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The elastic constants of particulate composites are evaluated employing a theoretical cube-within-cube formation. Two new
models of four and five components, respectively, formed by geometrical combination of three-component models existing in
the literature, are used as Representative Volume Elements. Using the governing stress and strain equations of the proposed
models, two new equations providing the static elastic and shear moduli of particulate composites are formulated. In order to
obtain the dynamic elastic and shear moduli, the correspondence principle was applied successively to components connected
in series and/or in parallel. The results estimated by the proposed models were compared with values evaluated from existing
formulae in the literature, as well as with values obtained by tensile, dynamic, and ultrasonic experiments in epoxy/iron particulate
composites. They were found to be close to values obtained by static and dynamic measurements and enough lower compared with
values obtained from ultrasonic experiments. The latter is attributed to the high frequency of ultrasonics. Since measurements
from ultrasonic’s and from dynamic experiments depend on the frequency, the modulus of elasticity estimated by ultrasonic’s is

compared with that (storage modulus) estimated by dynamic experiments.

1. Introduction

Metal particles added in polymer matrices produce com-
posite of greater density, improved electrical conductivity,
better thermal conductivity, and consequently, improved
behaviour at high operating temperature, and above all,
highly improved mechanical properties. In general rigid
fillers increase the elastic and shear moduli, and many
theories have been developed to explain this effect.

Epoxy resins are the most suitable polymers for com-
posite matrices and extensive research has been carried out
on their rheological behavior [1-3] and their mechanical
properties [4, 5].

A rigorous description of a composite system consisting
of a matrix in which filler particles have been dispersed is
not an easy task. In fact, a great number of geometrical,
topological, and mechanical parameters are necessary, the
majority of which varies statistically or is simply unknown.

Theoretical treatments usually attempt to exploit as
much as possible readily available information, which in
most cases consists of the mechanical properties of the
matrix and the filler and the volume fraction of the latter,
while suitable assumptions cover missing data. The best
approximation appears to be the determination of upper
and lower bounds for the effective moduli of the composite,
based on variational principles of mechanics, developed by
Hashin [6].

Analytical solutions are valid up to some fairly low
filler volume fraction as they have to ignore, for reasons of
efficiency, any mechanical interaction between neighbouring
inclusions [7]. Referring in particular to the moduli, the
existing expressions are resulted from the elasticity theory or
express a kind of law of mixtures or are simply an attempt
to match theoretical curves to experimental data [8-22]. In
most of them a perfect adhesion between matrix and filler
was assumed as existing between phases of the composite.
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FIGURE 1: The three-part models. (a) Paul model, model 1, (b)
Issay-Cohen model, model 2.

In [23] the shear moduli of particulate composites are
obtained by means of two cube-within-cube models. In [24]
a concept of the interaction between the fillers using different
distribution of the inclusions into the volume of the matrix
is presented. In [25-28] the effect of the interphase on the
values of the elastic modulus of the particulate composites is
examined.

There is also a sizeable volume of literature dealing with
dynamic behaviour of heterogeneous systems, where the
dispersed phase is a relatively rigid inclusion [29-32]. In
[6] a correspondence principle is developed, by means of
which effective complex moduli of viscoelastic composites
can be determined on the basis of analytical expressions for
effective elastic moduli of composites. It is generally found
that the storage modulus increases by increasing frequency,
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FiGure 2: The proposed models. (a) Four-part model, model 3, (b)
Five-part model, model 4.

for constant temperature, where for high frequency values
tend to the value of static elastic modulus of the particulate
composite.

In this paper by considering the cube-within-cube for-
mation the elastic constants of particulate-filled composites,
by using two models of four and five parts, were evaluated.
These models are considered geometrically hybridique in
relation with the three-part models existing in the literature
[18-20]. The assumptions of [18-23] were used, for the
evaluation of the static elastic and shear moduli. According
to [6] the correspondence principle has been used for the
prediction of the dynamic elastic constants of the particulate
composite. Tensile experimental results, dynamic results,
and results from ultrasonic tests in epoxy/iron particulate
composites were compared to the derived theoretical results.
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FIGURE 3: The proposed models in state of shear deformation. (a)
model 3, (b) model 4.

Also theoretical results predicted from existing models in
the literature, whose equations are in Appendices A and
B, were used for comparison. In order to investigate the
effect of frequency, the results obtained from ultrasonic
experiments were compared with those obtained from
dynamic experiments carried out in epoxy/iron particulate
composites, since frequency is a common characteristic.

2. Theoretical Considerations

The theoretical analysis will be based on the following
assumptions.

(i) Particles are perfectly cubic in shape.

(ii) The distribution of the matrix volume to each
individual inclusion is also perfectly cubic in shape.
The respective sides of two cubes are parallel.

(iii) There are many filler particles and their distribution
is uniform, so that the composite may be regarded as
a quasihomogeneous and isotropic material.

(iv) The matrix and the filler are elastic, isotropic, and
homogeneous.

(v) The volume fraction of filler is sufficiently small for
the interaction between fillers to be neglected.

(vi) The deformation applied to the composite is small
enough to maintain linearity of the stress-strain
relations.

(vii) There is no transverse variation of the strains in the
components which are connected in parallel and have
the same length in the load direction.

(viii) The stresses do not vary in the direction of the
applied load in the components which are connected
in series and have the same cross-sections.

2.1. Static Elastic Constants

2.1.1. Elastic Moduli. According to [18-20], the models
shown in Figures 1(a) and 1(b), named model 1 and 2
respectively, are three-part composites. From Figure 1 the
filler volume fraction is given by

vf = —. (1)

For uniaxial load in the figures direction, their elastic moduli
are given, respectively, by [18-20]

B _ E ( 14 (m— 10?3 ) 2

c = m > 2
1+(m—1)(vjzf/3—vf)

E@ =E,|1 I , 3

¢ ( +m/(m—l)—vjl/3 3

where m = Ef/E,, and Ey¢, E,,;, and E, are the elastic moduli
of the filler, matrix and composite, respectively. The indices
(1) and (2) refer to model 1 and 2, respectively.

The model presented in Figure 2(a) according to [18-
20] named model 3, for uniaxial loading in the figure
direction, has four components. The components (1) and
(2) are in parallel, and both are in series with component
(3). The above components are in parallel with component
(4). For uniaxial loading in Figure 2(a) direction, from
forces equilibrium and elongations equality, we can write the
following equations:

O'C=O'3UJ1;/3+O'4(1—U1/3), (4)
03U}/3 = olv}/S + 0y (u}/3 - vjz/3), (5)
& =&, (6)

&4 = & (7)
sc=slvjl/3+83(l—vjl/3), (8)

where the indices 1, 2, 3, 4, and ¢ correspond to the parts (1),
(2), (3), and (4) and the composite, respectively.

The constitutive equations are given from the Hooke law
as follows:

o] = 81Ef, (9)
(Ij =£jEm, ] :2,3)4) (10)
Oc = ScEc- (11)
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FIGURE 4: Schematic diagram of the used ultrasonic pulse-echo measuring system.
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Figure 5: Elastic modulus versus filler in iron/epoxy particulate
composites volume fraction. (a) Equations (A.5) and (A.6), (b)
equation (A.1), (c) equation (3), (d) equation (A.4), (e) equation
(A.3), (f) equation (A.11), (g) equation (12), (h) equations (17), (i)
equation (2), and (j) equation (A.2).

By combining (4)—(11) the following expression for the
elastic modulus of particulate composite is obtained:

ED —E, |1+ o . (12)
1/(m—1)+v}/3—1)}/3

where m = E¢/E,,.

Considering now the model presented in Figure 2(b)
called model 4 one can observe that it consists of five
components and that the coupling of components (1), (2),
(3) and (4) is the same as in the case of model 1. The element
consisting of these four components is connected in series
with component (5). For uniaxial load along the direction
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Ficure 6: Elastic modulus versus filler content in iron/epoxy
particulate composites. (a) Equation (3), (b) equation (A.9), (c)
upper bound, equation (A.7), (d) equation (12), (e) equations (17),
(f) equation (2), (g) equation (A.8), and (h) equation (A.10).

shown in Figure 2(b) the force equilibrium and the strain
compatibility give the following equations

Oc = 05,
0. = av’ +04(1 - u}“),
030}/3 _ Ulvf/z’ + o (v}/a _ 02/3)’

(13)
& = &,

2e, = 84(1 +v]1/3) +€5(1 _01/3)’

e4<1 +v}/3) = 2£1U}B+83(1 - U}B).
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FIGURE 7: Shear modulus via filler content in iron/epoxy particulate
composites. (a) The inverse law of mixtures, (b) equation (A.1), (c)
equation (19), (d) equation (A.3), (e) equation (A.4), (f) equation
(A.11), (g) equation (20), (h) equations (21) and (22), (i) equation
(18), (j) equation (A.2), (k) equation (A.8), and (1) law of mixtures.
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FIGURE 8: Poisson ratio versus filler content in iron/epoxy particu-
late composites. (a) Equation (24), (b) equation (23).

The constitutive equations are given from Hook’s law

01 =81Ef,
gj =€jEm j=2,3,4,5, (14)

o. = ¢.E..

For the case of model 4 which is evaluated using the
superposition principle, the following constitutive equation
is also used:

O0g = guEa (15)

where index a corresponds to the composite consisting of
components 1, 2, and 3 of model 4 with

Oq = 03,
(16)
€y = &4.

Solving for E, and E. the respective equation of the model
one obtains

N 2023
EY =E, -1+ ,
‘ " (mv}/3+1>/(mf l)fvf/3

1/3 2/3

2/(n — 1)+v}/3 —vf/S)’

EY = E, (1 +

where m = E¢/E,;, and n = E,/E,,.

2.1.2. Shear Moduli. In [23] models 1 and 2 under shear
loading are presented in state of deformation. According to
[23] models 3 and 4 in state of deformation under shear
loading in the figure directions are presented in Figures 3(a)
and 3(b). The couplings remain the same as in the case of
uniaxial loading in Figures 2(a) and 2(b). The same remark
has been made for models 1 and 2 in [23]. Thus, analogous
equations for the shear, as in the case of uniaxial loading
are obtained. From this fact for the shear moduli identical
equations are founded as in the case of elastic modulus where
in the place of E,;, Ef, and E., G, Gf, and G,, respectively,
are placed, where G is the shear modulus. Therefore, it
follows that

1+ (p—1)v??
G = Gm( P ) s
1+(p—1)(vf —vf)

vy
G? = Gy, (1+1/3)> (19)
p/p—1) - Uy
GO = G, (1 + o 2,3), (20)
V(p—1)+vf” —vy

ZUJZ/3
GW =G, 1+ ,(21)
( (p-v}/3+1>/(p—l)—vf/3)

1/3 2/3
Uf + Uf

GW =G| 1+ , 22
¢ m( 2/(q—1)+v}/3—vff/3) @2)

where p = G/G,yand q = GY/G,.
For comparison, from the existing equations in the
literature (A.1), (A.2), (A.3), (A.4), (A.8), and (A.11) are
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FiGure 9: The storage modulus E. versus filler volume fraction
for frequency f = 0,1Hz in epoxy/iron particulate composite. (a)
equation (B.1), (b) model 2, equations (28) and (30), (¢) eq(B.5),
(d) model 3, equations (28) and (30), (e) model 4, equations (28)
and (30), (f) model 1, equations (28) and (30), (g) equation (B.3),
and (h) equation (B.7).

examined where in the place of E, E,, and Ey, G, G, and
Gy, respectively, are placed.

2.1.3. Poisson Ratios. The Poisson ratios can be evaluated
from the following two different modes and then by
comparing the theoretical results among each other and with
experimental results.

(a) Considering the particulate composite as homoge-
neous and isotropic material and having evaluated as
previously the respective elastic and shear moduli, the
Poisson ratio of each model may be found from the
relation

E

T2+ 1) (23)

c

(b) From the inverse law of mixture, which seems to fit
fairly well the experiment, for the case of particulate
composites [25], we write

— =L (24)

2.2. Dynamic Elastic Constants

2.2.1. Dynamic Elastic Moduli. Models 1, 2, 3, and 4 consist
of components connected in parallel and/or in series.
Consequently the static elastic and shear moduli could
also be obtained by successive application of the law of
mixtures and the inverse law of mixtures. This procedure
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Figure 10: The loss modulus E.’ versus filler volume fraction for
frequency f = 0,1Hz in epoxy/iron particulate composite. (a)
equation (B.1), (b) model 2, equations (28) and (30), (c) eq(B.5),
(d) model 3, equations (28) and (30), (e) model 4, equations (28)
and (30), (f) model 1, equations (28) and (30), (g) equation (B.3),
and (h) equation (B.7).

is used for the evaluation of the dynamic elastic and shear
moduli.

Considering a two-component composite, the complex
modulus E} of each component is given by

Ef = E} +iE], (25)

where j = 1,2, E]' is the storage modulus, and E]'»' is the loss
modulus.

According to the correspondence principle when these
two components are connected in parallel it comes out that

Eik)z = Eikl)l +E£kl)2, (26)

where vy, v, are the volume fractions of components (1)
and (2), and Ef,ES and Ef, are the complex moduli of
components (1) and (2) and the two-component composite,
respectively, and

Eik,z = Ei,z + iEi:z. (27)
From (25), (26), and (27) it comes out that

Ei,Z = Eil)l +E£U2,
E// _ E// 44 (28)
1o =Ejvi+Eyu,

where E|, and E}, are the storage modulus and the loss
modulus of the two-component composites.



Advances in Materials Science and Engineering

800

700

600

[y

500 4

o e

(GPa)

400

i
\
W

300

200

100

0 0.05 0.1 0.15 0.2 0.25 0.3
Uy (%)

e Experimental points

FiGure 11: The storage modulus E’; versus filler volume fraction
for frequency f = 50Hz in epoxy/iron particulate composite. (a)
equation (B.1), (b) model 2, equations (28) and (30), (c) eq(B.5),
(d) model 3, equations (28) and (30), (e) model 4, equations (28)
and (30), (f) model 1, equations (28) and (30), (g) equation (B.3),
(h) equation (B.7).
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FIGURE 12: The loss modulus E.’ versus filler volume fraction for
frequency f = 50Hz in epoxy/iron particulate composite. (a)
Equation (B.1), (b) model 2, equations (28) and (30), (c) eq(B.5),
(d) model 3, equations (28) and (30), (e) model 4, equations (28)
and (30), (f) model 1, equations (28) and (30), (g) equation (B.3),
and (h) equation (B.7).

Using the correspondence principle when the compo-
nents of a two-component composite are connected in series,
one obtains

1 U 1)

= + . 29
B BB (29)

7
Introducing (25) and (26) into (29) one obtains
E (Ey + By )or + B (B + By v,
tan 81’2 = 7 72 712 ’ 72 72 >
Ei (E5* +ES?)vi + By (B + E5 ) v
1 _ Eivl Eévz (30)
Ei,(1+tandip) E*+E/* E*+E/*
tan 81,2 = }’2
E,

from which one obtains E} ,, E7,, where 8, is the phase lag
between strain and stress.

The dynamic modulus of the composite consisting of a
number components, as in the presented models, can now
be obtained by a successive application of (28) and (30).

2.2.2. Dynamic Shear Moduli. As in the case of the static
elastic moduli, the dynamic shear moduli can be obtained
from (28) and (30) by replacing E}, EY, E3, E5 , E1 , and E{,
by G, G\, Gy, G5, G} 5, and GY',, respectively.

2.2.3. Dynamic Poisson Ratios. Since in the most polymers
the same phase lag is observed in tension and shear, one has
E, G,
E, G,

(31)

Applying the correspondence principle in the equation

G = z(imvm) (52
with
Vi =V — Vs
G =G, +iG,, (33)
Ei = E), +iE},
it comes out that
_ E,Gy+ ELG
Vypy = R ],
2(G,,2 +Gy?) (34)
v,y = 0.

The dynamic Poisson ratios of the composite are now
obtained applying the correspondence principle into equa-
tion

E.

R o
which gives
*
vr B _ 1 (36)



from which one obtains

. E.G.+E/G/

e T 2(G2+G/?) -h (37)

. _ EG! —E/G, -
‘ z(ng + G;'Z) :

When the inverse law of mixture is considered for the Poisson
ratio of the composite it comes out that
1 Vf | Um

;0

Ve VF Yy (39)
V! =0
which gives
E! G/
= . 40

2.3. Ultrasonic Equipment and Measurement Procedures.
Energy pulse propagation through the structure at frequen-
cies above the audible range can be related to the material
properties. The velocity propagation can be measured since
modulus = density x (velocity)?. However, the main aim
of the ultrasonic testing of materials which contain discon-
tinuities is to determine the effects of interaction between
sound waves and material properties. The basic parameters
required for all ultrasonic measuring methods are sound
velocities and sound attenuation through the material in
which the sound wave travels. Sound velocities ¢, and ¢,
of the longitudinal and transverse waves, respectively, and
the density p. of the material are used for the evaluation of
the elastic modulus E,, the Poisson ratio 7., and the shear
modulus G, via he following relationships:

_ (14+v)(1—2v,) )

E=may P
_ 1/2(cele)® ~ 1 (41)
(colcr)? — 1
G, = pcci.

Figure 4 shows a schematic diagram of the ultrasonic pulse-
echo measuring system used. The system consists of a
broad band (0.5-15MHz) ultrasonic pulser-receiver flaw
detector (Krautkramer) which can generate and receive
electric pulses up to 15MHz. K2G and K2N probes were
used as transmitting-receiving transducers of sound waves,
producing ultrasounds of 2 and 4MHz, respectively. A
simple machine oil was used as the transducer/specimen
interface couplant. A contact load for both probes of 9.88 N
was applied to the transducer/specimen interface.

The pulser section produces and injects ultrasonic pulses
into the specimen through the transducer, and the reflected
signals produced are amplified by the receiver section of the
equipment and displayed on the oscilloscope.
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The sound velocity ¢ of the longitudinal waves of each
specimen was evaluated using the relationship

i =, (42)
y
where ¢, is the sound velocity of the reference block, dy is the
real specimen thickness, and d, is the equivalent thickness
of the specimen, which is measured on the screen of the
oscilloscope.

3. Material and Experimental Work

3.1. Testing Material in Tension and Ultrasonic Measurements.
The specimen used consisted of a matrix material, which was
a cold setting system based on a diglycidyl ether of bisphenol.
A resin having an epoxy equivalent of 185-192, a viscosity
of 15Nsm~2 at 25°C, and molecular mass between 370 and
384, was cured with 8 wt-% triethylenetetramine filled with
iron particles of average radius 75 ym. The elastic moduli of
the matrix and filler were 3, 5, and 210 GNm ™2, respectively,
whereas the Poisson ratios were 0, 36, and 0, 29, respectively.

3.1.1. Tensile Experiments. Dogbone specimens with con-
stant dimensions of measuring area 6 X 3mm and length
45mm were used during the tensile tests which were
carried out with an Instron type testing machine at room
temperature. The specimens were tested at a rate of extension
of 1mm min~'. Five filler volume fractions vy and five
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specimens for each volume fraction were used and the
values given correspond to their arithmetic mean value. For
the obtention of the stress-strain diagrams strain gauges
(KYOWA type, gauge factor k = 1.99) were located on the
specimen to measure the strains.

3.1.2. Ultrasonic Experiments. The NDE technique used in
the present work was the ultrasonic pulse-echo technique.
When ultrasonic pulses are introduced into a specimen,
they reflect on a discontinuity or on the back wall of the
specimen. The magnitude of the echo reflections depends on
the changes in the impedance across the specimen.

To determine the velocities of longitudinal and trans-
verse waves, five specimens from each volume fraction
of the composite material were tested ultrasonically at
ambient temperature. During each experiment the quantities
obtained from the oscilloscope screen were the equivalent
thickness d, of the particle-filled composite and the echo
heights. Measurements at three different points in each of the
five specimens were carried out. From these quantities and
using (42), the velocity ¢, was evaluated. A suitable probe
for the longitudinal waves with frequency 4 MHz was used.
For the evaluation of the velocity ¢, a suitable probe for the
transverse waves with frequency 2 MHz was used. From the
analogous (42) this velocity was calculated

ds

Cr =G a, (43)

3.2. Dynamic Experiments. The material of the matrix was
the same as the material used in the tension experiments and
ultrasonic measurements. Four filler volume fractions (5, 10,
15, and 20%) were used for the study of the effect of filler
content on the dynamic properties.

A Dynastat and Dynalyzer apparatus was used for the
measurement of the moduli E/. and E_’. This apparatus could
apply a sinusoidal load of maximum amplitude 100 N on a
specimen 50 mm in length and 3.5 mm wide. The specimen
was mounted between a long upper rod connected to a
load cell and a short lower rod coupled to a displacement
transducer and connected to a motor, which was a coil
suspended in the gap of a permanent pole magnet. By passing
a servocontrolled current through the coil, the specimen
could be subjected to various sinusoidal loads of prescribed
amplitude and frequency.

By taking into account the rigidity of the load cell and the
type and dimensions of the specimen, the storage and loss
moduli were calculated. The measurements were performed
at frequencies from 0.1 to 100 Hz at ambient temperature
(20-22°C).

4. Results and Discussion

The 3-component models 1 and 2 were used in [18-20] for
the evaluation of the elastic and shear moduli of particulate
composites. The proposed models 3 and 4, as it has been
mentioned, are formed from geometrical combinations of
the above 3-component models. In Figures 5 and 6 the
elastic modulus of the composite is plotted versus the filler

volume fraction. In these figures one can also observe the
curves corresponding to theoretical values obtained from
existing equations in the literature, as well as experimental
values obtained from tensile experiments and ultrasonic
measurements in epoxy/iron particulate composites. In these
figures at first one can observe that the predicted values of E,
obtained from models 3 and 4 are bounded from the values
predicted from models 1 and 2. In these figures one can also
see that the values of E, predicted from model 4 are above
those predicted from model 3. This can be explained by the
fact that model 4 consists of more elements from model 1
than model 3 does. In these figures it can also be observed
that the predicted values from (12) fit fairly well to the
experimental values mainly for high filler volume fraction
while the values from (17) are above the experimental values.
In Figure 5 it is noticeable that the values predicted by model
3 are close to those obtained by Counto’s (A.11) and that
they fit more satisfactorily to the experimental values than
Counto’s. In the same figure it can also be observed that
the values from model 2 are close to the values predicted
from Kerner (A.3) and (A.4) which are used as a lower
bound of the elastic modulus of a particulate composite, and
that the values of model 2 are lower than those of Kerner.
It is also observed in this figure that (A.5) and (A.6) give
lower values than those of (3). Another remark from this
figure is that the curves (b), (c), (d), and (e) fit well to the
experimental values for low filler volume fraction whereas
discrepancies appear for high filler volume fraction. In
Figure 6 the theoretical values of E, according to Hashin and
Shtrikman bounds are also presented. Comparing the results
from Figures 5 and 6 it seems that all the presented curves
are bounded by these two curves with little discrepancy
in the lower bound. In Figure 6 one can also observe that
the values from [16], (A.8), fit to the experimental values
for low filler fraction, while discrepancies appear for high
filler fraction. This behavior can be explained by the fact
that in (A.8) it is assumed that the elastic modulus takes
infinite value as vy — 1. In the same figure one can also
see that Narkis (A.7) gives values close to model 3 for the
upper bound of this equation. Another point that must
be mentioned by comparing these two figures is that the
low bound of Hashin and Shtrikman equations gives values
close to those calculated from Kerner equations. Finally from
these two figures the high discrepancies between theoretical
and experimental static results and ultrasonic measurements
become obvious. This fact can be attributed to the high
frequency that appears in ultrasonic experiments.

The comparison between the theoretical values of E,, as
they result from models 2, 3, and 4, and the experimental
values of E, can be done taking into account the following
facts. (a) In [33] it is mentioned that model 1 corresponds
to high adhesion quality between matrix and filler and that
model 2 corresponds to low adhesion quality while in [34]
it is mentioned that models 3 and 4 correspond to an
intermediate adhesion quality. (b) In [29] the concept of
the interphase is introduced as a third phase whose physic-
ochemical properties assume intermediate values between
the values of the corresponding properties of the filler
and those of the matrix. The interphase is a zone located
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between the filler and the matrix. In [29] the thickness
of the interphase is also evaluated. It is observed that for
low filler volume fractions the dependence of the thickness
of the interphase upon the filler volume fraction is weak
while for higher filler volume fractions this dependence is
stronger.

Based upon the above dependence of the interphase
thickness upon the filler volume fraction, the observed
disagreement between the theoretical and the experimental
values of E. can be explained as follows. In the presented
models 1, 2, 3, and 4 the existence of interphase is not
taken into account, but merely a constant adhesion quality
is considered for each model, which does not vary with the
filler volume fraction. Hence, it is expected that the values of
E. furnished by model 3 are higher than the experimental
values for low filler volume fractions and are close to the
experimental values for higher filler volume fractions. The
same remark holds also for models 2 and 4.

The contribution of models 3 and 4 is that they furnish
values of E. lying between the values given by models 1
and 2. These intermediate values can approximate better
the experimental values corresponding to higher volume
fractions. At the same time the disagreement between the
experimental values of E, and the theoretical values, as given
by model 3 for low filler volume fractions, can be considered
as acceptably small.

It is noticed that the modulus of elasticity given by
models 1, 2, 3, and 4 does not depend upon the number of
components of each model but upon the geometry of each
one. It seems that model 1 and model 2, which are three-
component models, give an upper bound and a lower bound,
respectively, for the values of E. that are evaluated by cube-
within-cube models. Model 4 furnishes higher modulus of
elasticity than model 3 because it consists of more geometric
elements taken by model 1, than model 3 does.

In Figure 7 the shear modulus G, in epoxy/iron partic-
ulate composite is plotted versus the filler volume fraction.
The values of G, predicted from models 1, 2, 3, and 4
as well as those evaluated from existing formulae in the
literature are presented. The experimental values have been
obtained indirectly from tensile experiments by determining
simultaneously the elastic modulus and Poisson ratio, and
then the shear moduli were calculated from the well-known
relation G = E/2(1 + v), assuming that the material
is macroscopically isotropic. In this figure it can also be
observed that the same remarks hold as in the case of uniaxial
tensile loading.

In Figure 8 the Poisson ratio values predicted from (23)
and from the inverse law of mixtures are plotted versus the
filler volume fraction. From this figure it can be seen that the
theoretical values predicted by (23) are above those predicted
by the inverse law of mixtures, which fit fairly well to the
experimental results.

In Figures 9, 10, 11, and 12 the storage modulus E, and
the loss modulus E. are plotted versus the filler volume
fraction for the frequencies f = 0,1Hz and f = 50Hz,
respectively. Although the values of E; predicted by models
3 and 4 approximate better the static experimental results
than models 1 and 2, this is not the case for the dynamic
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experimental results, where the values of E. and E." predicted
by model 2 simulate satisfactorily the experimental results.
This can be explained by a possible different behavior of
the interphase in the static and in the dynamic loading.
Assuming that the elastic modulus E; of the interphase varies
linearly inside the thickness of the interphase, satisfying the
inequality E,, < E; < Ey, it comes out that the mean value
of Ej is E; = (Eu + Ef)/2. Then it seems that models 3
and 4 correspond to a constant value of E; = E; inside the
thickness of the inerphase, by means of which it comes out
that ¢, = & in models 3 and 4. Inversely, it seems that
model 2 corresponds to continuously varying value of E;
inside the thickness of the interphase, by means of which it
results that &; # &3 in model 2. From the above remarks one
can conclude that probably the first behavior takes place in
the static experiments while the second takes place in the
dynamic experiments.

When m = Ef/E, > 1, the dynamic Poisson ratio
predicted by (35) leads to (40). One can easily see this,
because in (12) and (17),m/(m—1) ~ 1, m/(m—1) =~ 0, and
the reinforcing coefficients E./E,, and G./G,, are identical.
In this case, in epoxy/particle systems, it has been found
that the inverse law of mixture simulates satisfactorily the
experimental results [25]. For lower values of m, deviations
of v, from the inverse law of mixtures could lead the second
member of (38) to be different from zero.

In Figure 13 the storage modulus E is plotted versus the
filler volume fraction. By extending the experimental values
of dynamic measurements of the storage modulus E, in
epoxy/iron particulate composites, one can reach the values
predicted by ultrasonic measurements. This can be explained
by the fact that the classification of the local oscillations to
oscillations owed to covalent bonds between the atoms of the
main chains or to intermolecular bonds probably is not the
same for the low and for the high frequencies.

5. Conclusions

The values of the elastic and the shear moduli predicted by
the new models 3 and 4 are bounded by the values predicted
by models 1 and 2. The values given by model 3 are close
to the experimental values mainly for high filler volume
fractions, as well as to the values predicted by Counto’s
equation. The values of E. predicted by this model almost
coincide with the average values of E. given by models 1 and
2. Similarly the values of E, given by model 4 fit satisfactorily
to the experimental results. Since model 4 is composed by
more geometrical elements resulting from model 1, which is
the stiffer model in cube-within-cube formation, it is stiffer
than model 3. The values of Poisson ratio resulting from
(23) of models (3) and (4) are close to and lower than
the values of the Poisson ratio of the matrix. These values
have been found to be higher than those predicted by the
inverse law of mixtures, which fit fairly well the experimental
values.

The dynamic experimental results are approximated
satisfactorily by the values of dynamic moduli predicted
by model 2. Probably this is due to different behavior of
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the interphase material in static tension than in dynamic
loading.

The values of the elastic modulus measured by ultrasonic
measurements are higher than those measured by tensile and
dynamic experiments. This can be explained by the fact that
the number of the local oscillations owed to covalent bonds
between the atoms of the main chains is rather greater in
higher than in lower frequencies, resulting to an increase
of the elastic modulus in high frequencies. Equivalently the
number of the local oscillations owed to intermolecular or
other bonds weaker than the covalent bonds seems to be
lower in higher than in lower frequencies.

Appendices
A. Elastic Moduli

The existing models in the literature used for comparison are
the following.
(1) Einstein equation

Ec = En(1+2,505). (A1)

Ef(1=2v) = En (1= vf) + 1001+ v)Ef (1 + ¥n) = En(1+ vy)
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(2) Equation of Guth and Smallwood

E = E,y(1+2,50; +14,10%). (A.2)
(3) Kerner equations
vrGy L v
E. _ (7 = 59,,) G + (8 — IOVM)Gf 15(1 — v,,)
E, VG n Upm '
(7 = 5V)Gp + (8 = 10v,)Gr ~ 15(1 — vp,)
(A.3)

This equation for E; > E,, is simplified as follows:

E, v - 15(1 = )
— =14+ —— A4
E,, V(8 —10v,,) (A4)

(4) Takahashi equation

=1+ (1= : (A.5)
E, TEr(1+ ) + 2B (1—29f) + 2E(4 = 59,) (1 + V) + Enn(7 — 5v) (1 + vy
(5) Equation of Euler and Van Dyck (7) Mooney equation
Eo= (14 XY
cmom 1—svf (A.6) 1+2,5vf
) E.=Enexp —, (A.8)
where k and s take the values 1,25 and 1, 20, respectively. I —5vy
(6) Narkis equation
E. = Eimm, (A7)  Where for close sphere packing s = 1, 35.
k(l — ) (8) Hashin and Shtrikman bounds.
where 1,4 <k <1,7. The upper and lower bounds are, respectively,
vf vf
i R ST Gm + = 6(Kon + 2Gom)om
Kr — K, 3K, +4G, Gr—G,, 503K, +4G,)G,
E = [ R SR T ! ( ) , (A9)
vr vf
3 Kt — 30m G+ =7 6(Km 1 2Gm)0m

+
Kf —Kp ' 3Ky +4Gy

G — Gy 53Ky + 4Gyn) Gy
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Gf+

Advances in Materials Science and Engineering

Um
1 6(Kf+2Gf)vf
+
Gm = Gr  5(3K; +4Gy) Gy

(A.10)

v
9| Kp+— - 30,
+
K — Ky 3Ky +4Gy
E =
Um
3 Kf+ 1 . 3Uf
Kn — Ky 3Ky +4Gy
(9) Counto Model
11t ! (A11)
E.  E. _ 12\ 12 ’ :

B. Storage and Loss Moduli

The equations of E; and E! used for comparison are the
following.
(1) Einstein equation

E, = E,(1+2,50), (B.1)
E! = E};(1+2,505). (B.2)

(2) Equation of Guth and Smallwood

E, = E,(1+2,50; +14,10%), (B.3)
E! = Ej (142,50 +14,10%). (B.4)

(3) Kerner equations

E. vf - 15(1 = vy)

=1+ —, B.5
E, U (8 = 107,,) (B:5)
E/ vf - 15(1 = )

=14+ ——. B.6
E! V(8 = 107, (B.6)

(4) Mooney equation

, , 1+2,5v¢
Ec = Em €x m, (B7)
1+2,5v
E/ =B exp——"F (B.8)

1 = Svy '

+|Gr+

Um
1 6(Kf+2Gf)vf
+
Gm = Gr  5(3Ky +4Gy) Gy
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