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Abstract—The main focus of this paper is to show theoretically
that power is a crucial factor in multi-radio multi-channel (MR-
MC) wireless networks and hence by judiciously leveraging the
power, one can realize a considerable gain on the capacity for
MR-MC wireless networks. Such a capacity gain through power
enhancement is revealed by our new insights of a co-channel
enlarging effect. In particular, when the number of available
channels (c) in a network is larger than that necessary for
enabling the maximum set of simultaneous transmissions (c̃),
allocating transmissions to those additional c− c̃ channels could
enlarge the distance between the co-channel transmissions; the
larger co-channel distance then allows a higher transmission
power for higher link capacity. The finding of this paper
specifically indicate that by exploiting the co-channel enlarging
effect with power, one can realize the following gain on the
capacity for MR-MC wireless networks: (i) In the channel-
constraint region (c̃ < c < nÁ

2
), if each node augments its power

from the minimum Pmin to Pmin
c
c̃

®
2 , then a gain of Θ(log( c

c̃
)
®
2 )

is achieved; (ii) In the power-constraint region (c ≥ nÁ
2

), if each
node sends at the maximum power level, Pmax = Pmin.n

K or
Pmin.2

nÁ
2 , depending on the power availability at a node, then

a gain of Θ(log n) or Θ(n) is achieved, respectively.

I. INTRODUCTION

The existence of interference among wireless communica-
tions is one of the crucial challenges that affects the capacity of
wireless networks, particularly in multi-hop settings. In their
pioneering work [2], Gupta and Kumar have proved that when
n nodes are randomly or arbitrarily deployed in a planar disk
of unit area, the amount of information that can be exchanged
by each source-destination pair becomes vanishingly small,
as n grows to a large level and consequently, the scalability
of such multi-hop wireless networks is undeniably affected.
This dampening result in fact comes about as a result of the
exclusion zones required for those interference based commu-
nication paradigms. As the area of exclusion zones directly
depends on the transmit power, their work essentially propose
to reduce the transmit power of nodes to as small a value as
possible, without sacrificing the connectivity, to improve the
capacity. Nevertheless, it turns out from the Shannon-Hartley
theorem [1] that when nodes rely on lower transmit power the
SNR decreases with the degraded quality of received signal
and correspondingly, the channel capacity. A little amount
of reflection shows that there are trade-offs between the two
quantities, transmit power and wireless interference, in that
one can only be improved at the expense of the other. In
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the last few years research efforts, [1], [6] and the references
therein, indicate that equipping nodes with multiple radios and
operating these radios on multiple frequency channels can
greatly mitigate the negative effects of wireless interference
and thus enhance the capacity of these networks. Since single
channel wireless networks have no other alternatives but rely
on minimum power due to the spatial concurrency constraints,
it is interesting to see whether power enhancement can render
further gain in multi-radio multi-channel (MR-MC) wireless
networks. In [6], Kysanaur and Vaidya first studied the asymp-
totic capacity of MR-MC wireless networks, along the theme
of minimum transmit power, with c orthogonal channels and Á
radio interfaces per node. Their results have essentially proved
that when the ratio c

Á = O(log n), albeit the bandwidth is split
into c channels, there is no degradation in the capacity when
compared to the single-channel network and thus a per-node
capacity of Θ(

√
1

n log n ) bits/sec can be realized. However,
as the ratio c

Á increases, of channels to radios becomes larger,
the asymptotic capacity of each node decreases and ultimately,
approaches zero when c/Á = Ω(n). In this paper, by extending
the analysis in [6] we show that one can realize extra capacity
gain in MR-MC wireless networks by enhancing the power;
the capacity can even be improved to Θ(1) in the region
c/Á = Ω(n) when exponential power enhancement is allowed.

The motivation behind this work comes from the fact that
when the number of available channels (c) in a network
is larger than that necessary for enabling the maximum set
of simultaneous transmissions (c̃), allocating transmissions
to those residual c − c̃ channels could enlarge the distance
between co-channel transmissions. We term this novel in-
sight as co-channel enlarging effect. The larger co-channel
distance then allows a higher transmission power for higher
link capacity. For instance, Fig. 1(a) shows the placement of
interference (exclusion) zones around each sender-receiver pair
communicating at the minimum power Pmin. Assume c̃ = 3,
Fig 1(a) shows the scenario where each overlapping zone is
allocated to a distinct channel so that all communications can
happen concurrently. If there are c = 5 channels available,
in Fig 1(b) we exploit the co-channel enlarging effect by
relocating some transmissions on channel 1 to channels 4 and 5
such that the distance between the transmissions on channel 1
can be enlarged. The larger co-channel distance in turn enables
each node to augment its power without disturbing the existing
co-channel transmissions. Fig 1(c) shows the exploitation of
co-channel enlarging effect, where each sender-receiver pair
transmit at a power level P > Pmin for higher capacity, thus
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Fig. 1. (a) Original Network at Pmin; (b) Co-Channel Enlarging effect; (c) Exploiting
the Effect with Power P > Pmin. We assume c̃ = 3 and c = 5.

occupying a larger interference range but not impacting other
simultaneous transmissions. Moreover, if there are enough
number of channels so that every possible link in the network
can be assigned a distinct channel, each sender node can then
use its full power to achieve the maximum link capacity.

Motivated by such an idea, we particularly address the
following two questions: (i) How much gain can one realize by
exploiting the co-channel enlarging effect with power in MR-
MC networks? and (ii) What is the optimal power assignment
for nodes in a MR-MC network? Our paper answers these
two questions by analyzing the asymptotic capacity bounds
of MR-MC networks utilizing power in both arbitrary and
random networks. We consider that each node is equipped
with Á radio interfaces. The results derived in this paper
stipulate that whether arbitrary or random network setting, by
choosing appropriate node power levels in the following two
regimes, c̃ < c < nÁ

2 (where co-channel interference exists)
and c ≥ nÁ

2 (where each link has one distinct channel), one can
realize a significant gain on the capacity for MR-MC wireless
networks. The findings of this work particularly stipulate that:
(a) In the channel-constraint region, c̃ < c < nÁ

2 , if each
node augments its power from the minimum Pmin to Pmin

c
c̃

®
2 ,

then a gain of Θ(log( cc̃ )
®
2 ) is achieved; (b) In the power-

constraint region, c ≥ nÁ
2 , if each node exploits the maximum

power level, Pmax = Pmin.n
K or Pmin.2

nÁ
2 , depending on

the power availability at a node, then a gain of Θ(log n) or
Θ(n) is achieved, respectively. It is noteworthy, the findings
of this paper are of particular importance to the scenarios that
have no energy and power constraints such as Wireless Mesh
Networks (WMNs) consisting of infrastructure mesh routers.
To summarize, the main contributions of our paper are as
follows: (i) This work produces the first effort to propose the
concept of co-channel enlarging effect to manifest analytically
the benefits of enhancing power in MR-MC wireless networks;
(ii) By extending the analysis in [6], we derive the asymptotic
capacity bounds of the proposed model for both random
and arbitrary network setting. (iii) Our paper mainly show
that power is a critical factor and by optimally choosing the
power assignments, one can realize a considerable gain on the
capacity for MR-MC networks. Note: We particularly claim
that given the maximum power available to nodes in a network,
one could use the results of this work to determine the optimal
number of nodes needed for constructing a capacity efficient
network.

The rest of the paper is organized as follows. Section II
presents some of the related works in the area of capacity
analysis and power-control. In section III, we discuss the back-
ground pertaining to network model to facilitate the derivation

of asymptotic bounds. Section IV discusses the main results of
this paper. In section V we present some useful lemmas that
is used to obtain the capacity bounds of the proposed solution
under random and arbitrary settings in section VI. Finally, we
summarize our work in section VII.

II. RELATED WORK

We briefly discuss some of the related efforts in the area
of capacity analysis and power-control. The dampening result
of [2] motivated many researchers to consider several ways
including mobility, hybrid architecture, unlimited bandwidth
resources to increase the capacity of bandwidth constrained
multi-hop wireless networks [1]-[5]. Though these solutions
provide better capacity figures, their work mainly focus on
the assumption of minimum power. Besides these theoretical
studies, there are also lots of research efforts, e.g., [7],[8]
and the references therein, which focus on developing power-
optimal algorithms for maximizing the lifetime of the energy
constrained wireless networks such as ad hoc and sensor
networks. Contrary to these existing research efforts [2]-[8],
this paper looks at the power problem from a different angle
and plans to leverage power to enhance the SNR at the
receiver. Interestingly, there are few supporting arguments [9]-
[11] where the researchers study the power problem by various
approaches including optimization, simulations and manifest
that for some network configurations, capacity can be indeed
maximized by properly increasing the transmission power.
There are also research efforts [12]-[15] that investigate the
problem of wireless scheduling under physical SINR model [1]
by utilizing the power-control. Our work essentially differs
from these existing research efforts due to the following
aspects: (a) [12]-[15] exploit power-control either to realize
an acceptable level of signal quality at each receiver in the
presence of several concurrent transmissions or to minimize
the time needed to schedule all the wireless transmissions
under SINR model. However, our work is geared towards
enhancing the SNR at each receiver, by leveraging power, to a
value exceeding this acceptable signal quality and then study
its effect on the capacity. (b) [9]-[15] in fact addressed the
power issue in single-channel wireless networks and in this
work we focus on investigating the effect of exploiting power
in a MR-MC wireless network.

III. SYSTEM MODEL

A. Network Model and Assumptions

Consider a network of n nodes in a torus of unit area. Let
Xi, 1 ≤ i ≤ n, denote the location of node i. We will use Xi

to denote a node as well as its location. Similar to [2], we also
assume a slotted model for the convenience of elucidation. Let{
Xi, XR(i)) : i ∈ TX

}
be the set of all transmitter-receiver

pairs in some particular slot, where TX denote the set of
transmitters. We use Pi to denote the transmit power for
pair (Xi, XR(i)). Let the transmission radius and interference
radius be denoted as r(i) and rI(i). In this paper, we denote
all the constants by ki, i > 0. We further take the following
assumptions: (A.1) There are c channels in the network and
each node is equipped with Á interfaces (or radios), 1 ≤ Á ≤ c,
commonly referred to as (Á, c) network. We also assume
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that all nodes transmit on an ideal channel without channel
fading. Further, we denote c̃ as the minimum number of
channels with which the network can achieve the maximum
set of conflict-free transmissions; (A.2) An interface is capable
of transmitting or receiving data on any selected channel
and at different slots, the interface can switch the channel.
We also assume that channel switching can be immediately
implemented without delay; (A.3) Each node Xi : i ∈ TX

is constrained to a maximum transmit power Pmax such that
Pmin ≤ Pi ≤ Pmax, where Pmin is the minimum transmit
power; (A.4) In the MR-MC context, by transmission we imply
the communication between a sending and a receiving radio
interface; and (A.5) This paper interchangeably uses log2(.)
and log(.) to represent logarithm to base 2.

B. Impact of Power on Interference Model

We study the capacity of the proposed solution under the
protocol interference model [2]. In this model, the transmission
from node Xi, i ∈ TX , is successfully received by the receiver
XR(i) only if the receiving node XR(i) is in the transmission
radius of the corresponding transmitting node Xi and is out
of the interference radius of all other transmitting nodes
Xk, k ∈ TX ∖ i. In [2], Gupta and Kumar do not explicitly
take into account the dependency of power of each node on
the interference under the protocol model. Thus, we modify
the interference model by considering the transmit power
level of each node. To derive the necessary condition for a
successful transmission, we first quantify the transmission and
interference radius of a node in the wireless network [3].

1) Transmission and Interference Radii: A data transmis-
sion from node Xi to its receiver XR(i) is successful only if the
received signal strength at XR(i) exceeds a power threshold,
say ´ i.e., Pi

(di,R(i))®
≥ ´, where di,R(i) =

∥∥Xi −XR(i)

∥∥ is the
physical distance between two nodes Xi and XR(i) and ® ≥ 2
is the path loss exponent. Then, the transmission radius of the
node, denoted as r(i) is given as r(i) = (Pi

´ )1/®. Similarly, we
also know that a transmission from node Xi is successfully
received at XR(i) only if the interference power level does
not exceed a threshold, say ¯ at the receiver where ¯ < ®.
Following the same derivation for the transmission radius, the
interference radius of a node, denoted as rI(i) is obtained as
rI(i) = (Pi

¯ )1/®(refer to [3] for details).
2) Condition for Successful Transmission: For a given

channel m ∈ [1, c], we present the necessary conditions to
schedule a successful transmission from node Xi to its receiver
node XR(i) under the protocol model.
1. The receiving node XR(i) must be physically within the
transmission radius of node Xi i.e.,

di,R(i) ≤ r(i) = (
Pi

´
)1/® (1)

2. The receiving node XR(i) should lie outside the interference
radius of any other node k ∈ TX ∖ i that is transmitting in the
same channel, i.e.,

dk,R(i) ≥ rI(k) = (
Pk

¯
)1/® (2)

C. Link Capacity and Power Enhancement

We use Shannon’s capacity formula for the additive white
Gaussian noise channel to model the data rate. In this model,
the data rate is a function of the signal-to-interference-plus-
noise ratio (SINR) at the receiver. For instance, the data rate
from transmitter Xi to its receiver XR(i) is given in bits/sec
by

Bi = Wm log2(1 +

Pi

(di,R(i))®

N0Wm +
∑

k∈TX ,k ∕=i
Pk

(dk,R(i))®

) (3)

where Wm is the bandwidth of the channel m ∈ [1, c] in hertz,
and N0 is the white noise spectral density in watts/hertz.

In this work, we consider two power modes termed as
the basic and the power mode: (1). In the basic mode, the
nodes in a MR-MC network communicate at a minimum
power level Pmin and this mode is similar to the one in [6].
Note that we use Pmin (for convenience) to indicate that
every transmitting node operates in the basic mode, but
different nodes may have different minimum power values.
From equation (1), it turns out that the power level of a
node should be at least ´d®i,R(i). For the convenience of our
capacity analysis, we set the minimum transmit power Pmin

as (N0Wm + k1)´d
®
i,R(i) and N0Wm´d®i,R(i) in the region

c < nÁ
2 and c ≥ nÁ

2 respectively. One may notice that such
setting will not impact our asymptotic analysis result and
k1(=

∑
k∈TX ,k ∕=i

Pk

(dk,R(i))®
) is the sum of the interference at

a receiver due to all the simultaneous transmissions, presented
by Lemma 2. (2) In the power mode, the nodes in a MR-
MC network transmit at a power level Pi which is larger
than Pmin, where Pmin < Pi ≤ Pmax. Particularly in
this mode, we investigate the capacity of MR-MC wireless
networks enhancing power in the following two regimes:
(a) c̃ < c < nÁ

2 , we term this regime as channel-constraint,
where co-channel interference exists and the power level a
node can choose in turn depends on c̃ and c. We set the power
level of nodes in this regime as Pmin(

c
c̃ )

®
2 ; and (b) c ≥ nÁ

2 ,
we term this regime as power-constraint, where each trans-
mission could have a dedicated channel and each transmitter
can use the power up to Pmax. We adopt two maximum
power assignments for nodes in this regime, polynomial and
exponential. In the polynomial power mode, each node choose
Pmax = N0Wm´d®i,R(i)n

K = Pminn
K , where the power level

polynomially increases with n. In the exponential power mode,
each node choose Pmax = N0Wm´d®i,R(i)2

nÁ
2 = Pmin2

nÁ
2 ,

where the power level increases exponentially with n. More-
over, in Lemma 2 we show that the accumulated interference
at receiver XR(i), under the basic mode and the channel-
constraint region, due to all simultaneous transmissions can be
bounded by a constant k1 = k0¯. We can, therefore, rewrite
the equation in (3) as follows:

Bi ≈ Wm log2(

Pi

(di,R(i))®

N0Wm + k1
) [for c <

nÁ

2
]. (4)

Also, as each node obtains the same SNR level under the
chosen power assignments, in the sequel we assume that Bi =
B, ∀i ∈ TX . Throughout the paper, we denote the data rate
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Fig. 2. Gain of power mode over basic in arbitrary case for ® = ´ = 2, Á =
K = 1 (Figure not to scale).

B of a sender-receiver link in the channel-constraint region of
power mode as Bpower. In the power-constraint region, since
each node can communicate at the full power level Pmax we
denote the achievable data rate as BMax. Lastly when nodes
choose minimum power level, we denote the data rate achieved
in basic mode as Bbasic.

D. Channel Model

As in [6], we consider the following basic assumptions on
the channel model: (a) channel model I: In this model, we
have Wm = W

c , ∀m ∈ [1, c]. Intuitively, we can see that as
the number of channels c increases, the bandwidth for each
channel decreases and hence the data rate supported by each
channel will be less; see eq (4); (b) channel model II: In this
model, we have Wm = W, ∀m ∈ [1, c]. In contrast to channel
model I, we can observe that each channel has a bandwidth
of W and hence, higher data rate. The derivation of all the
proofs in this work is based on the assumption of channel
model I. However, all the results under channel model II can
be obtained by replacing W by W.c.

IV. MAIN RESULTS AND DISCUSSION

This section summaries our main results of network capacity
analysis under both the basic mode and power mode. In the
cases where power mode is not available, only results under the
basic mode are presented. Besides, we plot the gain of power
mode over basic mode for arbitrary and random placement of
nodes in Fig. 2 and 3, respectively. We determine the gain as
follows: power mode capacity/basic mode capacity.

Theorem 1. The network capacity of a (Á, c) arbitrary net-
work with n nodes is given as:
1. When c̃ < c < nÁ

2 , the network capacity is

Θ(Bpower

√
nÁc̃
¼ ) and Θ(Bbasic

√
nÁc̃
¼ ) respectively for power

and basic modes.
2. When c ≤ c̃ < nÁ

2 , the network capacity for basic mode is

Θ(W√
c
log(´)

√
nÁ
¼ ) .

3. When c ≥ nÁ
2 , the network capacity is Θ(BMaxnÁ

2 ) and
Θ(BbasicnÁ

2 ) for power and basic modes.

Theorem 2. The network capacity of a (Á, c) random network
with n nodes is given as:

Fig. 3. Gain of power mode over basic in random case for ® = ´ = 2, Á =
K = 1 (Figure not to scale).

1. When c̃ < c < nÁ/2 and c̃ = O(log n), the network capac-
ity is Θ(Bpower.c̃

√
n

logn ) and Θ(Bbasic.c̃
√

n
logn ) for power

and basic modes respectively. When c̃ ≥ c and c = O(logn),
the network capacity is Θ(W log(´)

√
n

logn ) for basic mode.
2. When c̃ < c < nÁ/2, c̃ = Ω(log n) and also
O(n( log log n

logn )2), the network capacity for power and basic
modes are
Θ(Bpower

√
nÁc̃
¼ ) and Θ(Bbasic

√
nÁc̃
¼ ) respectively. When

c̃ ≥ c and c = Ω(log n) and also O(n( log logn
logn )2), the network

capacity is Θ(W√
c
log2(´)

√
nÁ
¼ ) for basic mode.

3. When c̃ < c < nÁ/2, c̃ = Ω(n( log log n
log n )2), the network ca-

pacity is Θ(
BpowernÁ

F (n) ) and Θ(BbasicnÁ
F (n) ) under power and basic

modes respectively. When c̃ ≥ c and c = Ω(n( log logn
logn )2),

the network capacity is Θ(BbasicnÁ
F (n) ) for basic mode, where

F (n) = Θ
(

logn
log logn

)
.

4. When c ≥ nÁ/2, the network capacity is Θ(BMaxnÁ
F (n) ) for

power mode.
where Bpower = W

c log2(´(
c
c̃ )

®/2), Bbasic = W
c log2(´),

BMax = W log2(´.n
K)

c and WnÁ
2c defined by (12)-(14).

It follows from Theorems 1 and 2 that the capacity of basic
mode goes down by a factor of Θ(log( cc̃ )

®
2 ) in the regime

c̃ < c < nÁ/2 (see the region min(c̃, c) = c̃ in Fig 2 and 3)
and by a factor of Θ(logn)/Θ(n) (see the region c = Ω(n)
in Fig 2 and 3) in the regime c ≥ nÁ/2, on contrary to the
power mode. (1) Channel-Constraint Regime. In the region
c̃ < c < nÁ/2, the capacity loss of basic mode is due to the
fact that the network has already reached the maximum set
of coexisting transmissions with c̃ and hence those remaining
c − c̃ channels will be unused. This in turn implies that
the area occupied by all those concurrent transmissions over
c − c̃ channels will be wasted and if the transmission disks
are distributed to all the channels, then only c̃

c of the whole
area will be covered by the transmissions on each channel.
Alternatively, each transmission disk can occupy an area c

c̃
times larger; the larger area in fact allows each node to
scale up its transmission power from Pmin to Pmin(

c
c̃ )

®
2 to

fully utilize the areas over all c channels for higher capacity.
Based on such channel allocation and power level, we can
obtain a gain of log( cc̃ )

®
2 per node without increasing the
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number of radios. However, when c̃ ≥ c we see that there
is no point in increasing the transmit power level from Pmin

as all the channels are needed to be exploited for conflict-
free transmissions and consequently end up with the same
capacity as in [6]. For instance, in Fig. 2 and 3, we see the
gain of power mode as Θ(1) in the region min(c̃, c) = c.
(2) Power-Constraint Regime. In a network of n nodes each
with Á interfaces, there are total of nÁ interfaces in the
network. Since each interface cannot transmit and receive at
the same time, the maximum number of pairs of interfaces
available for concurrent transmission is no more than nÁ/2.
Thus in the power-constraint region (c ≥ nÁ/2), each node can
transmit at the maximum power level Pmax without interfering
other coexisting transmissions. In this region, as there is no
constraint on channels, we choose two power assignments:
(a) polynomial power mode. Under this assignment, each
node can be realized with a gain of Θ(log(n)) over the
basic mode (see Fig 2 and 3). Now, using the fact that the
transmissions between nodes occur at a distance of O(1/

√
n)

[2], the minimum transmit power of each node will at most
1

(
√
n)®

which in turn implies that Pmax is at most Pmin(n)
K =

Θ(nK−®
2 ). If we choose K = ®/2, the maximum power can

be bounded by an order of Θ(1), independent of n. One may
note that the parameter K in fact depends on the amount of
power resources available at a node. (b) exponential power
mode. Under this assignment, each node can be realized with a
gain of Θ(n) over the basic mode. Particularly, we observe that
when the channels are split into nÁ

2 subchannels, the capacity
of the arbitrary and random network under this power level
are Θ(Wn) and Θ(Wn log log n

logn ) respectively. Alternatively,
the throughput available to each node is at the order of Θ(W )
which is a contrasting result to [6] that claims the end-to-end
throughput of each node under channel partition approaches
zero when c = nÁ

2 . This significant capacity gain follows from
the Shannon-Hartley theorem which states that data rate is a
function of SNR and hence, as the SNR increases with the
power, we obtain an increased data rate, at the rate of Θ(n), for
each partitioned channel. Though channel-constrained region
is a more practical scenario and the focus of this paper, we
observe that the feasibility of power-constrained region in turn
depends on the power availability of a node, as indicated by
this example.

V. SOME USEFUL LEMMAS

In this section, we derive some results that is used to obtain
the capacity bounds of the power mode.

Lemma 1. Receiver Interference Model: In a wireless net-
work under protocol interference model, let (Xi, XR(i)) and
(Xk, XR(k)) be two simultaneous active transmitter-receiver
pairs over the same channel, then a disk of radius Δ

2 (di,R(i))
centered at XR(i) and a disk of radius Δ

2 (dk,R(k)) centered at
XR(k), where Δ = (¾´¯ )

1
® − 1, must be disjoint.

Proof: Let (Xi, XR(i)) and (Xk, XR(k)) be two active
transmitter-receiver pairs. From equation 1, we can compute
Pi and Pk as ≥ ´d®i,R(i) and ≥ ´d®k,R(k) respectively. Thus,

the preceding equations can be rewritten as follows:

Pi = ¾´d®i,R(i) and Pk = ¾´d®k,R(k) (5)

where ¾ > 0. Recall that the protocol model places the
following constraints on the relative locations of these nodes
and using equation 2, we get:

dk,R(i) ≥ (
¾´

¯
)

1
® dk,R(k) (6)

di,R(k) ≥ (
¾´

¯
)

1
® di,R(i) (7)

Using the triangle inequality first, we can derive the following
relation between the location of the node pairs (Xi, XR(i))
and (Xk, XR(k)).

dR(i),R(k) + dk,R(k) ≥ dR(i),k

dR(i),R(k) ≥ (
¾´

¯
)

1
® dk,R(k) − dk,R(k) (8)

Similarly we can write,

dR(i),R(k) ≥ (
¾´

¯
)

1
® di,R(i) − di,R(i) (9)

Adding the inequalities in (8) and (9), we obtain dR(i),R(k) ≥
Δ
2 (di,R(i) + dk,R(k)), where Δ = (¾´¯ )

1
® − 1. Note that

XR(i) and XR(k) are the receivers and we can deduce
this inequality to say that for transmitter-receiver pairs
(Xi, XR(i)) and (Xk, XR(k)) to be active, then a disk of

radius
(¾´

¯ )
1
® −1

2 (di,R(i)) centered at XR(i) and a disk of radius
(¾´

¯ )
1
® −1

2 (dk,R(k)) centered at XR(k) should not overlap.
Remark 1. It follows from Lemma 1 that the radius of
the interference disk centered around each receiver directly
depends on Δ, where Δ = (¾´¯ )

1
® − 1. For instance, consider

two power levels Pmin and Pmin
c
c̃

®
2 . From subsection III-C,

it follows that Pmin = (N0Wm + k1)´d
®
i,R(i) and hence

Pmin
c
c̃

®
2 =(N0Wm + k1)´d

®
i,R(i)

(
c
c̃

®
2

)
. From Eq.5, it also

turns out that Pi = ¾´d®i,R(i), ∀i ∈ TX . This implies that
¾ > 0 takes values (N0Wm + k1) and (N0Wm + k1)

c
c̃

®
2

respectively for transmit power levels Pmin and Pmin
c
c̃

®
2 ,

where k1 = k0¯ is a constant that follows from Lemma 2.
Since the radius of the interference disk directly depends
on Δ = (¾´¯ )

1
® − 1, one may note that an increase in

transmit power can in fact lead to an increase in the radius
of the interference disk. In the following lemma, we further
show that when each node transmit on a power level, say P
(Pmin ≤ P < Pmax) and Δ is in turn tuned to reflect the
transmit power level of the node, the sum of interference at a
receiver due to all simultaneous transmissions can be bounded
by a constant.

Lemma 2. Let (Xa, Xb) be an active transmitter-receiver pair.
When c < nÁ

2 , the accumulated interference at receiver Xb due
to all the simultaneous transmitter-receiver pairs under basic
mode and channel-constraint regime is bounded by a constant
k1 = k0¯, where k0 =

∑∞
y=0 8

(
y+1

(2y+1)®

)
.

Proof: We suitably modify the approach in [1] (chapter
9, pp.315) to prove this Lemma. Suppose a network in which
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each node is transmitting with power level P , Pmin ≤ P <
Pmax. Consider a receiver Xb and its transmitter Xa placed
at a distance of at most r(n) apart. Let ± = (¾´¯ )

1
® r(n) be a

guard zone around the receiver in which no other transmitters
are located (note that the value of ± follows from equation (7)
which states the minimum distance between a receiver and
other simultaneous transmitters for a successful reception of
data). To bound the sum of interference at the receiver Xb, we
should take into account all the simultaneous transmissions.
Therefore, consider a closely packed disks of radius ± of all
simultaneous transmitter-receiver pairs placed around receiver
Xb. According to protocol interference model, we know that
each of these simultaneous transmitters should be placed at
a distance of at least (2y + 1)± for y = 0, 1 ⋅ ⋅ ⋅ from the
receiver. Now consider the annulus between ytℎ and (y+1)tℎ

distance from receiver Xb. The number of transmitters inside
this annulus cannot be more than ¼((2y+3))±2−¼((2y+1))±2

¼±2 =
8(y + 1) transmitters. Thus, an upper bound on the sum of
interference power received at Xb can be determined as fol-
lows:

∑∞
y=0

P (8y+1)
((2y+1)±)® > 8P

±®

∑∞
y=0

y+1
(2y+1)® = k0P

±® ≤ k0¯,

where k0 =
∑∞

y=0 8
(

y+1
(2y+1)®

)
. The sum converges and is

smaller than 8+ 8
2® [³(®−1)], where ³(®−1) is the Reimann

Zeta Function. Moreover, the last inequality stems from the
fact ± = (¾´¯ )

1
® r(n) and P

r(n)® = ¾´; from Remark 1, we
know that ¾ and P is dependent on each other.

Remark 2. Lemma 2 holds true only for the basic mode and
the channel-constraint regime of the power mode in the region
c < nÁ/2. Otherwise as c ≥ nÁ/2, the sum of interference at
a receiver can be regarded as negligible, i.e., k1 ≈ 0. This is
because in a network with n nodes each with half-duplex Á
interfaces, the number of simultaneous transmissions possible
at a given time is no more than nÁ/2. Therefore when c ≥
nÁ/2 channels are available, it implies each transmission on
an interface could have a dedicated channel.

Lemma 3. For a random network with n nodes and the cell
area of s(n) = k2 logn

n , k2 > 1 is a constant, there is no empty
cell whp when n → ∞.

Proof: Let y = 1/s(n) be the number of cells in a torus
of unit area and then the probability that each node can be in
any cell is given by 1/y = k2 logn

n . Let Ei be the event that
cell i is empty. Then, the probability that cell i is an empty
cell is P (Ei) = (1− k2 log n

n )n. Therefore using union bound
[P (

∪y
i=1 Ei) ≤

∑y
i=1 P (Ei)], we get the probability that an

empty cell exists as no more than n
k2 logn (1− k2 logn

n )n. When

n → ∞, this probability is lim
n→∞

n

k2 log n
(1 − k2 log n

n
)n =

lim
n→∞

n

k2 logn
e−k2 logn = lim

n→∞
n1−k2

k2 log n
= 0, where the first

equality follows from lim
x→∞

(1− 1

x
)−x=e.

Lemma 4. For a (Á, c) arbitrary network with n nodes and
c < nÁ

2 , the network capacity is upper bounded by: (a)

O

(
W
c log(´( cc̃ )

®/2)
√

nÁc̃
¼

)
when c̃ < c for power mode;

(b) O
(

W
c log(´)

√
nÁc̃
¼

)
when c̃ < c for basic mode; and (c)

O

(
W√
c
log(´)

√
nÁ
¼

)
when c̃ ≥ c for basic mode.

Proof: We study the transport capacityConsider now the
set of all the transmitter-receiver pairs (Xi, XR(i)) : i ∈ TX

and denote this set by S. We assume that the network
operates in a time slotted manner and that the nodes are
synchronized. We will also assume that in each slot B bits
are transmitted. Then the transport capacity of the network is
given by B

∑
S di,R(i) bit-meters in this slot. From Lemma 1,

we know that the disks of radius Δ
2 di,R(i) centered at each

receiver XR(i), will be disjoint. Since the disjoint disks are
to be non overlapping, the sum of the areas of the disks on
each channel is bounded above by the area of the domain
(1m2); thus summing over all the min(c̃, c) channels, we have
the constraint given by eq.(10). Remark 3. In [6], authors
assume that c channels are present in the network and hence
the summation of the areas of each disk on each channel sum
to 1. However, this reasoning is not accurate. Recall from
Section 1, when c̃ < c only c̃

c channels are utilized due to
the minimum power assumption and hence, the summation of
area of each disk on each channel is upper bounded by O( c̃c ).
This also implies that if each node increases its disk radius by√

c
c̃ , then all existing c channels can be exploited. On the other

hand, note that the reasoning of [6] holds true when c̃ ≥ c.
Combining the two conditions

∑
S

¼Δ2d2
i,R(i)

4 ≤ min(c̃, c)

and
∑

S

¼(
√

c
c̃Δ)2d2

i,R(i)

4 ≤ c for basic and power mode
respectively, we can write:

∑

S

d2i,R(i) ≤
4min(c̃, c)

¼Δ2
(10)

Since there are n nodes with Á interfaces in the network, it is
not difficult to see that ∣S∣ ≤ nÁ

2 . From the Cauchy-Schwarz
inequality, we can write

∑

S

di,R(i) ≤
√∑

S

d2i,R(i)

∑

S

1 ≤
√

nÁ

2

∑

S

d2i,R(i)

≤
√

nÁ

2
∗ 4min(c̃, c)

¼Δ2
=

1

Δ

√
2nÁmin(c̃, c)

¼
(11)

We look at the following cases to determine the data rate
B. (1) Bpower. when c̃ < c < nÁ

2 , although c channels are
present in the network, no more than c̃ channels are utilized
under minimum power Pmin. Hence to completely exploit the
existing c channels, each node in the power mode, can increase
the disk size by

√
c
c̃ . This in turn implies that each node

can scale its power from Pmin to Pmin(
√

c
c̃ )

®. Substituting
Pmin(

√
c
c̃ )

® in equation (4) and using Wm = W/c, we get

Bpower =
W

c
log2(

Pmin(
√

c
c̃ )

®

(di,R(i))®

N0Wm + k1
) =

W

c
log2(´(

c

c̃
)®/2) (12)

Substituting Bpower and eq.11 in B
∑

S

di,R(i), we obtain

the transport capacity as W
cΔ log2(´(

c
c̃ )

®/2)
√

2nÁc̃
¼ . (2) Bbasic.
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when c̃ < c < nÁ
2 , each node sends at the minimum power

level Pmin in the basic mode, the data rate Bbasic is given by:

Bbasic =
W

c
log2(´) (13)

Substituting Bbasic and eq.11 in B
∑

S

di,R(i), we obtain the

transport capacity as W
cΔ log2(´)

√
2nÁc̃
¼ .

(3) Bbasic. when c̃ ≥ c < nÁ
2 , each node can commu-

nicate only at the minimum power level Pmin as all the
existing c channels are needed to be exploited for conflict-
free transmissions. Thus, substituting Bbasic = W

c log2(´)

and eq.11 in B
∑

S

di,R(i), we obtain the transport capacity

as W√
cΔ

log2(´)
√

2nÁ
¼ .

Lemma 5. For a (Á, c) arbitrary network with n nodes and
c ≥ nÁ

2 , the network capacity is O(BMaxnÁ
2 ) and O(BbasicnÁ

2 )
for power and basic modes respectively, where Bbasic and
BMax are defined in eq. (13)-(14).

Proof: In a network of n nodes each with Á radios, the
maximum number of simultaneous transmissions feasible is
nÁ
2 . Since c ≥ nÁ

2 , each communicating pair can transmit
at the maximum power level Pmax (Pmin) to obtain a data
rate of BMax (Bbasic) under power (basic) mode. Further, the
maximum distance a bit can travel in the network is O(1)
meters. Thus, the network capacity is at most O(BMaxnÁ

2 )

and O(BbasicnÁ
2 ) bit-meter/sec for power and basic modes

respectively.

VI. CAPACITY ANALYSIS

A. Random Networks
In this section, we characterize the upper and lower bounds

of the power mode in random networks. We assume that n
nodes are randomly deployed on the surface of a torus of
unit area. Each node selects a destination randomly to which
it transmits ¸(n) bits/sec. The maximum value of ¸(n) that
can be supported by every source-destination pair with high
probability (whp) is defined as the per-node throughput of the
network [2], [6]. Since there are total of n flows—the traffic
from a source node to destination node is termed as a flow)—
the network capacity is defined to be n¸(n). In the sequel, we
denote d(n) as the average distance between two nodes in a
random network with n nodes.

1) An Upper Bound on Capacity: The capacity of MR-MC
networks is limited by the following three constraints [6], (a)
connectivity, (b) interference and (c) destination bottleneck-
power constraint and each of them is used to obtain a bound on
the network capacity in random settings for given parameters
c̃ and c. In particular when min(c̃, c) < nÁ/2, the minimum
of the three bounds is an upper bound on the network capacity.
And, when c ≥ nÁ/2, the upper bound on capacity is given
by the destination bottleneck-power constraint.
Connectivity Constraint: In random networks, this constraint
is shown as the necessary condition, See [2], to ensure
that the network is connected whp. It follows from [2] that
the number of concurrent transmissions on any particular

channel is no more than 1

¼Δ
2

2
d(n)2

. Observing that each
transmission over the mth channel is of B bps (See sec-
tion III-C) by summing all the transmissions taking place
at the same time over all the min(c̃, c) channels, we obtain

4
¼Δ2d(n)2

min(c̃,c)∑
m=1

B =
4Bmin(c̃, c)

¼Δ2d(n)2
bits/second. Moreover,

since each source-destination of a flow is separated by an
average of Θ(1)—due to the assumption of a torus of unit
area—distance, we have the average number of hops as
Θ( 1

d(n) ) between each source-destination pair. Now, there
are total of n sources and when each source generates
¸(n) bits/second, then the total number of bits per second
served by the entire network is at least n¸(n)/d(n). To
guarantee that all the required traffic is carried, we thus
need n¸(n)

d(n) ≤ 4Bmin(c̃,c)
¼Δ2d(n)2 . In a precursor result [2], we see

that d(n) >
√

logn
¼n is necessary to ensure connectivity in

random networks whp, and hence the distance between two
nodes should be at least k3

√
log n
¼n , where k3 > 1. This in

turn implies that minimum transmit power Pmin should be
(N0Wm+k1)´(

k2
3 logn
¼n )®/2. Now, substituting d(n) >

√
log n
¼n

we have n¸(n) ≤ 4B
√
nmin(c̃,c)

Δ2
√
¼ log n

. Following the same deriva-
tion techniques in eq.(12-13), we obtain the final bounds on
capacity as follows: (a) O

(
Bpower.c̃

√
n

log n

)
when c̃ < c

under power mode; (b) O
(
Bbasic.c̃

√
n

log n

)
when c̃ < c under

basic mode; and (c) O
(
W log2(´)

√
n

log n

)
when c̃ ≥ c under

basic mode.
Interference Constraint: The capacity of random networks
using multiple channels is also constrained by interference. In
arbitrary setting, we capture the capacity of the power mode
in the region c̃ < c < nÁ/2, See Lemma 4, as

O

(
Bpower

√
nÁc̃
¼

)
bit-meter/second. Since this upper bound

is optimal for all situations, it applies to random networks
as well. Also, in a random network each of the n source-
destination pairs are separated by an average of Θ(1) meters
and thus we have the capacity of power mode in random

setting as at most O
(
Bpower

√
nÁc̃
¼

)
bits/sec.

Destination Bottleneck-Power Constraint: In a random net-
work, each source randomly selects a destination and as a
result, the network capacity will also be restricted by the
number of flows towards a destination node, D. The maximum
number of flows, F (n), from source nodes to a chosen
destination is bounded by Θ

(
logn

log logn

)
[6], which in turn leads

to a network capacity under this constraint as BnÁ
F (n) bits/second.

We now have the following two cases: (i) c̃ < c < nÁ/2. In
this regime, each node can transmit at power Pmin(

√
c
c̃ )

® to
utilize all the existing c channels for power mode, and thus
following the same approach in eq.(12), the maximum network
capacity under the destination bottleneck constraint is given by
O(

BpowernÁ
F (n) ). However in basic mode, since each node can

transmit only at the minimum power level Pmin, we obtain
the capacity as O(BbasicnÁ

F (n) ). (ii) c ≥ nÁ/2. In this regime,
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it implies that each node can tune its interface to a different
channel and can transmit at the polynomial or exponential
maximum power level, without interfering other transmissions
in the network. Therefore using Pmax, Wm = W/c in
equation (4) and setting k1 ≈ 0 (follows from Lemma 2),
we obtain BMax as

BMax =

{
W log2(´.n

K)
c polynomial;

W (log2 ´+nÁ
2 )

c ≈ WnÁ
2c exponential;

(14)

and the maximum network capacity for destination bottleneck-
power constraint as O(BMaxnÁ

F (n) ).
2) A Lower Bound on Capacity: In this section, we provide

the lower bound construction for a single interface multi-
channel network according to Lemma 2 from [6] which states
that the capacity for the (Á, c) network can be obtained by
replacing c in the results with c

Á .
To prove that the upper bound in Section VI-A1 can be

quite tight, we construct a network and then design both
a routing scheme and a transmission schedule. Our routing
scheme follows a cell-based approach. We divide the unit torus
into equal-sized squares (or cells) of area

s(n) = min

Ã
max(

logn

n
,
min(c̃, c)

n
),

(
log log n

logn

)2
)

and set

the transmission distance as d(n) =
√
8s(n) so that a node in

one cell can transmit to some other node in its four neighboring
cells. Specifically the size of each cell is chosen to satisfy
the three constraints given in Section VI-A1. Intuitively, the
area of the cell in fact determines the range of transmission,
Θ(

√
s(n)), and correspondingly the minimum number of

channels, c̃, for reaching conflict-free in a neighborhood. For
instance, it follows from [1] that c̃ ≈ nΔ2d(n)2; implying
that c̃ should be at least ns(n) in this construction. Hence
for s(n) = 50 log n

n , we see that c̃ is at least O(log n). Our
next step is to draw a line to connect each source-destination
(S-D) pair which passes through some cells. One node is
chosen from each of these cells to relay the traffic from the
source node to its destination. Such a routing scheme requires
at least one node in each cell. From Lemma 3, it follows
that the probability of existence of an empty cell is low if
s(n) = 50 logn

n . We next bound the number of nodes that are
present in each cell of size s(n). We have the following lemma
from [4].

Lemma 6. (Ref.[4]) If s(n) is greater than 50 log n
n , each cell

has Θ(ns(n)) nodes per cell, whp.

Once the number of nodes in a cell is determined, our next
step is to bound the number of cells that will interfere with
a given cell, which in turn is given by the following Lemma
from [4].

Lemma 7. (Ref.[4])The number of cells that interfere with
any given cell is bounded by a constant k4 = 16(2+Δ)2, i.e,
independent of n and s(n).

Routing Scheme: In the cell based routing scheme we
choose a route with the shortest distance to forward packets. A
straight line, S-D, is passing through the cells where nodes S
and D are located [here, S refers to the source of the flow

and D refers to the final destination of the flow]. Packets
are delivered along the cells lying on the S-D line. Then, we
choose a node within each cell lying on the straight line to
carry that flow. For load balancing [6], we assign each flow to
a node within a cell that has been assigned the least number of
flows. Thus, each node has nearly the same number of flows.
We use the result in [4] to bound the number of S-D lines
passing through any cell. We state their lemma here.

Lemma 8. (Ref.[4]) The maximum number of lines passing
through any cell is O(n

√
s(n)) whp.

It follows from Lemma 6 that each cell has Θ(ns(n)) nodes
with whp. Besides, each cell has O(n

√
s(n)) flows based on

Lemma 8 and hence each node in the network is assigned
at most O( 1√

s(n)
) flows due to load balancing. Noting that

each node in the cell is simultaneously a source S, a potential
destination D and a relay for other S-D pairs, the total flows
assigned to every node is O(1+F (n)+ 1√

s(n)
) ≈ O( 1√

s(n)
).

Scheduling Scheme: Though we construct the scheduling
scheme for single interface multi-channel network, these re-
sults can be easily extended to multi-interface network by
using the lemma from [6]. Now, any transmissions in this
model must satisfy the following two constraints: (a) each
interface only allows one transmission/reception at the same
time; and (b) any two transmissions on any channel should not
interfere with each other. We propose a time-division multi-
access (TDMA) scheme to schedule transmissions [2], [6],
which satisfy the aforementioned constraints. In this scheme,
a second is divided into a number of slots and at most
one transmission/reception is scheduled at every node during
slot which satisfies the constraint (a). Further, each slot is
divided into mini-slots and in each mini-slot, each transmission
satisfies the constraint (b). First, noting that the total flows
assigned to any node is O( 1√

s(n)
) and each interface allows

only one transmission/reception at the same time, we divide
every one second time period into O( 1√

s(n)
) slots. Thus, each

slot has a length of 1

1/
√

s(n)
= Ω(

√
s(n)) seconds. Second,

we divide each slot into mini-slots to satisfy constraint (b).
We build a schedule that assigns a transmission to a node
in a mini-slot within a slot over a channel. We construct a
conflict graph in which nodes represent the vertices of the
graph and edges denotes interference between two nodes.
Based on Lemma 7, every cell has at most k4 interfering
cells and each cell has Θ(ns(n)) nodes based on Lemma 6.
Hence, each node has at most O(k4ns(n)) edges in the
conflict graph. If we use different vertex-color to represent
each time slot, then the scheduling problem reduces to the
well-studied vertex-color problem. Hence the required number
of colors is at most 1 + k4ns(n) ≈ k5ns(n), where k5
is a constant. We now schedule the interfering nodes either
on different channels or on different minislots on the same
channel. The following channel allocation policy is employed:
(a) min(c, c̃) = c̃: In basic mode, c̃ channels are necessary to
reach conflict-free state and so all those interfering nodes will
be allocated among c̃ channels. However in power mode, each
node will leverage a power level of Pmin(

√
c
c̃ )

® to utilize all
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the existing c channels. Thus, we will allocate those interfering
neighbors among c existing channels. (b) min(c, c̃) = c: In
this case, we will allocate all the interfering nodes among c

channels. As a result, we can divide each slot into
⌈
k5ns(n)
min(c̃,c)

⌉

mini-slots on every channel and assign the mini-slots on
each channel from 1 to

⌈
k5ns(n)
min(c̃,c)

⌉
. Now, we analyze the

achievable throughput, ¸(n), of this network. Recall that each
slot has a length of Ω(

√
s(n)) seconds and each slot is

further divided into
⌈
k5ns(n)
min(c̃,c)

⌉
mini-slots over every channel.

Therefore, each mini-slot has a length of Ω(
√

s(n)⌈
k5ns(n)

min(c̃,c)

⌉ ). Since

each channel can transmit at the rate of B bps, in each

minislot ¸(n) = Ω(
B
√

s(n)⌈
k5ns(n)

min(c̃,c)

⌉ ) can be transported. Noting

that
⌈
k5ns(n)
min(c̃,c)

⌉
≤ k5ns(n)

min(c̃,c) + 1, we have Ω(
B
√

s(n)min(c̃,c)

k5ns(n)+min(c̃,c) ).

Note that we choose d(n) =
√
8s(n) as the maximum

transmission distance with which a node can transmit to some
node in its four neighboring cells; This in turn implies that
the minimum transmit power should be at most ¾´d(n)®.
Also since the maximum distance is of

√
8s(n), we have the

distance between any two neighboring nodes as O(
√
s(n)).

We now have the following lower bounds on network capacity:
(a) When c̃ < c < n/2 and c ≥ n/2, the network
capacity in basic mode is Ω(min(Bbasic.c̃√

s(n)
, Bbasicn

√
s(n)))

(b) When c̃ < c < n/2, the network capacity in power mode
is Ω(min(

Bpower.c̃√
s(n)

, Bpowern
√
s(n))) respectively. (c) When

c ≤ c̃ < nÁ/2 and c ≥ n/2, the network capacity in basic
mode is Ω(min(Bbasic.c√

s(n)
, Bbasicn

√
s(n))).

Substituting for s(n) =min(max( logn
n , min(c̃,c)

n ), 1
F (n)2 ),

we have the capacity bounds given by Theorem 2. Moreover,
when c ≥ n/2 each node can utilize the maximum power
Pmax to obtain the network capacity for power mode as
Ω(min(BMax.c̃√

s(n)
, BMaxn

√
s(n))).

B. Arbitrary Networks

In Lemma 4 and 5, we captured the upper bounds on
arbitrary networks. Similar to random networks, based on

n

c2

n

c2

dk )2(

Fig. 4. Figure on the left shows the arrangement of the transmitters in the domain
of area = 1m2. The distance between each transmitter is (2 +

√
kΔ)d, where k =

c
min(c̃,c)

, and the receiver of the corresponding transmitter can be placed at any of
the locations marked as X , which is at a distance of d from the transmitter. From this
arrangement, the distance between two receivers is (

√
kΔ)d and hence, according to

Lemma 1, the disks of radius (
√
kΔ) d

2 centered around each receiver do not overlap.

Lemma 2 from [6], we provide the lower bound construction
for single radio multi-channel network. The proof is sketched
here for brevity. Consider a torus of unit area. We divide the
domain into n

2c cells and place c transmitter-receiver pairs

on each cell. Consider the region c < n
2 . From Fig. 4, it

can be verified that there are total of n
2c ∗ c = n

2 coexisting
transmissions and each transmitting at a rate of Bpower over

a distance of d =

√
2c
n

2+
√
kΔ

, where k = c
min(c̃,c) . Hence

the total capacity of the network is Bpowernd
2 bit-meters/sec.

Substituting for k and d, we obtain the network capacity
as Ω(W

√
nc̃

c log2(´(
c
c̃ )

®/2)) for power mode. Now consider
c ≥ nÁ

2 . In this case, we partition the area into n
2g cells, where

g = min(c, n
2 ), and place g communicating pairs in each cell.

Each pair communicate at a rate of BMax over a distance of
d =

√
2g
n = 1 (as g = min(c, n

2 ) and c ≥ nÁ
2 ). From such a

construction, it can be verified that there are total of n
2g ∗g = n

2
coexisting transmissions and the total capacity of the network
as BMaxn

2 bit-meters/sec.

VII. CONCLUSION

The findings of this paper mainly stipulate that power is a
crucial factor in MR-MC networks and hence, by intelligently
leveraging it one may be possible to realize significant gain
on capacity of MR-MC wireless networks. The results derived
in this work particularly reveal that, when there are sufficient
number of channels c < nÁ

2 or c ≥ nÁ
2 , then exploiting co-

channel enlarging effect with power can help to realize higher
capacity.
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