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Longitudinal Tension Variation in 
Collapsible Channels: A New 
Mechanism for the Breakdown of 
Steady Flow 
There are several mechanisms potentially involved in the breakdown of steady fluid 
flow in a collapsible tube under external pressure. Here we investigate one that has 
received little attention in the past: the fact that the longitudinal tension in the tube 
wall, T, decreases with distance downstream as a consequence of the viscous shear 
stress exerted by the fluid. If the tube is long enough, or the initial tension small 
enough, T may fall to zero before the end of the collapsible tube, and unsteady 
motion would presumably then ensue; this is what we mean by "breakdown. " We 
study the phenomenon theoretically, when the flow Reynolds number is of order 
one, using lubrication theory in a symmetric two-dimensional channel in which the 
collapsible tube is replaced by membranes occupying a segment of each wall. The 
resulting nonlinear ordinary differential equations are solved numerically for values 
of the dimensionless parameters that cover all the qualitatively different types of 
solution (e.g., in which the channel is distended over all its length, collapsed over 
all its length, or distended in the upstream part and collapsed do wnstream). Reducing 
the longitudinal tension has a marked effect on the shape of the collapsible segment, 
causing it to become much more deformed for the same flow rate and external 
pressure. Indeed, the wall slope is predicted to become very large when the down
stream tension is very small, so the model is not self-consistent then. Nevertheless, 
the parameter values for which T becomes zero are mapped out and are expected 
to be qualitatively useful. The relationships between the values of T during flow 
and its value before the flow begins is also considered. 

1 Introduction 
There are numerous physiological examples of elastic tubes 

through which fluid flows, steadily or unsteadily, with internal 
pressure below the external pressure so there is a tendency for 
the tube to collapse. Examples include veins, coronary arteries, 
large airways, the ureters and urethra, etc, (see [11, 17] for 
suitable reviews). Many workers (e.g., [2, 3, 5, 7]) have per
formed laboratory experiments to investigate collapsible tube 
flow: a segment of collapsible tube is mounted (usually with 
some longitudinal tension) between two rigid tubes and is con
tained in a chamber whose pressure Pe can be independently 
controlled. Fluid is driven at volume flow rate Q through the 
tube by the maintenance of a steady reservoir pressure Pr far 
upstream, which exceeds both Pe and the far downstream pres
sure Prf. In steady flow experiments the pressure drop along 
the collapsible segment, AP, is plotted against Q; different 
results are obtained depending on what pressure difference is 
held constant as Q is varied [11]. 

In virtually all reported experiments, except those at very 
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low Reynolds number, the steady flow gives way to self-excited 
oscillations over a wide range of parameter values. Many the
oretical models have been proposed to explain the breakdown 
of steady flow, and somewhat fewer to describe the subsequent 
large amplitude oscillations. However, research in the area is 
still at the stage of discovering new potential mechanisms of 
breakdown, so the full description of the nonlinear oscillations 
that occur in a given experiment is a distant goal. It is the 
purpose of this paper to propose and explore yet another new 
mechanism of breakdown. 

Previous theories of breakdown fall into two categories: 
models for which it can be shown that no steady flow exists 
for the parameter values of interest, and those for which a 
steady flow exists but is unstable. The familiar example of 
nonexistence is choking: one-dimensional, inviscid, steady flow 
in a uniform tube whose elastic properties are described by a 
tube law (a one-to-one relation between cross-sectional area 
and transmural pressure) cannot exist if the fluid speed is 
predicted to reach the propagation speed of small-amplitude 
long waves anywhere [17]. There is therefore a maximum flow 
rate above which no steady solution exists, for given values of 
Pe and Pd. The inclusion of longitudinal tension in the model 
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Fig. 1 The forces on an element of tube wall when fluid is flowing past 
with velocity u{z) that increases with distance z from the wall. Because 
of the viscous shear force r„ the downstream longitudinal tension T2 is 
less than the upstream tension T,. 

x=0 x=L 

Fig. 2 Sketch of the model problem 

becomes small, because the wall slope becomes large then, but 
the results are expected to be of qualitative value. 

An outline of the paper is as follows. The model is for
mulated quantitatively in the next section, in which the various 
dimensionless parameters governing the system are discussed. 
In Section 3, results are given for examples in which the axial 
tension 7 does not fall to zero at x = L, beginning with the 
relatively simple case of large axial tension, in which 7 varies 
by only a small fraction over the length of the channel. In 
Section 4 the case of greatest interest (but least accuracy in the 
model), in which the tension falls to zero at the downstream 
end of the channel, is considered, leading to the prediction of 
maximum flow rates for given values of 7(0) and L. In Section 
5 the relation of 7(0) to the initial longitudinal tension or stretch 
before the flow is started is examined because of its importance 
experimentally. Further discussion is given in Section 6. 

does not alter this prediction, although the magnitude of the 
maximum flow rate increases with the tension [10]. However, 
the inclusion of energy loss, associated with flow separation 
at the narrowest part of a collapsed tube held open at its ends, 
appears to abolish such flow limitation and permits a steady 
solution to the model equations for all values of Q [10]. In
stability theories include a variety of lumped-parameter models 
[1, 5, 12], flutter analyses [8], local instability of the "roll-
wave" type [14], and global instability of the whole system, 
in which one-dimensional wave-propagation in the elastic tube 
is included, coupled to lumped models of the up and down
stream parts of the system [4, 9]. 

The breakdown mechanism to be discussed in this paper 
comes into the former category, of nonexistence of steady flow, 
and can be outlined very simply. When viscous fluid flows in 
a tube it exerts a longitudinal shear stress on the wall. For 
elements of the wall to remain in equilibrium, therefore, the 
longitudinal tension T(x) must decrease with distance x down
stream (Fig. 1). For a given value of 7(0) at the upstream end 
of the tube x = 0, and for a given flow rate Q, 7 may be 
expected to fall to zero somewhere if the tube is long enough. 
Alternatively, for a given length L of the tube and given 7(0), 
the wall shear rv will tend to increase with Q (this follows 
because TW a TlA~k for some k > 0, where u is the average 
velocity, A tends to decrease as Q is increased as a result of 
the increased pressure drop, and Q = TiA); thus we would 
expect a maximum value of Q above which 7 is predicted to 
fall to zero for x < L. If the wall tension became zero, the 
wall would be extremely flexible and may readily flutter; thus 
the prediction of zero longitudinal tension is assumed to cor
respond to the breakdown of steady flow. (Another physio
logical example where steady flow breakdown arises by the 
same mechanism occurs in a model of the flow of tightly fitting 
red cells in capillaries [16].) The present mechanism is some
what different from that discussed briefly by Gottschalk and 
Sharp [6], who investigated the onset of buckling—i.e., col
lapse—of a circular tube when the circumferential tension fell 
to zero. Longitudinal viscous shear had an effect here too, via 
the Poisson's ratio of the wall material. 

In this paper the reduction of longitudinal tension due to 
viscous shear is isolated from other effects and investigated in 
the simplest possible model. The flow conduit is taken to be 
a symmetric two-dimensional channel consisting of two rigid 
segments joined by a segment of length L of which the walls 
consist of thin membranes under tension (Fig. 2). Viscous 
incompressible fluid flows along the channel under the action 
of a pressure difference; the external pressure can be adjusted 
relative to the pressure at the downstream end of the system. 
The channel width is taken to be slowly varying, and the flow 
Reynolds number to be relatively small, so that lubrication 
theory can be used to describe the fluid motion. This approx
imation is not self-consistent when the downstream tension 

2 Formulation 
The width of the rigid parts of the channel is taken to be 

2H0; the upstream segment is arbitrarily long, while the down
stream segment has length Li (Fig. 2). The slowly varying 
collapsible segment has width 2H(x) and length L (so 0 < x 
< L in this segment). Lubrication theory is used to describe 
the fluid dynamics, so the pressure gradient is everywhere 
related to the flow-rate Q (per unit width of the channel) as 
it would be if the channel walls were parallel (Poiseuille's law): 

3,1x0 
J V = - g T for OrSjesL, (2.1) 

where P is the pressure in the fluid, Px means dP/dx, and y. 
is the viscosity of the fluid. The pressure drop along the down
stream rigid segment is given correspondingly by 

P(L) = (2.2) 

where the pressure at the downstream end of the system (Pd) 
has been taken arbitrarily to be zero. Note that the validity of 
lubrication theory requires that the wall slope H% should be 
small (and higher derivatives correspondingly smaller); in par
ticular it is necessary that 

\ = L/H0»\, (2.3) 

because even when the wall slope is everywhere small, it has 
a discontinuity at the ends (Fig. 2) so there will always be a 
small region at each end where the approximation is dubious. 
The Reynolds number pQ/fi, where p is the fluid density, 
should be small enough that its product with the wall slope is 
also much less than 1. 

There are two components of the force balance equation for 
an element of the membrane. The normal component states 
that the transmural pressure difference is equal to the tension 
T(x) (per unit length in the perpendicular direction) multiplied 
by the curvature; in the slowly varying approximation this 
reduces to 

P,-P=THo< (2.4) 

where Pe is the external pressure. The tangential component 
involves the shear stress and gives 

Tf = HP9 (2.5) 

this is the same as /x times the velocity gradient at the wall, 
equal to HP%/\x in Poiseuille flow. Equations (2.1), (2.4), and 
(2.5) are the nonlinear, ordinary differential equations gov
erning the fourth-order system. The four boundary conditions 
are (2.2) together with 

H(0) = H(L)=H0 (2.6) 

and 

either 7(0) or T(L) is assumed given. (2.7) 
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(It turns out to be more convenient mathematically and com
putationally to regard the downstream value of tension as given 
and the upstream one as to be found see the following.) 

If we use the dimensions H0 and L to scale the variables H 
and X in Eqs. (2.4) and (2.5), we find from the former that 
the pressure gradient has order of magnitude ToH0/L

3, where 
TQ is a scale for the longitudinal tension, while the latter gives 

— multiplied by the gradient in longitudinal tension, T'0 say. 

Thus 

To~\~2T0/L, 

from which we deduce that the change in T along the collapsible 
segment is 0(A~2) times the absolute value of T. It follows 
that, under the lubrication approximation, the model is self-
consistent only if the change in T is a small fraction of T. 
Equivalently, in examining cases in which the change in T is 
comparable with T, it is not self-consistent to use lubrication 
theory. Thus the results to be obtained will give an accurate 
solution of the model problem in the large tension limit (Section 
3.1) but will give only a rough indication of the true mechanics 
in the case of greatest interest, when the downstream tension 
is very small, (Section 4). Indeed, we shall see that when the 
downstream tension tends to zero, the wall slope tends to 
infinity. 

For mathematical purposes, the problem is most conven
iently nondimensionalized as follows: 

V 

3MQ 3MQ 

2H0T(L) 2Hl[Pe-P(L)] 
-,Po = - (2.8) 

3/xQ "•" 3MQ 

The pressure P can be eliminated by substituting (2.4) into 
(2.1) and (2.5), and we end up with two equations for y{x) 
and t(x): 

tx=-\/y2 (2.9) 

( 0 ' » ) * = i / y , (2.io) 
subject to the boundary conditions 

X0) = XX) = 1, W) = t0 or tQO = tx, (2.11) 

and 

tyxx\x=\=Po-
Thus the three dimensionless parameters of the problem are 
the dimensionless length, X (Eq. (2.3)), tx (or t0) and p0-

It is interesting to note that the only pressure difference that 
comes directly into the problem is Pe — P(L), the transmural 
pressure at the downstream end of the collapsible segment. 
The same was found in the high-Reynolds-number, constant 
7, model of Jensen and Pedley [10], and confirms the proposal 
of Brower and Scholten [3] and Bertram et al. [2] that exper
imental results should be plotted in terms of this pressure 
difference, even if it is rather difficult to control experimen
tally. 

The numerical problem represented by Eqs. (2.9)-(2.12), 
although involving only ordinary differential equations, is not 
very straightforward. In an experiment one would work with 
a tube of given length, mounted with a given degree of pre-
stretch (related, but not equivalent, to a given value of 7(0)— 
see Section 5); then for fixed values of (Pe - P{L)) one would 
vary Q and find the corresponding value of T(L), if a solution 
exists. The most interesting result would be the critical value 
of Q for which 7(7,) becomes zero. Numerically that would 
be equivalent to fixing X, p0, and to and computing the value 
of fc the relation between pQ and t0 when tx = 0 would be of 
particular interest. However, that problem is a fourth-order, 
two-point boundary value problem, with two boundary con
ditions at each end. It is much simpler to convert it first to a 

problem with three conditions at one end and one at the other, 
by regarding tx as given and t0 as unknown, and then to treat 
X as an unknown quantity so that each integration of the 
equations for which y(x) - 1 has more than one zero yields 
a solution of the problem for some values of the parameters. 

We therefore transform the .^-coordinate to 

£ = X - x (2.13) 

and rewrite the governing equations as four first-order o.d.e.'s 
in terms of the four dependent variables t, y, v = y', w = 
tv', where a prime means d/d%, as follows: 

/ ' = 1 / / , y' =v, v' = w/t, w' = - 1 / / . (2.14) 

The boundary conditions at £ = 0 (x = X) are taken to be 

«0) = /x, y(0) = 1, y(0) = P, w(0) =po, (2.15) 

where /? is the only constant not supposed given. A solution 
to the physical problem exists if the solution to the mathe
matical problem (2.14) and (2.15) involves _y(?) crossing the 
line y = 1 at some positive value of £. That is then the value 
of X corresponding to the given values of tx, Po, and /3, while 
the value of t at £ = X is t0. As /3 is varied, other values of X 
and t0 corresponding to the same values of tx and p0 may be 
found. 

The solution to this problem for nonzero values of tx is given 
and discussed in the next section. The most interesting case, 
in which t\ = 0, is not quite so simple because of the singularity 
that arises at J = 0 from the third of Eqs. (2.14). That case 
is dealt with in Section 4. 

3 Nonzero Tension Everywhere 
3.1 The Large Tension Limit. We begin with the limit of 

large tx for which, although the tension increases as £ increases, 
the change is only a small fraction of tx. We could therefore 
postulate a simple expansion in powers of l/tx, but that turns 
out to be valid only for 0(1) values of X and self-consistency 
of the lubrication approximation requires X » 1. We therefore 
propose the following further rescaling of the problem 

l = txy\, Ut^t, v = t{nv, w = txmw 

under which the Eqs. (2.14) and boundary conditions (2.15) 
become as follows (where a prime now means d/d£): 

~t' = txin/y2, y' = v, v' = w/l, w' = - l / y 3 (3.1) 

(2.12) with 

W) = 1, A0) = 1, W) = (3, W(0) =p0 (3.2) 

where 

J = A/%Po=txl/3P0. (3.3) 
If we suppose that (3 andp0 are 0(1) as tx — °°, we can postulate 
a series expansion in inverse powers of t x/3 of which the leading 
terms are 

l=\ + tx2nlx(Z) + mm)>y=y(£)+m2n) 
where 

y'" = -l/y\ t{=l/f (3.4a,6) 

subject to 

y(0)=l,y' (0) = P,y"{0)=Po. 'i(0) = 0. (3.5a,b,c,d) 
Thus the problem is reduced to a third order one for y, 

followed by a simple integral of (3.46) for the first correction 
to t. If, for a sojution of (3.4a)_and (3.5a-c), there is a positive 
value of £, say X, such that y(\) = 1, then the posed problem 
has a solution and the corresponding value of X is given by 

X = /i/3X. (3.6) 

The corresponding estimate for t0 is 

t0=txU + tx2/rti(\)l (3.7) 

It is not mathematically obvious that even the restricted third-
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ONE SOLUTION 
(CLASS I) 

P 
2.5 

NO SOLUTION 

NO SOLUTION 

Table 1 Parameter values and results for examples of the 
five classes of solution to the problem for large tension, defined 

by (3.4) and (3.5) 

TWO SOLUTIONS 
(CLASSES IV/V) 

Fig. 3 The p0 - /3 plane, showing the regions in which there exist 
solutions of different classes to the problem defined by (3.4) and (3.5). 
The arrowed broken lines are paths along which X increases from zero 
to infinity. The open circles correspond to the parameter values used 
in the calculation of Fig. 4. 

(a) Class I 

Fig. 4 Solid curves: graphs of /(£) computed from (3.4) and (3.5) (large 
rA) for each of the five classes of solution; parameter values are as given 
in Table 1. In (d), the Class IV solution ends at the first zero of y - 1, 
Class V at the second. Dashed curves: the same plots computed from 
(3.1) and (3.2) with tx = 64 and the same values of p0 and 0 (distinguishable 
only in (i>) and (d)). Note that f = 0 represents the downstream end of 
the tube and has been placed at the right so that flow is from left to 
right. 

order problem has a solution for all real values of p0 and for 
all positive values of X (i.e., whether the original lubrication 
problem with uniform wall tension has a solution for all tube 
lengths and values of p0), although on physical grounds one 
would expect it to do so. The conclusion can in fact be shown 
to be true; the proof will be given elsewhere. 

Equations (3.4) have been solved numerically using a stan
dard Runge-Kutta method [15]; the same method was used for 
all ordinary differential equations arising in this paper. Three-
figure accuracy was checked by varying the internal and initial 
step-lengths, and by reintegrating the equations using different 
independent variables (see Section 4)). In terms of p0 and /3 
the results can be listed, and the solutions categorized in four 
classes, as follows (see Fig. 3): 

Po<0, P<0: there is no solution; 
Po<0, /3>0: there is always one solution (Class I); 
Po>0, /3>0: there is no solution unlessp0 is less than a critical 

value which depends on /?, when there is one 
_ solution (Class II); 

Po>0, /3<0: there is either no solution, one solution (Class 
III), or two solutions (Classes IV and V), de
pending on the values of p0 and /3. 

In the solutions of Class I, for a fixed negative value of p0 the 

Class Po 

4.0 
0.5 
4.0 
1.0 
1.0 

1.0 
0.25 

-1.0 
-0.25 
-0.25 

0.4841 
3.5520 
0.5302 
0.6512 
2.4975 

0.4151 
1.9833 
0.6372 
0.6823 
2.1799 

I 
II 
III 
IV 
V 

value of X increases fromj] to co as /3 increases from zero to 
oo. For fixed positive p0, X increases from zero to infinity as 
/3 follows one of the arrowed paths through zones II and TV/ 
V or III and IV/V: /3 decreases from zero along a branch where 
one solution exists until that disappears, and then increases 
again on the branch where two solutions exist (zone IV/V). 
The path ends on the upper bound of zone IV/V, for p0 > 
pc (see Fig. 3) or the upper bound of zone II, for/>0 < A-

Examples of all five classes of solution are shown as graphs 
of J(£) in Fig. 4; the corresponding parameter values, includ
ing the value of ?i (X) enabling t0 be calculated from (3.7), are 
listed in Table 1 and the corresponding points marked on Fig. 
3. We may note briefly that for solutions of classes I and II 
the channel is distended everywhere, while for those of classes 
III and IV it is (to some extent) collapsed everywhere. For 
solutions of class V it is distended in the upstream part and 
collapsed at the downstream end; such profiles of cross-sec
tional area are familiar both from experiments [5] and from 
other theoretical models (e.g., [10]). 

3.2 Finite Tension. Analytical and numerical investiga
tion of the full Eqs. (3.1) with boundary conditions (3.2) in
dicates that for each positive value of ?x solutions exist that 
are qualitatively similar to those of (3.4) and (3.5). In particular 
the p0 - (3 plane is divided into regions in a similar way to 
Fig. 3, with the same number of solutions existing in each 
region and having the same general shape as depicted in Fig. 
4. For example, if we take ?x = 64, so t[n = 4, then the values 
of po and j3 that led to the five solutions of Fig. 4 and Table 
1 lead to almost indistinguishable solutions, as can be seen in 
Fig. 4. For each of the five cases, the values of X, X, and t0 

are given in Table 2, together with the value of to obtained 
from the large-?x asymptotic solution (Eq. (3.7) and Table 1). 
They are very close. For values of <x as low as 1.0, the same 
values of p0 and /? can be used to generate solutions in each 
of the five classes; the values of X and t0 are also given in Table 
2. Of course the corresponding tube length X, from Eqs. (3.6), 
falls as t\ falls, and in this particular example only the solutions 
in Classes III and V have X sufficiently large compared with 
1 (5.11 and 2.30, respectively) for the lubrication approxi
mation to be reasonable. For /x = 0.1, the same values of p0 

and /3 do not lead to a solution at all in Classes IV/V. 

It is desirable to see what effect a reduction in longitudinal 
tension, as measured by 4> has on the shape of the channel 
walls for fixed values of p0 and X. Since collapsed channels, 
with positive p0, are of greatest interest, we look in particular 
at the solutions of Classes IV and V, depicted in Fig. 4(d). 
The calculations for the dashed curves in that figure used p0 

= 1.0 and had X = 0.6627 for Class IV, X = 2.5042 for Class 
V. When t\ = 64.0, these values correspond to p0 = 4.0 and 
X = 2.651 and 10.017, respectively. We now show the channel 
shapes for the same values of p0 and X but for t\ = 0.1; in 
the computations this means taking £0 = 8.618 and varying 
P until solutions are achieved with X = 5.711 and 21.581, 
respectively. 

The results for channel half-width v are plotted against £ 
(not £) in Fig. 5; the two curves are for /x = 64.0 and 0.1. It 
can be seen that the lowering of tension results in much larger 
variations in channel width v, since hydrodynamic pressure 
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Table 2 Parameter values and results for examples of the five classes of solution to Eqs. (3.1) and (3.2), 
for three values of tk (64.0, 1.0, and 0.1) and the same values of pQ and /3 as in Table 1. In the final 
column, to (pred) is the value of to calculated from (3.7) using the value of t\ from the large tension 

solution (Table 1), for comparison with the directly computed value of t0 in the previous column. 

Class 

I 

II 

III 

IV 

V 

Po 
- 4 . 0 

0.5 

4.0 

1.0 

1.0 

iS 

1.0 

0.25 

- 1 . 0 

-0 .25 

-0 .25 

h 
64.0 

1.0 
0.1 

64.0 
1.0 
0.1 

64.0 
1.0 
0.1 

64.0 
1.0 
0.1 

64.0 
1.0 
0.1 

A> 
-16 .0 
- 4 . 0 
-1.857 

2.0 
0.5 
0.2321 

16.0 
4.0 
1.857 
4.0 
1.0 
0.4641 
4.0 
1.0 
0.4641 

X 

0.4883 
0.5555 
0.9003 
3.656 
5.110 

10.027 
0.5375 
0.6631 
2.073 
0.6627 
0.8950 

2.504 
2.298 

X 

1.953 
0.5555 
0.4179 

14.623 
5.110 
4.654 
2.150 
0.6631 
0.9620 
2.651 
0.8950 

NO SOLUTION 
10.017 
2.298 

NO SOLUTION 

k 
65.67 

1.471 
0.4369 

72.11 
3.582 
1.944 

66.59 
1.814 
1.451 

66.78 
1.942 

72.82 
3.249 

'o (Pred) 

65.66 
1.415 
0.2927 

71.93 
2.983 
1.021 

66.55 
1.637 
0.396 

66.73 
1.682 

72.72 
3.180 

i3.0 

Fig. 5 Graphs of y(Q forp 0 = 4.0, fx = 64.0 and 0.1, and (a) X = 2.651, 
(6) X = 10.017. Note that £ = 0 represents the downstream end of the 
tube, x = X, and is on the right. 

changes become relatively much more important. It is also 
apparent that the wall-slope does not remain small, especially 
at the downstream end of the collapsible segment, confirming 
that the model is not self-consistent in this case. Nevertheless, 
the qualitative features of the flow will be seen in practice: a 
sharp collapse, with steep slope, at the downstream end, and 
a distension upstream. For a given p0, an increase in X is 
accompanied by an increase in the extent of the distended 
region, and in the degree of distension. It does not result in a 
huge increase in upstream tension t0 (t0 = 45.3 and 51.7, 
respectively, in the shorter and longer examples of Fig. 5), 
because a large channel width (H) corresponds to a small wall 
shear, in proportion to H~2, from (2.5) and (2.1). 

4 Zero Tension at the Downstream End 
In this case />, = 0, the Eqs. (2.14) are singular at £ 

and we cannot use the rescaling of Section 3. However, the 
system can be reduced to third order, and arranged so that 
numerical integration is straightforward with no difficulties 
over accuracy, by transforming the equations so that t instead 
of £ is the independent variable. The Eqs. (2.14) then become 

y = vy2, v = wy2/t, w= - l/y, £ =y2, (4.1) 

where a dot represents differentiation with respect to t, the 
dimensionless tension. The initial conditions on y, w, and £, 
from (2.15), are 

y(0) = l, w(0)=p0, ?(0) = 0; (4.2) 

ONE 

SOLUTION 
(CLASSI 

TWO SOLUTIONS 
(CLASSES I I I ' / I V) 

SOLUTION 

Fig. 6 The p0 - b plane, showing the regions in which there exist 
solutions of different classes to the problem defined by (4.1) and (4.3). 
The arrowed broken lines are paths along which X increases from zero 
to infinity. 

the condition on v will be given below. It can be seen that the 
first three equations represent the essential nonlinear system, 
and the fourth merely requires a single integration for £ after 
the others have been solved. The singularity at f = 0 (f = 0) 
means that an analytical solution is required for small values 
of t, so that the integration can begin with finite values of the 
variables. The most general small-/ solution of (4.1) with (4.2) 
is as follows: 

y=l + t{p0logt + b-p0) 

,2 
+ t' 

1 3 
- + (A> log/ + b)2-p\ log/-bp0--po 

0 v=p0logt + b + t[-l+2p0(p0logt + b-2p0)] + o(t) 

1 , 3 , 
w=p0-t + - t2(p0 \ogt + b--p0)+o(t2) 

3 
Z = t+t2(p0logt + b--p0)+o(t2). 

(4.3a) 
(4.3b) 

(4.3c) 

(4.3d) 

As could be inferred from (4.1), the singularity in v is loga
rithmic and determined by the value of p0. (This logarithmic 
term corresponds to infinite wall-slope at the downstream end, 
so as already discussed the model is not self-consistent here.) 
The 0(1) correction to the logarithmic term in v is the arbitrary 
constant b, which corresponds to the constant /3 appearing in 
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2.0 

v(b) 

Fig. 7 Graphs of y({) for fA = 0, pa = 4.0 and (a) X = 2.651, (b) X = 
10.017. Note that J = 0 is the downstream end of the tube, x = X, and 
has been placed on the right. 

(2.15). Starting from a small value of t (e.g., 0.001) at which 
the variables are evaluated using (4.3), integration of the equa
tions proceeds in the positive /-direction until a value is reached 
at which y - 1 is again zero. That value of t is t0, and the 
corresponding value of £ is X. For a given p0, b can be varied 
to give different values of t0 and X. 

The_p0 - b plane can be explored in the same way as the 
Po - fi plane was investigated in Section 3.1. Things are rather 
different in this case, because of the logarithmic term. For 
example, when po <0,y — 1 always starts out positive, because 
log/ tends to - oo as / tendsjo zero, whereas the initial sign 
of v depended on the sign of J3, Similarly, when p0 > 0, y - 1 
starts out negative. We can see further, from (4.3a), that, if 
b has the same sign as p0 and is much bigger than it, then 
y — 1 = 0 at a small value of / given by 

/ 0 « e x p [ l - 6 / p 0 l , (4.4) 

and a correspondingly small value of X: 

X«r0(l-/70 'o/2). (4.5) 

Other mathematical details will be given elsewhere. Here we 
merely note that thep 0 - b plane is divided into four regions, 
as shown in Fig. 6, and solutions to the problem exist or 
otherwise as indicated on that figure: 
Po<0: one solution exists for every value of b (Class 

I ' ) 
Po>0, b<0: no solution exists 
Po>0, b>0: there is no solution for b < b\, one solution for 

b > b2 (Class I I ' ) , and two solutions exist for 
b{ < b < b2 (Classes I I I ' , IV') . 

For fixed po < 0, X increases from zero to infinity as b increases 
from - oo to +oo. For fixed p 0 > 0, X increases from zero to 
infinity as b follows the arrowed path, decreasing from + oo 
to b\ and then increasing (along the second solution branch) 
to b2. 

Solutions of Class I ' , (p0 < 0) represent channels which are 
distended everywhere, while for p 0 > 0 the channels are col
lapsed somewhere; for larger values of X, however (Class IV' 
solutions) the tube is distended over much of its length. Figure 
7 includes the graphs of X£) forp0 = 4.0 and X = 2.651 and 
10.017, for comparison with Fig. 5. The differences are not 
great. 

The main results, however, are plots of to versus X for dif
ferent values of p0 , since these give the critical values of up
stream tension for given p 0 and X. Such plots for p0 = - 1, 
- 0 . 1 , 0.1, 1.0 and 10.0 are given in Fig. 8. For negative p 0 , 
there is only a limited range of values of X (0 < X < Xc) for 
which a critical value of /0 exists. When X > Xc, the downstream 

Fig. 8(c) 
Fig. 8 Graphs of the critical value of upstream tension f„, below which 
no solution exists with fx = 0, plotted against channel length x, »or 
different values of p„. (a) po = - 1 .0 , (b)p„ = - 0.1, (c)p0 = +o.i, + '•". 
and +10.0. 

tension tx must be positive for a steady flow to be possible; 
this is because the channel is very distended, and the wall shear 
is therefore very small, over most of its length. Such a case is 
physically unrealistic. For positive p 0 the channel is collapsed 
and the wall shear therefore high over some part of its length, 
so there is a critical value of t0 for all lengths. This critical 
value does tend to zero as X tends to infinity, but it does so 
extremely slowly even at the smallest chosen value of p 0 , equal 
to 0.1. 

5 The Relation to Initial Tension or Stretch 
The critical values of dimensionless tension plotted in Fig. 

8 are the values at the upstream end of the channel, given that 
the downstream tension is zero. For experimental purposes it 
would be desirable to relate these results to the uniform lon
gitudinal tension or stretch present in the channel wall before 
the fluid starts to flow. Such a relationship can be derived if 
we recall that the slope of the channel wall must be very small 
for lubrication theory to be valid; the overall length of the 
membranes therefore remains approximately constant, with an 
error that is second order in wall slope. Individual elements 
of the wall, however, will change their length once flow begins, 
because of the change in longitudinal tension. 

With reference to Fig. 9, suppose the membrane to be divided 
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x0=0 x0=L 

(b) 

x=0 

Fig. 9 Sketch indicating (a) the stretched membrane in the absence of 
flow, (b) the stretched membrane when the fluid is flowing; the element 
of length dx0 at position x0 changes length to dx and is shifted to position 
x. 

into elements of equal unstretched length dl, and let it be 
initially stretched by tension T0 so that each such element has 
length dx0. The initial stretch ratio, S0, is then defined by 

dx0_L 

'"df = T So = (5.1) 

where / is the overall unstretched length and L is the stretched 
length. Suppose that, when the fluid flows, the element dx0 at 
position x0 changes its length to dx and its position to x; the 
new stretch ratio is 

S(x)=dx/dl. (5.2) 

Rewriting this expression as dl = dx/S(x), and integrating 
over the length of the membrane, we obtain 

-r dx 
(5.3) 

„0 S(x) 

We further suppose that the membrane elasticity can be rep
resented by a single-valued function relating the stretch ratio 
to the longitudinal tension T(x): 

S(x)=F[T(x)]; (5.4a) 

in particular 

S0 = F(T0). (5.46) 

Thus we finally obtain 

dx 
1--J0 F[T(x)]' 

(5.5) 

which can be made dimensionless using the expressions (2.8) 
and provides a relationship between the solution of the fluid 
mechanical problem, in the form of T(x), and the initial stretch 
ratio S0 or tension 7b. 

For a simple example we take the membrane to be linearly 
elastic, so that (5.4a) can be written 

S-\ = T/E, (5.6) 

where E is the modulus of elasticity, assumed constant. Then 
(5.5) becomes 

/= f "I—=T7=dje. (5.7) 
J0 X + T/E 

On nondimensionalization and transformation to the variable 
£ (Eq. (2.13)) this can be written 

J__ r 
H0~)0 1 + 

di 
Kt^y 

where 

3/xQ. 

(5.8) 

(5.9) 
2HoE 

on further transforming to t as the independent variable, as 
in (4.1), we obtain 

±^=\'°^L. (5.10) 

Thus, given K, the numerical results of earlier sections can be 

Table 3 The initial stretch S0 corresponding to different val
ues of tx and K, for two values of the stretched channel length 

X and for p0 = 4.0 

X h 
10.017 

2.651 

64.0 

0.1 

0.0 

64.0 

0.1 

0.0 

0.01 
0.1 
1.0 
0.01 
0.1 
1.0 
0.01 
0.1 
1.0 
0.01 
0.1 
1.0 
0.01 
0.1 
1.0 
0.01 
0.1 
1.0 

1.69 
7.86 

69.6 
1.04 
1.36 
4.27 
1.04 
1.34 
4.12 
1.65 
7.54 

66.3 
1.03 
1.27 
3.18 
1.03 
1.27 
3.18 

used to compute l/H0, which can then be compared with X to 
see the initial stretch corresponding to a particular solution. 
Note from (5.9) that, for a given value of E, K is a measure 
of the flow rate. For the cases of X = 2.651 and 10.017 with 
p0 = 4.0, used above for various examples, the integral in 
(5.8) or (5.10) has been performed for various values of tx ( = 
0, 0.1, 64.0) and of K (0.01, 0.1, 1.0). The results are given in 
the form of the initial stretch ratio S0 in Table 3. We can see 
that when Ktx is large the values of the stretch ratio are absurdly 
large; this is because at = T/E is the same as the strain S -
1, so large Ktx means large strain even at the downstream end 
of the channel, and hence even larger strain further upstream. 
Examples with a realistic initial strain of 25-35 percent include 
those with small or zero tx and K = 0.1. The similarlity between 
the values obtained for tx = 0 and tx = 0.1 is not physically 
surprising, but represents a useful check on the calculations 
since the tx = 0 values were obtained by integrating (4.1) and 
(5.10) while for tx * 0, Eqs. (3.1) and (5.8) were used. 

6 Further Discussion 
The two main questions to be answered by future work are 

(a) how should we make the model more self-consistent and 
realistic, and (b) what happens after breakdown, in conditions 
for which T is predicted to fall to zero at or before x = L? 

Self-consistency of the two-dimensional membrane model 
can be achieved by abandoning the lubrication approximation. 
First, the full expression for the curvature can be inserted into 
(2.4); that is easy. Second, the expression (2.1) must be aban
doned in favor of a full numerical solution of the Navier-
Stokes equations (or, at low Reynolds number, the Stokes 
equations). This is of course a much more difficult project, 
but it is within the scope of present-day computational fluid 
dynamics, and is currently being initiated. We do not anticipate 
significant qualitative changes to the results. 

To go further, however, and incorporate the three-dimen
sional elasticity of a real flexible tube, even thin-walled, is 
significantly more difficult still, especially when coupled with 
three-dimensional fluid mechanics. This is yet to be under
taken. 

What happens in the model problem after the longitudinal 
tension falls to zero? Here again we do not know. In most 
experiments oscillations occur for some parameter values, but 
whether these are associated with zero tension is unknown. 
Whether unsteady behavior can develop at low Reynolds num
bers is also unknown, since most experiments have been at 
high Reynolds numbers. In some experiments with thin-walled 
tubes, part of the tube is sucked intermittently into the down
stream rigid segment, which could not be described by anything 
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like the present model. Steep wall slope, as predicted here, is 
associated with flow separation even at low Reynolds numbers, 
and that predisposes the flow to becoming unstable [4, 13]. 
But what unsteady behavior, if any, is directly attributable to 
the tension falling to zero remains an open question. 
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