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Two families of exact simple solutions of Einstein field equations for inhomogeneous stiff cosmologies are
presented. The method to obtain the solutions is based on the introduction of auxiliary functions in order to cast
the Einstein equations in such a way that can be explicitly integrated. Although the equations are mathematically
equivalent to the equations obtained when the source of matter is a scalar field, it is worth to mention that the
source that we consider is not a scalar field but a perfect fluid with a stiff equation of state. The obtained solutions
are expressed in terms of simple functions of the used coordinates and two families of particular solutions are
considered. The geometrical and kinematical properties of the solutions are then analyzed and the parameters
are restricted in order to have a physically acceptable behavior. The two particular solutions are of the Petrov
type I, the first one being regular everywhere whereas the second one presents a big-bang singularity. Now, for
a particular value of one of the parameters, the second particular solution is a vacuum solution of the Bianchi I
type that reduces to the Kasner solution.
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I. INTRODUCTION

The main motivation for the formulation of the standard
physical cosmology, in which the universe is described as
isotropic and completely homogeneous in all its evolution[1–
4], has been the observable fact that the present universe
seems to be isotropic and spatially homogeneous. However,
as it is shown by a series of recent observations[5–7], our uni-
verse certainly is neither exactly homogeneous nor isotropic,
and also there is not sufficient reason to believe that the be-
havior of its expantion was regular at early times. Thus, in
order to understand the evolution and large-scale structure of
the universe, it is necessary to consider a more general class
of cosmologies obtained by removing the requirement of ho-
mogeneity and isotropy. Accordingly with the above consid-
erations, in the last two decades there has been an increasing
interest in the study of anisotropic and inhomogeneous cos-
mologies, as can be see, for instance, in the references [8–
13]. (See also the reviews[14–19] for a summary of the main
work).

Now, between the several methods used to study the spa-
tially inhomogeneous cosmologies, the search for exact solu-
tions of Einstein field equations plays a specially important
role. Indeed, due to the highly nonlinear character of the field
equations, the knowledge of some exact solutions is crucial
for the understanding of specific qualitative aspects that can
be used as a guide for the study of more general models. Now
then, the properties of the exact solutions must be related and
compared with the results obtained by other different meth-
ods, such as the methods of dynamical systems[20], the meth-
ods of the theory of perturbations[21] or the study of the struc-
ture and formation of singularities[22].

However, due to the mathematical complexity of the
generic inhomogeneous models, the studies of exact inhomo-
geneous cosmologies have been limited mainly to the case
of spacetimes admitting an Abelian two-parameter group of
isometries, G2, and were initiated with the study of Gowdy of

spatially compact models[23, 24]. Now, if the metric admits
an orthogonally transitive two-parameter group of isometries,
then it can be written in a blocks diagonal form[21]. This
kind of metrics admits two spacelike commuting Killing vec-
tor fields and, as can be easily verified[25], the corresponding
vacuum Einstein equations leads to a complete integrable sys-
tem of partial differential equations.

On the other hand, when we consider the non vacuum Ein-
stein equations, the mathematical complexity makes it very
difficult to find solutions with reasonably realistic fluids. So,
in almost all the works on exact inhomogeneous cosmologies,
the solutions are obtained by taking fluids whose equation of
state is of the form p = γρ and, in particular, with γ = 1. This
last case, the stiff fluid state equation, leads to a complete inte-
grable system of partial differential equations and was consid-
ered by Zeldovich[26] as a good candidate in order to describe
the matter content of the Universe in its earlier stage.

In agreement with the above considerations, in the present
paper we present two families of simple exact inhomogeneous
stiff cosmologies. The method to obtain the solutions is based
on the introduction of auxiliary functions in order to cast the
Einstein equations in such a way that can be explicitly inte-
grated and the obtained solutions can be expressed in terms
of simple functions of the used coordinates. Now, it is worth
to mention that the equations are written in a way that are
mathematically equivalent to the equations obtained when the
source of matter is a scalar field. However, in spite of this
mathematical equivalence, the source that we are considering
is a perfect fluid with the stiff equation of state and not a scalar
field.

The paper is organized as follows. First, in Sec. II, we
present the Einstein and matter evolution equations and the
integration procedure to obtain an explicit general solution.
Then, in Sec. III, we consider two families of simple partic-
ular solutions and analyze their geometrical and kinematical
properties. Finally, in Sec. IV, we summarize our main re-
sults.
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II. THE EINSTEIN AND MATTER EVOLUTION
EQUATIONS

In order to study inhomogeneous stiff cosmologies, we take
as the starting point the metric tensor as given by the line
element[21]

ds2 = e−2U [e2γ(−dt2 +dr2)+W 2dx2]+ e2U dy2, (1)

where U , γ and W are functions of r and t only. We also
consider as the matter contents a perfect fluid with the stiff
equation of state p = ρ, whose energy-momentum tensor can
be written as

Tαβ = ρ(2uαuβ +gαβ). (2)

With the above choices, the Einstein equations can be cast as

Rαβ = 2ρuαuβ, (3)

whereas the matter evolution equations can be obtained, from
the conservation law

T αβ
;β = 0, (4)

by projecting it along the temporal and spatial directions. In
order to obtain the above projections, we contract the equa-
tion (4) with the velocity vector uα and the “spatial projection
tensor” hαβ = uαuβ +gαβ, respectively. So we obtain

ρ,βuβ +2ρuβ
;β = 0, (5)

2ρuβuα
;βhµ

α +ρ,βgβαhµ
α = 0, (6)

where we have used the condition uαhαβ = 0.

We now impose the irrotationality condition [27]

uα =
Φ,α

(−Φ,µΦ,µ)1/2 , (7)

so that the equation (6) can be cast as

ρ(Φ,µΦ,µ),αhα
µ

(Φ,µΦ,µ)
= ρ,αhα

µ , (8)

which can be identically satisfied if we choose [28]

ρ =−F
2

Φ,µΦ,µ, (9)

where F is an arbitrary function of the scalar potential Φ.
Now, by using (9), the energy-momentum tensor can be cast
as

Tαβ = F
[

Φ,αΦ,β−
1
2

gαβΦ,µΦ,µ
]
, (10)

in such a way that the Einstein and evolution equations can be
written as

Rαβ = FΦ,αΦ,β, (11)

FΦ,α
;α = −F ′

2
Φ,µΦ,µ, (12)

where F ′ = ∂F
∂Φ .

For the metric (1), the equation (12) reduces to

Φ,rr−Φ,tt +W−1(W,rΦ,r−W,tΦ,t)+
F ′

2F
(Φ2

,r−Φ2
,t) = 0. (13)

In order to solve the above equation, we assume that Φ = Φ(ψ), where ψ is a new scalar potential, in such a way that (13) can
be written as

ψ,rr−ψ,tt +W−1(W,rψ,r−W,tψ,t)+
[

Φ′′

Φ′ +
F ′Φ′

2F

]
(ψ2

,r−ψ2
,t) = 0. (14)

Now, we choose the functional dependence of Φ(ψ) in such a
way that the above equation can be linearized. In order to do
this, we take the expression in the square brackets as equal to
zero,

Φ′′

Φ′ +
F ′Φ′

2F
= 0, (15)

in such a way that

kψ =
∫ √

FdΦ, (16)

where k is an arbitrary positive constant.
Now, by using (16), is easy to see that, for any arbitrary

function F(Φ), the energy density ρ, the velocity vector uα,
the energy-momentum Tαβ end the Einstein system of equa-
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tions can be cast as

ρ =−k2

2
ψ,µψ,µ, (17)

uα =
ψ,α√−ψ,µψ,µ , (18)

Tαβ = k2
{

ψ,αψ,β−
1
2

gαβψ,µψ,µ
}

, (19)

Rαβ = k2ψ,αψ,β. (20)

As we can see, if we take k = 0, the above system of equations

reduce to the Einstein vacuum equations. Also, it is worth
to mention that the equations are written in a way that are
mathematically equivalent to the equations obtained when the
source of matter is a scalar field. However, in spite of this
mathematical equivalence, the source that we are considering
is a perfect fluid with the stiff equation of state and not a scalar
field.

By using the non vanishing components of the Ricci tensor
for the metric (1), the Einstein and evolution equations can
be written as the following system of partial differential equa-
tions

W,rr−W,tt = 0, (21)

(Wψ,r),r− (Wψ,t),t = 0, (22)

(WU,r),r− (WU,t),t = 0, (23)

γ,tW,r + γ,rW,t = 2WU,tU,r + k2Wψ,tψ,r +w,tr, (24)

γ,tW,t + γ,rW,r = W (U2
,t +U2

,r)+
1
2

[
k2W (ψ2

,t +ψ2
,r)+(W,tt +W,rr)

]
. (25)

As we can see, equation (21) is the classical one-dimensional
wave equation, whose solutions are well known. On the other
hand, from equations (22) and (23) we can see that U(t,r) and
ψ(t,r) both are solutions of the same partial differential equa-
tion. So, in order to simplify the above system of equations,
we can take U(t,r) = ψ(t,r). Finally, the integrability condi-
tions of the overdetermined system (24) - (25) are equivalent
to the equations (21) - (23), guarantying so the existence of
solutions. Now, as we can see from the above system of equa-
tions, the stiff fluids equations are easy to integrate due to the
fact that, as a consequence of the stiff equation of state p = ρ,
the equations for the metric functions U and W decouple from
the pressure [29].

In order to solve the system (21) – (25), we first consider
solutions of the equation (21) of the general form

W (r, t) = Ψ(r + t)+Ω(r− t), (26)

where Ψ and Ω are arbitrary functions. We also consider an-
other, linearly independent, solution of (21) written as

V (r, t) = Ψ(r + t)−Ω(r− t). (27)

Now, by using V (r, t) and W (r, t), we define a coordinate
transformation

(t,r,x,y)↔ (V,W,x,y), (28)

in such a way that the line element takes the form

ds2 = e−2U [e2Λ(−dV 2 +dW 2)+W 2dx2]+ e2U dy2, (29)

where Λ is given by

Λ = γ− 1
2

ln(W 2
,r −W 2

,t ). (30)

The above coordinate transformation leads the Einstein and
evolution equations to the form

Λ,W = qW (ψ2
,V +ψ2

,W ), (31)

Λ,V = 2qWψ,V ψ,W , (32)

(Wψ,V ),V − (Wψ,W ),W = 0, (33)

where q = 1 + k2/2. As we can see, equation (33) is equiva-
lent to the integrability condition of the overdetermined sys-
tem (31) - (32).

We will now consider some simple solutions of the above
system. In order to do this, we seek for solutions of (33) of
the form ψ(W,V ) = A(W )+B(V ) and obtain

ψ =
a1

4
(
W 2 +2V 2)+a2 lnW +a3V, (34)

where a1, a2 and a3 are real arbitrary constants. According
with this, the solution of (31) - (32) is given by

Λ =
q
2

(
a2

1V 2 +a2
3 +2a1a3V +a1a2

)
W 2

+
qa2

1
16

W 4 +qa2
2 lnW +qa1a2V 2 +2qa2a3V. (35)
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Now, by choosing some particular solutions of (26) - (27), we
can obtain many different families of solutions for the full sys-
tem (21) - (25). So, in the next section, we will present two
simple families of solutions obtained by means of a particu-
larly simple form of the functions Ψ and Ω.

III. TWO SIMPLE FAMILIES OF PARTICULAR
SOLUTIONS

In order to obtain simple particular solutions, we will con-
sider the two simple functions

f1(r, t) =
r + t

2
, (36)

f2(r, t) =
r− t

2
, (37)

and we will take Ψ and Ω as defined by

Ψ(r, t) = f1(r, t), (38)

Ω(r, t) = f2(r, t), (39)

for the first family of solutions, and

Ψ(r, t) = f1(r, t), (40)

Ω(r, t) = − f2(r, t), (41)

for the second family of solutions.

A. The first family of solutions

By taking the first family of solutions, we obtain for the
metric functions the expressions

W (r, t) = r, (42)

γ(r, t) =
q
2

(
a2

1t2 +a2
3 +2a1a3t +a1a2

)
r2

+q
a2

1
16

r4 +qa2
2 lnr +qa1a2t2 +2qa2a3t, (43)

U(r, t) =
a1

4
(
r2 +2t2)+a2 lnr +a3t, (44)

whereas for the fluid density we obtain the expression

ρ =
k2

2

[
a1

(
a1t2 +2a3t

)
+a2

3−
a2

1r2

4
− a2

2
r2 −a1a2

]
e2(U−γ),

(45)
and for the velocity components the expressions

ut =
k√
2ρ

(a1t +a3) , (46)

ur =
k√
2ρ

(a1r
2

+
a2

r

)
. (47)

Now, in order to obtain a physically acceptable distribution of
matter, we require that ρ≥ 0 for any value of r and t. So, from
the expression (45), is easy to see that ρ will be no negative
everywhere only if we take a1 = a2 = 0. On the other hand,
the requirement that the velocity vector be future oriented for
any value of r and t imply that we must take a3 < 0.

By imposing the above conditions, the line element (1)
takes the following form

ds2 = e−2a3t [eqa2
3r2

(−dt2 +dr2)+ r2dx2]+ e2a3tdy2, (48)

so that the density is given by the expression

ρ =
k2a2

3
2

ea3(2t−a3qr2), (49)

whereas the fluid velocity takes the form

uα = ea3(2t−a3qr2)/2(1,0,0,0), (50)

guarantying so the comoving nature of the reference frame.
Now, in order to see if the solution has any curvature singu-

larity, we compute the components of the Weyl tensor in the
natural null tetrad of the metric[25, 30], which are given by

Ψ0(t,r) =
1
2

a2
3(2a3qr−q−2)ea3(2t−a3qr2), (51)

Ψ2(t,r) = −1
2

a2
3ea3(2t−a3qr2), (52)

Ψ4(t,r) = −1
2

a2
3(2a3qr +q+2)ea3(2t−a3qr2), (53)

so that all of them are regular everywhere. Furthermore, is
easy to see that the Weyl tensor is of Petrov type I.

The kinematical quantities of the metric can be also easily
computed. Thus we obtain the following expressions for the
acceleration, the expansion and the shear of the fluid

aα = a2
3qr(0,1,0,0), (54)

θ = |a3|e−(|a3|t+a2
3qr/2), (55)

σ11 =
2|a3|

3
e

a3
2 (a3qr2−2t), (56)

σ22 =
2|a3|

3
r2e−

a3
2 (a3qr2+2t), (57)

σ33 = −4|a3|
3

r2e−
a3
2 (a3qr2−6t), (58)

where all the components have been computed in the natural
orthonormal tetrad of the metric. As we can see the kinemati-
cal quantities are regular everywhere. Also is easy to see that,
as a3 < 0, the components σ11 and σ22 are positive, while σ33
is negative.
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B. The second family of solutions

Now, by taking the second family of solutions, we obtain
for the metric functions the expressions

W (r, t) = t, (59)

γ(r, t) = q
(
a2

1r2 +a2
3 +2a1a3r +a1a2

) t2

2

+q
a2

1
16

t4 +qa2
2 ln t +qa1a2r2 +2qa2a3r, (60)

U(r, t) =
a1

4
(
t2 +2r2)+a2 ln t +a3r, (61)

in such a way that the fluid density is given by

ρ =
k2

2

[
a2

1t2

4
+

a2
2

t2 +a1a2−a1
(
a1r2 +2a3r

)−a2
3

]
e2(U−γ),

(62)
whereas the velocity components are given by

ur =
k√
2ρ

(a1r +a3) , (63)

ut =
k√
2ρ

(a1t
2

+
a2

t

)
. (64)

Now, as in the first family of solutions, we require that ρ≥ 0
for any value of r and t in order to obtain a physically ac-
ceptable distribution of matter. From expression (62) is easy
to see that ρ will be no negative everywhere only if we take
a1 = a3 = 0, so that the expression for the density reduces to

ρ =
k2a2

2
2

t−2(qa2
2−a2+1). (65)

Now, as (a2−1)/(a2
2) < 1 < q, we have an initial singularity

and then the density decreases to zero as t → ∞. On the other
hand, the velocity vector is given by

uα = ta2(1−qa2)(1,0,0,0), (66)

where, in order to have a future oriented timelike vector, we
have taken a2 < 0. Also, we can see that the spatial velocity
is zero and thus we again have a comoving reference frame.

The line element can be written as follows

ds2 = t−2a2 [t2qa2
2(−dt2 +dr2)+ t2dx2]+ t2a2dy2, (67)

so that, when q = 1 (or k = 0) we have a vacuum solution of
the Bianchi I type that reduces to the Kasner solution [31, 32],
which can be written as [21, 33]

ds2 = t(d
2−1)/2(−dt2 +dr2)+ t1+ddx2 + t1−ddy2, (68)

with the Kasner parameter given by d = 1− 2a2. Now, it is
worth to mention that another kind o inhomogeneous stiff cos-
mologies were obtained by Patel and Dadich [34] which also
reduce to the Kasner solution. However, in contrast with the
solution here presented, the solutions of Patel and Dadich are
singularity free.

Now, in order to see if the solution has a real initial singu-
larity, we computed the Weyl tensor in the natural null tetrad
of the metric[25, 30] and obtain

Ψ0(t,r) =
1
2

a2(2a2−1)(a2q−1)t−2qa2
2+2a2−2, (69)

Ψ2(t,r) = −1
2
(a2−1)a2t−2qa2

2+2a2−2, (70)

Ψ4(t,r) =
1
2

a2(2a2−1)(a2q−1)t−2qa2
2+2a2−2. (71)

The scalars constructed from the Ricci and Weyl tensors di-
verge as t −→ 0, which corresponds to a big-bang singularity.
Also, it is easy to see that in the algebraic classification of the
Reimann tensor, the metric is of Petrov type I.

On the other hand, the kinematical quantities for this model
can also be easily computed and so, by taking a2 < 0, we
obtain for the non-vanishing components of the acceleration,
expansion and shear of the fluid the following expressions

aα = (0,0,0,0), (72)

θ =
(a2

2q−a2 +1)

t(a
2
2q−a2+1)

, (73)

σ11 =
(2a2

2q−2a2−1)t(a
2
2q−a2−1)

3
, (74)

σ22 = − (a2
2q+2a2−2)t−(a2

2q+a2−1)

3
, (75)

σ33 = − (a2
2q−4a2 +1)t−(a2

2q−3a2+1)

3
, (76)

where all the components have been computed in the natural
orthonormal tetrad of the metric. It is interesting to see that, as
the pressure gradient is zero, the acceleration is equal to zero
and thus the fluid is geodesic. On the other hand, as a2 < 0,
all the non-vanishing components of the shear are negative.

IV. DISCUSSION

We presented two simple families of exact inhomogeneous
stiff cosmologies. The solutions were obtained by explic-
itly integrating the Einstein and matter evolution equations by
means of the introduction of an auxiliary function that leads to
a complete integrable system of partial differential equations.
Now, it is worth to mention that the equations were written
in a way that are mathematically equivalent to the equations
obtained when the source of matter is a scalar field. However,
despite of this mathematical equivalence, the source that we
consider was not a scalar field but a perfect fluid with the stiff
equation of state.

A general solution was obtained that can be expressed in
terms of simple functions of the used coordinates. Then, two
families of particular solutions were considered, and their geo-
metrical and kinematical properties were analyzed and the val-
ues of the parameters were restricted in order to have a phys-
ically acceptable behavior. The two particular solutions are
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of the Petrov type I, the first one being regular everywhere
whereas the second one presents a big-bang singularity.

Now, for a particular value of one of the parameters, the
second particular solution is a vacuum solution of the Bianchi
I type that reduces to the Kasner solution. However, although
there are some other exact inhomogeneous stiff cosmologies
that in the vacuum reduce to the Kasner solution, as it is the
case with the solutions obtained by Patel and Dadich [34], it
is worth to mention that this is not a characteristic behavior of
this kind of cosmologies. Indeed, an example of a different

behavior is shown by the first particular solution considered
in this paper, which in the vacuum is not of the Bianchi I type
and do not reduces to the kasner solution.
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