
An Integrated Knowledge Engineering Environment for
Constraint-based Recommender Systems

Stefan Reiterer1

Abstract. Constraint-based recommenders support customers in
identifying relevant items from complex item assortments. In this pa-
per we present a constraint-based environment already deployed in
real-world scenarios that supports knowledge acquisition for recom-
mender applications in a MediaWiki-based context. This technology
provides the opportunity do directly integrate informal Wiki content
with complementary formalized recommendation knowledge which
makes information retrieval for users (readers) easier and less time-
consuming. The user interface supports recommender development
on the basis of intelligent debugging and redundancy detection. The
results of a user study show the need of automated debugging and
redundancy detection even for small-sized knowledge bases.

1 Introduction

Constraint-based recommenders support the identification of relevant
items from large and often complex assortments on the basis of an ex-
plicitly defined set of recommendation rules [3]. Example item do-
mains are digital cameras and financial services [5, 8, 9]. For a long
period of time the engineering of recommender knowledge bases (for
constraint-based recommenders) required that knowledge engineers
are technical experts (in the majority of the cases computer scien-
tists) with the needed technical capabilities [14]. Developments in
the field moved one step further and provided graphical engineering
environments [5], which improve the accessibility and maintainabil-
ity of recommender knowledge bases. However, users still have to
deal with additional tools and technologies which is in many cases a
reason for not applying constraint-based environments.

Similar to the idea of Wikipedia to allow user communities to de-
velop and maintain Wiki pages in a cooperative fashion, we intro-
duce the WEEVIS2 environment, which supports the community-
based development of constraint-based recommender applications
within a Wiki environment. WEEVIS has been implemented on the
basis of MediaWiki3, which is an established standard Wiki platform.
Compared to other types of recommender systems such as collabo-
rative filtering [19] and content-based filtering [25], constraint-based
recommender systems are based on an underlying recommendation
knowledge base, i.e., recommendation knowledge is defined explic-
itly. WEEVIS is already applied by four Austrian universities (within
the scope of recommender systems courses) and two companies for
the purpose of prototyping recommender applications in the financial
services domain.

1 SelectionArts Intelligent Decision Technologies GmbH, Austria,
email:stefan.reiterer@selectionarts.com

2 www.weevis.org.
3 www.mediawiki.org.

The user interface of the WEEVIS environment provides intel-
ligent mechanisms that help to make development and mainte-
nance operations easier. Based on model-based diagnosis techniques
[12, 17, 26], the environment supports users in the following situa-
tions: (1) if no solution could be found for a set of user requirements,
the system proposes repair actions that help to find a way out from
the ”no solution could be found” dilemma; (2) if the constraints in
the recommender knowledge base are inconsistent with a set of test
cases (situation detected within the scope of regression testing of the
knowledge base), those constraints are shown to the users (knowl-
edge engineers) who are responsible for the faulty behavior of the
knowledge base; (3) if the recommender knowledge base includes
redundant constraints, i.e., constraints that – if removed from the
knowledge base – logically follow from the remaining constraints,
these constraints are also determined in an automated fashion and
shown to knowledge engineers.

The major contributions of this paper are the following. (1) on the
basis of a working example from the domain of financial services,
we provide an overview of the diagnosis and redundancy detection
techniques integrated in the WEEVIS environment. (2) we report the
results of an empirical study which analyzed the usability of WEE-
VIS functionalities.

The remainder of this paper is organized as follows. In Section
2 we discuss related work. In Section 3 we present an overview of
the recommendation environment WEEVIS and discuss the included
knowledge engineering support mechanisms. In Section 4 we present
results of an empirical study that show the need of intelligent diagno-
sis and redundancy detection support. In Section 5 we discuss issues
for future work, with Section 6 we conclude the paper.

2 Related Work

Based on original static Constraint Satisfaction Problem (CSP) rep-
resenations [15, 20, 29], many different types of constraint-based
knowledge representations have been developed. Mittal and Falken-
hainer [22] introduced dynamic constraint satisfaction problems
where variables have an activity status and only active variables
are taken into account by the search process. Stumptner et al. [28]
introduced the concept of generative constraint satisfaction where
variables can be generated on demand within the scope of solution
search. Compared to existing work, WEEVIS supports the solving of
static CSPs on the basis of conjunctive queries where each solution
corresponds to a result of querying a relational database. Addition-
ally, WEEVIS includes diagnosis functionalities that help to auto-
matically determine repair proposals in situations where no solution
could be found [12].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357579318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A graphical recommender development environment for single
users is introduced in [5]. This Java-based environment supports the
development of constraint-based recommender applications for on-
line selling platforms. Compared to Felfernig et al. [5], WEEVIS

provides a wiki-based user interface that allows user communities to
develop recommender applications. Furthermore, WEEVIS includes
efficient diagnosis [12] and redundancy detection [13] mechanisms
that allow the support of interactive knowledge base development.

A Semantic Wiki-based approach to knowledge acquisition for
collaborative ontology development is introduced in [2]. Compared
to Baumeister et al. [2], WEEVIS is based on a recommendation do-
main specific knowledge representation (in contrast to ontology rep-
resentation languages) which makes the definition of domain knowl-
edge more accessible also for domain experts. Furthermore, WEE-
VIS includes intelligent debugging and redundancy detection mech-
anisms which make development and maintenance operations more
efficient. We want to emphasize that intended redundancies can ex-
ist, for example, for the purpose of better understandability of the
knowledge base. If such constraints are part of a knowledge base,
these should be left out from the redundancy detection process.

A first approach to a conflict-directed search for hitting sets in in-
consistent CSP definitions was introduced by Bakker et al. [1]. In
this work, minimal sets of faulty constraints in inconsistent CSP def-
initions were identified on the basis of the concepts of model-based
diagnosis [26]. In the line of Bakker et al. [1], Felfernig et al. [4]
introduced concepts that allow the exploitation of the concepts of
model-based diagnosis in the context of knowledge base testing and
debugging. Compared to earlier work [4, 24], WEEVIS provides an
environment for development, testing, debugging, and application of
recommender systems. With regard to diagnosis techniques, WEE-
VIS is based on more efficient debugging and redundancy detection
techniques that make the environment applicable in interactive set-
tings [12, 16, 21].

3 The WEEVIS Environment
In it’s current version, WEEVIS supports scenarios where user re-
quirements can be defined in terms of functional requirements [23].
The corresponding recommendations (solutions) are retrieved from
a predefined set of alternatives (also denoted as item set or product
catalog). Requirements are checked with regard to their consistency
with the underlying item set (consistency is given if at least one so-
lution could be identified). If no solution could be found, WEEVIS

repair alternatives are determined on the basis of direct diagnosis al-
gorithms [12]. This way, WEEVIS does not only support item se-
lection but also consistency maintenance processes on the basis of
intelligent repair mechanisms [6].

WEEVIS is based on the idea that a community of users coop-
eratively contributes to the development of a recommender knowl-
edge base. The environment supports knowledge acquisition pro-
cesses on the basis of tags that can be used for defining and test-
ing recommendation knowledge bases. Using WEEVIS, standard
Wikipedia pages can be extended with recommendation knowledge
that helps to represent domain knowledge in a more accessible and
understandable fashion. The same principles used for the developing
Wikipedia pages can also be used for the development and mainte-
nance of recommender knowledge bases, i.e., in the read mode rec-
ommenders can be executed and in the view source mode recommen-
dation knowledge can be defined and adapted. This way, rapid pro-
totyping processes can be supported in an intuitive fashion (changes

to the knowledge can be immediately experienced by switching from
the view source to the read mode). In the read mode, knowledge
bases can as well be tested and in the case of inconsistencies (some
test cases were not fulfilled within the scope of regression testing)
corresponding diagnoses are shown to the user.

3.1 Overview

The website www.weevis.org provides a selection of different rec-
ommender applications (full list, list of most popular recommenders,
and recommenders that have been defined previously) that can be
tested and extended. Most of these applications have been developed
within the scope of university courses on recommender systems (con-
ducted at four Austrian universities). WEEVIS recommenders can be
integrated seamlessly into standard Wiki pages, i.e., informally de-
fined knowledge can be complemented or even substituted with for-
mal definitions.

In the following we will present the concepts integrated in the
WEEVIS environment on the basis of a working example from the
domain of financial services. In such a recommendation scenario,
a user has to specify his/her requirements regarding, for example,
the expected capital guarantee level of the financial product or the
amount of money he or she wants to invest. A corresponding WEE-
VIS user interface is depicted in Figure 1 where requirements are
specified on the left hand side and the corresponding recommenda-
tions are displayed in the right hand side.

Each recommendation (item) has a corresponding support value
that indicates the share of requirements that are currently supported
by the item. A support value of 100% indicates that each requirement
is satisfied by the corresponding item. If the support value is below
100%, corresponding repair alternatives are shown to the user, i.e.,
alternative answers to questions that guarantee the recommendation
of at least one item (with 100% support).

Since WEEVIS is a MediaWiki-based environment, the definition
of a recommender knowledge base is supported in a textual fashion
on the basis of a syntax similar to MediaWiki. An example of the def-
inition of a (simplified) financial services recommender knowledge
base is depicted in Figure 2. Basic syntactical elements provided in
WEEVIS will be introduced in the next subsection.

3.2 WEEVIS Syntax

Constraint-based recommendation requires the explicit definition of
questions and possible answers, items and their properties, and con-
straints (see Figure 2).

In WEEVIS the tag &QUESTIONS enumerates the set of user re-
quirements where, for example, pension specifies whether the user
wants a financial product to support his private pension plan [yes, no]
and maxinvestment specifies the amout of money the user wants to
invest. Furthermore, payment represents the frequency in which the
payment should be done [once, periodical], payout specifies the fre-
quency the customer gets a payout from the financial product (out of
[once,monthly]), and guarantee the expected capital guarantee [low,
high].

An item assortment can be specified in WEEVIS using the
&PRODUCTS tag (see Figure 2). In our example, the item (prod-
uct) assortment is specified by values related to the attributes name;
guaranteep, the capital guarantee the product provides; payoutp, the
payout frequency of the product; mininvestp the minimal amount of

Figure 1. A simple financial service recommender (WEEVIS read mode).

money for the financial service. Three items are specified: SecureFin,
BonusFin, and DynamicFin.

Incompatibility constraints describe incompatible combinations of
requirements. Using the &INCOMPATIBLE keyword, we are able to
describe an incompatibility between the variables pension and guar-
antee. For example, financial services with low guarantee must not be
recommended to users interested in a product that supports their pri-
vate pension plan. Filter constraints describe relationships between
requirements and items, for example, maxinvest ≥ mininvestp, i.e.,
the amount of money the user is willing to invest must exceed the
minimal payment necessary for the financial product.

In addition the recommendation knowledge base itself, WEEVIS

supports the specification of test cases that can be used for the pur-
poses of regression testing (see also Section 3.4). After changes to
the knowledge base, regression tests can be triggered by setting the
—show— tag, that specifies whether the recommender system user
interface should show the status of the test case (satisfied or not).

3.3 Recommender Knowledge Base

Recommendation knowledge can be represented as a CSP [20] with
the variables V (V = U ∪ P) and the constraints C = COMP ∪
PROD ∪ FILT where ui ∈ U are variables describing possible
user requirements (e.g., pension) and pi ∈ P are describing item
properties (e.g., payoutp). Furthermore, COMP represents incom-
patibility constraints of the form ¬X ∨ ¬Y , PROD the products
with their attributes in disjunctive normal form (each product is de-
scribed as a conjunction of individual product properties), and FILT

the given filter constraints of the form X → Y .
The knowledge base specified in Figure 2 can be translated into

a corresponding CSP where &QUESTIONS represents U , &PROD-
UCTS represents P and PROD, and &CONSTRAINTS represents

COMP and FILT . On the basis of such a definition, WEEVIS is
able to calculate recommendations that take into account a specified
set of requirements. Such requirements are represented as unary con-
straints (in our case R = {r1, r2, ..., rk}).

If requirements ri ∈ R are inconsistent with the constraints in
C, we are interested in a subset of these requirements that should
be adapted in order to be able to restore consistency. On a formal
level we define a requirements diagnosis task and a corresponding
diagnosis (see Definition 1).

Definition 1 (Requirements Diagnosis Task). Given a set of re-
quirements R and a set of constraints C (the recommendation knowl-
edge base), the requirements diagnosis task is to identify a minimal
set ∆ of constraints (the diagnosis) that has to be removed from R

such that R−∆ ∪ C is consistent.
An example of a set of requirements inconsistent with the defined

recommendation knowledge is R = {r1 : pension = yes, r2 :

maxinvest = 13500, r3 : payment = periodical, r4 : payout =

once, r5 : guarantee = high}. The recommendation knowledge
base induces two minimal conflict sets (CS) [18] in R which are
CS1 : {r1, r5} and CS2 : {r1, r4}. For these conflict sets we have
two diagnoses: ∆1 : {r4, r5} and ∆2 : {r1}. The pragmatics, for
example, of ∆1 is that at least r4 and r5 have to be adapted in order
to be able to find a solution. How to determine such diagnoses on the
basis of a HSDAG (hitting set directed acyclic graph) is shown, for
example, in [4].

In interactive settings, where diagnoses should be determined in
an efficient fashion [12], hitting set based approaches tend to become
too inefficient. The reason for this is that conflict sets [18] have to be
determined as an input for the diagnosis process. This was the ma-
jor motivation for developing and integrating FASTDIAG [12] into
the WEEVIS environment. Analogous to QUICKXPLAIN [18], this
algorithm is based on a divide-and-conquer based approach that en-

Figure 2. Financial services knowledge base (view source (edit) mode).

ables the determination of minimal diagnoses without the determi-
nation of conflict sets. A minimal diagnosis ∆ can be used as basis
for determining repair actions, i.e., concrete measures to change user
requirements in R such that the resulting R′ is consistent with C.

3.4 Diagnosis and Repair of Requirements

Definition 2 (Repair Task). Given a set of requirements R =

{r1, r2, ..., rk} inconsistent with the constraints in C and a corre-
sponding diagnosis ∆ ⊆ R (∆ = {rl, ..., ro}), the corresponding
repair task is to determine an adaption A = {r′l, ..., r′o} such that
R−∆ ∪A is consistent with C.

In WEEVIS, repair actions are determined conform to Definition
2. For each diagnosis ∆ determined by FASTDIAG (currently, the
first n=3 leading diagnoses are determined), the corresponding solu-
tion search for R −∆ ∪ C returns a set of alternative repair actions
(represented as adaptation A). In the following, all products that sat-
isfy R − ∆ ∪ A are shown to the user (see the right hand side of
Figure 1).

Diagnosis determination in FASTDIAG is based on a total lexico-
graphical ordering of the customer requirements [12]. This ordering
is derived from the order in which a user has entered his/her require-
ments. For example, if r1 : pension = yes has been entered before
r4 : payout = once and r5 : guarantee = high then the underly-
ing assumption is that r4 and r5 are of lower importance for the user

and thus have a higher probability of being part of a diagnosis. In our
working example ∆1 = {r4, r5}. The corresponding repair actions
(solutions for R −∆1 ∪ C) is A = {r′4 : payout = monthly, r′5 :

guarantee = low}, i.e., {r1, r2, r3, r4, r5}−{r4, r5}∪{r′4, r′5} is
consistent. The item that satisfies R −∆1 ∪ A is {DynamicF in}
(see in Figure 2). The identified items (p) are ranked according to
their support value (see Formula 1).

support(p) =
#adaptions in A

#requirements in R
(1)

3.5 Regression Testing

WEEVIS supports regression testing processes by the definition and
execution of (positive) test cases which specify the intended behavior
of the knowledge base. If some of the test cases are not accepted by
the knowledge base (are inconsistent with the knowledge base), the
causes of this unintended behavior have to be identified. On a formal
level a recommender knowledge base (RKB) diagnosis task can be
defined as follows (see Definition 3).

Definition 3 (RKB Diagnosis Task). Given a set C (recommender
knowledge base) and a set T = {t1, t2, ..., tq} of test cases ti , the di-
agnosis task is to identify a minimal set ∆ of constraints (the diagno-
sis) that have to be removed from C such that ∀ti ∈ T : C−∆∪{ti}
is consistent.

Figure 3. WEEVIS maintenance support: diagnosis and redundancy detection.

An example test case inducing an inconsistency with C is t :

pension = yes and guarantee = high and payout = once

(see Figure 2). In this context, t induces two conflicts in C which
are CS1 : ¬(pension = yes ∧ guarantee = high) and CS2 :

¬(pension = yes ∧ payout = once). In order to make C consis-
tent with t, both incompatibility constraints have to be deleted from
C, i.e., are part of the diagnosis ∆ (see Figure 3).

In contrast to the hitting set based approach [4], WEEVIS includes
a FASTDIAG based approach for knowledge base debugging which
is more efficient and can therefore be applied in interactive settings
[12]. In this context, diagnoses are searched in C (the test cases used
for regression testing are assumed to be correct). In the case of re-
quirements diagnosis, the total ordering of the requirements is related
to user preferences. In the case of knowledge base diagnosis [4, 16],
the ordering is currently derived from the ordering of the constraints
in the knowledge base.

3.6 Identifying Redundancies

To support users in identifying redundant constraints in recom-
mender knowledge bases, the COREDIAG [13] algorithm has been
integrated into the WEEVIS environment. COREDIAG relies on
QUICKXPLAIN [18] and is used for the determination of minimal
cores (minimal non-redundant constraint sets). On a formal level a
recommendation knowledge base (RKB) redundancy detection task
can be defined as follows (see Definition 4).

Definition 4 (RKB Redundancy Detection Task). Let ca be a con-
straint of C (the recommendation knowledge base) and C the logical
negation (the complement or inversion) of C. Redundancy can be an-
alyzed by checking C − {ca} ∪ C for consistency - if consistency
is given, ca is non-redundant. If this condition is not fulfilled, ca is
said to be redundant. By iterating over each constraint of C, execut-
ing the non-redundancy check C−{ca}∪C, and deleting redundant
constraints from C results in a set of non-redundant constraints (the
minimal core).

As an example, the knowledge base shown in Figure 2 contains

redundancies. Consequently, the corresponding set of constraints C

does not represent a minimal core. Taking a closer look at the knowl-
edge base it appears that two individual filter constraints are redun-
dant with each other. More precisely, either the constraint &IF guar-
antee? = high &THEN guaranteep = high or the constraint &IF
guarantee? = high &THEN guaranteep <> low can be removed
from the knowledge base (in our example, the latter is proposed as
redundant by COREDIAG – see Figure 3). In the general case, higher
cardinality constraint sets can be removed, not only cardinality-1 sets
as in our example [13].

Similar to the diagnosis of inconsistent requirements the CORE-
DIAG algorithm is based on the principle of divide-and-conquer:
whenever a set S which is a subset of C is inconsistent with C, it
is or contains a minimal core, i.e., a set of constraints which pre-
serve the semantics of C. COREDIAG is based on the principle of
QUICKXPLAIN [18]. As a consequence a minimal core (minimal set
of constraints that preserve the semantics of C) can be interpreted as
a minimal conflict, i.e., a minimal set of constraints that are incon-
sistent with C. Based on the assumption of a strict lexicographical
ordering [12] of the constraints in C, COREDIAG determines pre-
ferred minimal cores.

4 Empirical Study
4.1 Study Design
We conducted an experiment to highlight potential reductions of de-
velopment and maintenance efforts facilitated by the WEEVIS de-
bugging and redundancy detection support. For this study we defined
four knowledge bases that differed with regard to the number of con-
straints, variables, faulty constraints, and redundancies (see Table 1).
Based on these example knowledge bases, the participants had to find
solutions for the following two types of tasks:

1. Diagnosis task: The participants had to answer the question which
minimal set ∆ of faulty constraints has to be removed from C

(C = COMP∪FILT) such that there exists at least one solution
for ((C −∆) ∪ PROD).

2. Redundancy detection task: The participants had to answer the
question which constraints in C = COMP ∪ FILT are redun-
dant (if C − {ca} ∪ C is inconsistent then the constraint ca is
redundant).

knowledge base number of constraints
/variables /faulty

constraints /test cases
/redundancies

kb1(redundant) 5/5/0/0/2
kb2(inconsistent) 5/5/1/2/0
kb3(redundant) 10/10/0/0/4
kb4(inconsistent) 10/10/2/4/0

Table 1. Knowledge bases used in the empirical study.

The participants (subjects N=20) of our experiment were separated
into two groups (groups A and B). All subjects were students of Com-
puter Science (20% female, 80% male) who successfully completed
a course on constraint technologies and recommender systems. Each
subject had to complete the assigned tasks on his/her own on a sheet
of paper and they had to track the time for each task. In our exper-
iment we randomly assigned the participants to one of the two test
groups shown in Table 2. This way we were able to compare the time
efforts of identifying faulty constraints and redundancies in knowl-
edge bases as well as to estimate error rates related to the given tasks.

testgroup 1st knowledge
base

2nd knowledge
base

A (n = 10) kb1 (redundancy detection) kb4 (diagnosis)
B (n = 10) kb2 (diagnosis) kb3 (redundancy detection)

Table 2. Each subject had to complete one diagnosis and one redundancy
detection task. Members of group A had a redundancy detection task of

lower complexity and a higher complexity diagnosis detection task
(randomized order). Vice-versa members of group B had to solve a higher
complexity redundancy detection and a lower complexity diagnosis task.

4.2 Study Results
The first goal of our experiment was to analyze time efforts and er-
ror rates related to the identification of faulty constraints in recom-
mender knowledge bases. The first hypothesis tested in our experi-
ment was the following:

Hypothesis 1: Even low-complexity knowledge bases
trigger the identification of faulty diagnoses (note that all
knowledge bases used in the experiment can be interpreted
as low-complexity knowledge bases [13]).

The average time effort for identifying minimal diagnoses in
knowledge base kb2 was 281.3 seconds, the average time needed to
identify diagnoses in kb4 was 497.5 seconds. The results show a sig-
nificantly higher error rate when the participants had to identify the
faulty constraints in the more complex knowledge base (see Table 3).
Hypothesis 1 can be confirmed by the results in Table 3 that show that
even simple knowledge bases trigger high error rates and increasing
time efforts. With the automated diagnosis detection mechanisms in-
tegrated in WEEVIS, reductions of related error rates and time efforts
can be expected.

groupB
(kb2)

groupA
(kb4)

average time (sec.) 281.3 497.5
correct (%) 50.0 10.0

incorrect (%) 50.0 90.0

Table 3. Time efforts and error rates related to the completion of diagnosis
tasks.

The second goal of our experiment was to analyze time efforts
and error rates related to the identification of redundant constraints
in recommender knowledge bases. The second hypothesis tested in
our experiment was the following:

Hypothesis 2: Even low-complexity knowledge bases
trigger the faulty identification of redundant constraints.

The average time for identifying redundant constraints in knowl-
edge base kb1 was 189.2 seconds, for kb3 337.4 seconds were
needed. The results show a significantly higher error rate when the
participants had to identify redundant constraints in the more com-
plex knowledge base (see Table 4). Hypothesis 2 can be confirmed
since even for low complexity knowledge bases error rates related to
redundancy detection tasks are high. With the automated redundancy
detection mechanisms integrated in WEEVIS, reductions of related
error rates and time efforts can be expected.

groupA
(kb1)

groupB
(kb3)

average time (sec.) 189.2 337.4
correct (%) 40.0 0.0

incorrect (%) 60.0 100.0

Table 4. Time efforts and error rates related to the completion of
redundancy detection tasks.

5 Future Work

There are a couple of issues for future work. The current WEE-
VIS version does not include functionalities that allow the learn-
ing/prediction of user preferences. The importance of individual user
requirements is based on the assumption that the earlier a require-
ment has been specified the more important it is. In future versions
we want to make the modeling of preferences more intelligent by in-
tegrating, for example, learning mechanisms that derive requirements
importance distributions on the basis of analyzing already completed
recommendation sessions.

Diagnoses and redundancies are currently implemented on the
level of constraints, i.e., intra-constraint diagnoses and redundancies
are not supported. In future WEEVIS versions we want to integrate
fine-granular analysis methods that will help to make analysis and
repair of constraints even more efficient. A major research challenge
in this context is to integrate intelligent mechanisms for diagnosis
discrimination [27] since in many scenarios quite a huge number
of alternative diagnoses exists. In such scenarios it is important for
knowledge engineers to receive recommendations of diagnoses that
are reasonable. This challenge has already been tackled in the context
of diagnosing inconsistent user requirements (see, e.g., [6]), however,
heuristics with high prediction quality for knowledge bases have not
been developed up to now [10, 11].

A major issue for future work is to integrate alternative mech-
anisms for knowledge base development and maintenance. The
knowledge engineer centered approach to knowledge base construc-
tion leads to scalability problems in the long run, i.e., knowledge
engineers are not able to keep up with the speed of knowledge base
related change and extension requests. An alternative approach to
knowledge base development and maintenance is the inclusion of
concepts of Human Computation [7, 30] which allow a more deep
integration of domain experts into knowledge engineering processes
on the basis of simple micro tasks. Resulting micro contributions can
be automatically integrated into constraints part of the recommenda-
tion knowledge base.

Finally, we are interested in a better understanding of the key fac-
tors that make knowledge bases understandable. More insights and
answers related to this question will help us to better identify prob-
lematic areas in a knowledge base which could cause maintenance
efforts above average. A first step in this context will be to analyze
existing practices in knowledge base development and maintenance
with the goal to figure out major reasons for the knowledge acquisi-
tion bottleneck and how this can be avoided in the future.

6 Conclusion
In this paper we presented WEEVIS which is an open constraint-
based recommendation environment. By exploiting the advantages
of Mediawiki, WEEVIS provides an intuitive basis for the devel-
opment and maintenance of constraint-based recommender appli-
cations. WEEVIS is already applied by four Austrian universities
within the scope of recommender systems courses and also applied
by companies for the purpose of prototyping recommender appli-
cations. The results of our empirical study indicate the potential of
reductions of error rates and time efforts related to diagnosis and re-
dundancy detection. In industrial scenarios, WEEVIS can improve
the quality of knowledge representations, for example, documenta-
tions can at least partially be formalized which makes knowledge
more accessible – instead of reading a complete documentation, the
required knowledge chucks can be identified easier.

REFERENCES
[1] R. Bakker, F. Dikker, F. Tempelman, and P. Wogmim, ‘Diagnosing and

Solving Over-determined Constraint Satisfaction Problems’, in 13th In-
ternational Joint Conference on Artificial Intelligence, pp. 276–281,
Chambery, France, (1993).

[2] J. Baumeister, J. Reutelshoefer, and F. Puppe, ‘KnowWE: a Semantic
Wiki for Knowledge Engineering’, Applied Intelligence, 35(3), 323–
344, (2011).

[3] A. Felfernig and R. Burke, ‘Constraint-based Recommender Systems:
Technologies and Research Issues’, in 10th International Conference
on Electronic Commerce, p. 3. ACM, (2008).

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based Diagnosis of Configuration Knowledge Bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[5] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘An Integrated
Environment for the Development of Knowledge-based Recommender
Applications’, International Journal of Electronic Commerce, 11(2),
11–34, (2006).

[6] A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and
E. Teppan, ‘Plausible Repairs for Inconsistent Requirements’, in IJCAI,
volume 9, pp. 791–796, (2009).

[7] A. Felfernig, S. Haas, G. Ninaus, M. Schwarz, T. Ulz, M. Stettinger,
K. Isak, M. Jeran, and S. Reiterer, ‘RecTurk: Constraint-based Recom-
mendation based on Human Computation’, in RecSys 2014 CrowdRec
Workshop, pp. 1–6, Foster City, CA, USA, (2014).

[8] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The VITA Finan-
cial Services Sales Support Environment’, pp. 1692–1699, Vancouver,
Canada, (2007).

[9] A. Felfernig and A. Kiener, ‘Knowledge-based Interactive Selling of
Financial Services with FSAdvisor’, in 17th Innovative Applications of
Artificial Intelligence Conference (IAAI05), pp. 1475–1482, Pittsburgh,
Pennsylvania, (2005).

[10] A. Felfernig, S. Reiterer, M. Stettinger, and J. Tiihonen, ‘Intelligent
Techniques for Configuration Knowledge Evolution’, in VAMOS Work-
shop 2015, pp. 51–60, Hildesheim, Germany, (2015).

[11] A. Felfernig, S. Reiterer, M. Stettinger, and J. Tiihonen, ‘Towards Un-
derstanding Cognitive Aspects of Configuration Knowledge Formaliza-
tion’, in VAMOS Workshop 2015, pp. 117–124, Hildesheim, Germany,
(2015).

[12] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Diagnosis
Algorithm for Inconsistent Constraint Sets’, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 26, 53–62, (2012).

[13] A. Felfernig, C. Zehentner, and P. Blazek, ‘COREDIAG: Eliminating
Redundancy in Constraint Sets’, International Workshop on Principles
of Diagnosis (DX’11), 219–224, (2011).

[14] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner, ‘Configuring Large Systems Using Generative Con-
straint Satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (1998).

[15] E. Freuder, ‘In Pursuit of the Holy Grail’, Constraints, 2(1), 57–61,
(1997).

[16] G. Friedrich, ‘Interactive Debugging of Knowledge Bases’, in Interna-
tional Workshop on Principles of Diagnosis (DX’14), pp. 1–4, Graz,
Austria, (2014).

[17] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson, ‘A Cor-
rection to the Algorithm in Reiter’s Theory of Diagnosis’, Artificial In-
telligence, 41(1), 79–88, (1989).

[18] U. Junker, ‘QUICKXPLAIN: Preferred Explanations and Relaxations
for Over-constrained Problems’, in AAAI, volume 4, pp. 167–172,
(2004).

[19] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl,
‘GroupLens: Applying Collaborative Filtering to Usenet News’, Com-
munications of the ACM, 40(3), 77–87, (1997).

[20] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[21] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov, ‘On
Computing Minimal Correction Subsets’, in IJCAI 2013, pp. 615–622,
Peking, China, (2013).

[22] S. Mittal and B. Falkenhainer, ‘Dynamic Constraint Satisfaction’, in
National Conference on Artificial Intelligence, pp. 25–32, (1990).

[23] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuraton
Tasks’, in IJCAI, volume 89, pp. 1395–1401, (1989).

[24] B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu, ‘Representa-
tive Explanations for Over-constrained Problems’, in Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI-07), eds., R. Holte
and A. Howe, pp. 323–328, Vancouver, Canada, (2007). AAAI Press.

[25] M. Pazzani and D. Billsus, ‘Learning and Revising User Profiles: The
Identification of Interesting Web Sites’, Machine learning, 27(3), 313–
331, (1997).

[26] R. Reiter, ‘A Theory of Diagnosis From First Principles’, Artificial in-
telligence, 32(1), 57–95, (1987).

[27] K. Shchekotykhin and G. Friedrich, ‘Diagnosis discrimination for on-
tology debugging’, in ECAI 2010, pp. 991–992, (2010).

[28] M. Stumptner, G. Friedrich, and A. Haselböck, ‘Generative Constraint-
based Configuration of Large Technical Systems’, AI EDAM, 12(04),
307–320, (1998).

[29] E. Tsang, Foundations of Constraint Satisfaction, volume 289, Aca-
demic press London, 1993.

[30] L. VonAhn, ‘Human Computation’, in Technical Report CM-CS-05-
193, (2005).

