [5], but this work did not investigate the problem of
classifying the structure of an arbitrary group, as we have done. Stabiliser chains
(see Section 3.1) are used extensively in computational group theory [3, 13], and
have been utilised in symmetry breaking approaches for constraint programming
[14]. This paper is, to our knowledge, the first to apply these techniques to model
checking. The construction of minimising sets for fully symmetric groups which
we presented in Section 3.2 builds on the concept of a nice group [11], and
generalises the idea of computing orbit representatives by sorting [2, 5, 11].

7 Conclusions and Future Work

In this paper, we have proposed exact and approximate strategies for tackling
the NP-hard problem of computing orbit representatives in order to exploit sym-
metry when model checking concurrent systems, and generalised existing results
in this area. We have applied techniques from computational group theory to
speed up representative computation, and to classify the structure of a sym-
metry group as a disjoint/wreath product of subgroups before search. We have
described TopSPIN, a fully automatic symmetry reduction package for SPIN, and
presented encouraging experimental results for a variety of Promela specifica-
tions.

We are currently investigating further the use of local search techniques as
an approximate symmetry reduction strategy. We are also developing an ap-
proach to generalise the segmented strategy used by the SymmSpin package to
overcome potential inefficiencies associated with extending our simple model of
computation to the Promela language. TopSPIN is currently limited to verifying
the absence of deadlock and the satisfaction of safety properties of Promela spec-
ifications. Future work includes extending TopSPIN to allow symmetry-reduced
verification of temporal properties with weak fairness, as described in [1].

References

1. D. Bosnacki. A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In SPIN’03, LNCS 2648, pages 89–103. Springer, 2003.

2. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. International Journal

on Software Tools for Technology Transfer, 4(1):65–80, 2002.
3. G. Butler. Fundamental Algorithms for Permutation Groups, volume 559 of LNCS.

Springer-Verlag, 1991.
4. P.J. Cameron. Permutation Groups. Cambridge University Press, 1999.
5. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model

checking. In CAV’98, LNCS 1427, pages 147–158. Springer, 1998.
6. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
7. P.T. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov. Exploiting structure in

symmetry detection for CNF. In DAC’04, pages 530–534. ACM Press, 2004.
8. A.F. Donaldson and A. Miller. Automatic symmetry detection for model checking

using computational group theory. In FM’05, LNCS 3582, pages 418–496. Springer,
2005.

9. A.F. Donaldson and A. Miller. A computational group theoretic symmetry reduction
package for the SPIN model checker. In AMAST’06, LNCS 4019, pages 374–380.
Springer, 2006.

10. E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: new techniques
for symmetry reduction in model checking. In CHARME’99, LNCS 1703, pages 142–
156. Springer, 1999.

11. E.A. Emerson and T. Wahl. Dynamic symmetry reduction. In TACAS’05, LNCS
3440, pages 382–396. Springer, 2005.

12. E.A. Emerson and T. Wahl. Efficient reduction techniques for systems with many
components. Electronic Notes in Theoretical Computer Science, 130:379–399, 2005.

13. The Gap Group. GAP–Groups Algorithms and Programming, Version 4.2. Aachen,
St. Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/˜gap.

14. I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: symmetry breaking
during search. In CP’02, LNCS 2470, pages 415–430. Springer, 2002.

15. G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, 2003.

16. C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods in

System Design, 9(1/2): 41–75, 1996.
17. K.S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-

nealing. Science, 220: 671–680, 1983.
18. S. Russel and P. Norvig. Artificial Intelligence, a Modern Approach. Prentice Hall,

1995.
19. A.P. Sistla, V. Gyuris, and E.A. Emerson. SMC: a symmetry-based model checker

for verification of safety and liveness properties. ACM Transactions on Software

Engineering and Methodology, 9(2):113–166, 2000.

