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This paper is devoted to metric subregularity of a kind of generalized constraint equations.
In particular, in terms of coderivatives and normal cones, we provide some necessary and
sufficient conditions for subsmooth generalized constraint equations to be metrically subregular
and strongly metrically subregular in general Banach spaces and Asplund spaces, respectively.

1. Introduction

Let X be a Banach space and f : X → R be a function. Consider the following inequality:

f(x) ≤ 0. (1.1)

Let S := {x ∈ X : f(x) ≤ 0}. Recall that (1.1) has a local error bound at a ∈ S if there exist
τ, δ ∈ (0,+∞) such that

d(x, S) ≤ τ
[
f(x)

]
+ ∀x ∈ B(a, δ), (1.2)

where [f(x)]+ := max{f(x), 0} and B(a, δ) denotes the open ball of center a and radius δ.
The error bound has been studied by many authors (see [1–3] and the references therein).
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Let Y be another Banach space, b ∈ Y , and let F : X ⇒ Y be a closed multifunction.
The following generalized equation:

b ∈ F(x) (GE)

concludes most of systems in optimization and was investigated by many researchers (see
[4–9] and the references therein). Let x ∈ X and b ∈ F(a). Recall that (GE) is metrically
subregular at (a, b) if there exist τ, δ ∈ (0,∞) such that

d
(
x, F−1(b)

)
≤ τd(b, F(x)) ∀x ∈ B(a, δ) (1.3)

(see [4–6] and the references therein). This property provides an estimate how far for an
element x near a can be from the solution set of (GE). A stronger notion is the metric
regularity: a multifunction F is metrically regular at (a, b) if there exist τ, δ ∈ (0,+∞) such
that

d
(
x, F−1(y

)) ≤ τd
(
y, F(x)

) ∀(x, y) ∈ B((a, b), δ). (1.4)

There exists a wide literature on this topic. We refer the interested readers to [3, 7–11] and
to the references contained therein. Let A be a closed subset of X. Consider the generalized
constraint equation as follows:

b ∈ F(x) subject to x ∈ A. (GCE)

Let S denote the solution set of (GCE), that is, S = {x ∈ A : b ∈ F(x)}. We say that
(GCE) is metrically subregular at a ∈ S if there exist τ, δ ∈ (0,∞) such that

d(x, S) ≤ τ(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δ). (1.5)

When A = X, (GCE) reduces (GE) and (1.5) means that (GE) is metrically subregular
at (a, b). When F(x) = [f(x),+∞), b = 0 and A = X, (GCE) reduces the inequality (1.1)
and (1.5) means that this inequality has a local error bound at a. Error bounds, metric
subregularity and regularity have important applications in mathematical programming
and have been extensively studied (see [1–12] and the references therein). The Authors
[13] introduced the notions of primal smoothness and investigated the properties of
primal smooth functions. Under proper conditions, the distance function is primal smooth.
Differentiability of the distance function was discussed in [14]. As extension of primal
smoothness and convexity, the notion of subsmoothness was introduced and some functional
characterizations were provided in [15]. Recently, by variational analysis techniques (for
more details, see [16–19]), Zheng and Ng [6] investigated metric subregularity of (GE)
under the subsmooth assumption. In this paper, in terms of normal cones and coderivatives,
we devote to metric subregularity of generalized constraint equation (GCE) under the
subsmooth assumption. We will build some new necessary and sufficient conditions for
(GCE) to be metrically subregular and strongly metrically subregular.
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2. Preliminaries

Let X be a Banach space. We denote by BX and X∗ the closed unit ball and the dual space of
X, respectively. Let A be a nonempty subset of X, int(A) and bd(A), respectively, denote the
interior and the boundary of A. For a ∈ X and δ > 0, let B(a, δ) denote the open ball with
center a and radius δ.

We introduce some notions of variations and derivatives needed to state our results.
For a closed subsetA of X and a ∈ A, let Tc(A, a) and T(A, a), respectively, denote the

Clarke tangent cone and contingent (Bouligand) cone of A at a defined by

Tc(A, a) := lim inf
x

A−→a,t→ 0+

A − x

t
, T(A, a) := lim sup

t→ 0+

A − a

t
, (2.1)

where x
A−→ a means that x → a with x ∈ A. It is easy to verify that v ∈ Tc(A, a) if and only

if for each sequence {an} inA converging to a and each sequence {tn} in (0,∞) decreasing to
0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for each natural
number n; while v ∈ T(A, a) if and only if there exists a sequence {vn} in X converging to v
and a sequence {tn} in (0,∞) decreasing to 0 such that a + tnvn ∈ A for all n.

We denote byNc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ Tc(A, a)}. (2.2)

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=

⎧
⎨

⎩
x∗ ∈ X∗ : lim sup

x
A−→a

〈x∗, x − a〉
‖x − a‖ ≤ ε

⎫
⎬

⎭
(2.3)

is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex cone which
is called the Fréchet normal cone of A at a and is denoted by N̂(A, a). LetN(A, a) denote the
Mordukhovich limiting or basic normal cone of A at a, that is,

N(A, a) := lim sup
x

A−→a,ε→ 0+

N̂ε(A,x), (2.4)

that is, x∗ ∈ N(A, a) if and only if there exist sequences {(xn, εn, x
∗
n)} inA×R+ ×X∗ such that

(xn, εn) → (a, 0), x∗
n

w∗
−−→ x∗ and x∗

n ∈ N̂εn(A,xn) for each natural number n. It is known that

N̂(A, a) ⊆ N(A, a) ⊆ Nc(A, a), (2.5)

(see [4, 9, 16, 18, 19] and the references contained therein). If A is convex, then

T(A, a) = Tc(A, a),

N̂(A, a) = N(A, a) = Nc(A, a) = {x∗ ∈ X∗ : 〈x∗, x − a〉 ≤ 0 ∀x ∈ A}.
(2.6)
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Recall that a Banach space X is called an Asplund space if every continuous convex function
on X is Fréchet differentiable at each point of a dense subset of X (for other definitions and
their equivalents, see [19]). It is well known that X is an Asplund space if and only if every
separable subspace of X has a separable dual space. In particular, every reflexive Banach
space is an Asplund space. When X is an Asplund space, it is well known that

Nc(A, a) = cl∗(co(N(A, a))), N(A, a) = lim sup
x

A−→a

N̂(A,x), (2.7)

where cl∗(·) denotes the closure with respect to the weak∗ topology, see [9, 19]. Recently,
Zheng andNg [5] established an approximate projection result for a closed subset ofX, which
will play a key role in the proofs of our main results.

Lemma 2.1. Let A be a closed nonempty subset of a Banach space X and let β ∈ (0, 1). Then for any
x /∈ A there exist a ∈ bd(A) and a∗ ∈ Nc(A, a) with ‖a∗‖ = 1 such that

β‖x − a‖ < min{d(x,A), 〈a∗, x − a〉}. (2.8)

If X is an Asplund space, thenNc(A, a) can be replaced by N̂(A, a).

Let F : X ⇒ Y be a multifunction and let Gr(F) denote the graph of F, that is,

Gr(F) :=
{(

x, y
) ∈ X × Y : y ∈ F(x)

}
. (2.9)

As usual, F is said to be closed (resp., convex) if Gr(F) is a closed (resp., convex) subset of
X × Y . Let (x, y) ∈ Gr(F). The Clarke tangent and contingent derivativesDcF(x, y), DF(x, y)
of F at (x, y) are defined by

DcF
(
x, y

)
(u) :=

{
v ∈ Y : (u, v) ∈ Tc

(
Gr(F),

(
x, y

))} ∀u ∈ X,

DF
(
x, y

)
(u) :=

{
v ∈ Y : (u, v) ∈ T

(
Gr(F),

(
x, y

))} ∀u ∈ X,
(2.10)

respectively. Let D̂∗F(x, y), D∗F(x, y), and D∗
cF(x, y) denote the coderivatives of F at (x, y)

associated with the Fréchet, Mordukhovich, and Clarke normal structures, respectively. They
are defined by the following:

D̂∗F
(
x, y

)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈ N̂

(
Gr(F),

(
x, y

))} ∀y∗ ∈ Y ∗,

D∗F
(
x, y

)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈ N

(
Gr(F),

(
x, y

))} ∀y∗ ∈ Y ∗,

D∗
cF

(
x, y

)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈ Nc

(
Gr(F),

(
x, y

))} ∀y∗ ∈ Y ∗.

(2.11)

The more details of the coderivatives can be found in [9, 18, 19] and the references therein.
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3. Subsmooth Generalized Constraint Equation

Let A be a closed subset of X. Recall (see [13, 14]) that A is said to be prox-regular at a ∈ A if
there exist τ, δ > 0 such that

〈x∗ − u∗, x − u〉 ≥ −τ‖x − u‖2 (3.1)

whenever x, u ∈ A ∩ B(a, δ), x∗ ∈ Nc(A,x) ∩ BX∗ , and u∗ ∈ Nc(A,u) ∩ BX∗ .
As a generalization of the prox-regularity, Aussel et al. [15] introduced and studied

the subsmoothness. A is said to be subsmooth at a ∈ A if for any ε > 0 there exist τ, δ > 0
such that

〈x∗ − u∗, x − u〉 ≥ −ε‖x − u‖, (3.2)

whenever x, u ∈ A ∩ B(a, δ), x∗ ∈ Nc(A,x) ∩ BX∗ , and u∗ ∈ Nc(A,u) ∩ BX∗ .
It is easy to verify thatA is subsmooth at a ∈ A if and only if for any ε > 0, there exists

δ > 0 such that

〈u∗, x − u〉 ≤ ε‖x − u‖ (3.3)

whenever x, u ∈ A ∩ B(a, δ) and u∗ ∈ Nc(A,u) ∩ BX∗ .
Let F : X ⇒ Y be a closed multifunction, b ∈ Y and a ∈ F−1(b). Zheng and Ng [6]

introduce the concept of the L-subsmoothness of F at a for b: F is called to be L-subsmooth at
a for b if for any ε > 0 there exists δ > 0 such that

〈u∗, x − a〉 + 〈
v∗, y − v

〉 ≤ ε
(‖x − a‖ + ∥∥y − v

∥∥), (3.4)

whenever v ∈ F(a)∩B(b, δ), (u∗, v∗) ∈ Nc(Gr(F), (a, v))∩BX∗×Y ∗ and (x, y) ∈ Gr(F) with ‖x−
a‖+‖y−b‖ < δ. Next, we introduce the concept of the subsmoothness of generalized constraint
equation (GCE)which will be useful in our discussion.

Definition 3.1. Generalized equation (GCE) is subsmooth at a ∈ S if for any ε > 0, there exists
δ > 0 such that

〈u∗, x − u〉 − 〈
v∗, y − b

〉 ≤ ε
(‖x − u‖ + ∥∥y − b

∥∥),
〈
w∗, x′ − u

〉 ≤ ε
∥∥x′ − u

∥∥, (3.5)

whenever x ∈ B(a, δ), x′ ∈ A ∩ B(a, δ), u ∈ S ∩ B(a, δ), y ∈ F(x) ∩ B(b, δ), v∗ ∈ BY ∗ , u∗ ∈
D∗

cF(u, b)(v
∗) ∩ BX∗ , and w∗ ∈ Nc(A,u) ∩ BX∗ .

Remark 3.2. The subsmoothness of (GCE) at ameans the subsmoothness of F at a for b when
A = X, while the subsmoothness of (GCE) at a means the subsmoothness of A at a when
F(x) = b for all x ∈ X. If A = X and Gr(F) is prox-regular at (a, b), then generalized equation
(GCE) is subsmooth at a. If A and Gr(F) are convex, then F is also subsmooth at a. Finally
when A is prox-regular and F is single-valued and smooth, (GCE) is subsmooth at a, too.
Hence, Definition 3.1 extends notions of smoothness, convexity and prox-regularity.
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Proposition 3.3. Suppose that Generalized equation (GCE) is subsmooth at a ∈ S. Then for any
ε > 0 there exists δ > 0 such that

〈u∗, x − u〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖, (3.6)

〈w∗, x − u〉 ≤ d(x,A) + ε‖x − u‖, (3.7)

whenever x ∈ B(a, δ), u ∈ S ∩ B(a, δ), u∗ ∈ D∗
cF(u, b)(BY ∗) ∩ BX∗ , and w∗ ∈ Nc(A,u) ∩ BX∗ .

Proof. Suppose that (GCE) is subsmooth at a ∈ S. Then for any ε > 0, there exists δ > 0 such
that

〈u∗, x − u〉 − 〈
v∗, y − b

〉 ≤ ε

2
(‖x − u‖ + ∥∥y − b

∥∥),
〈
w∗, x′ − u

〉 ≤ ε

2
∥∥x′ − u

∥∥, (3.8)

whenever x ∈ B(a, 2δ), x′ ∈ A ∩ B(a, 2δ), u ∈ S ∩ B(a, 2δ), y ∈ F(x) ∩ B(b, 2δ), v∗ ∈ BY ∗ , u∗ ∈
D∗

cF(u, b)(v
∗) ∩ BX∗ , and w∗ ∈ Nc(A,u) ∩ BX∗ .

Let x ∈ B(a, δ), u ∈ S∩B(a, δ), v∗ ∈ BY ∗ , u∗ ∈ D∗
cF(u, b)(v

∗)∩BX∗ , and w∗ ∈ Nc(A,u)∩
BX∗ . If F(x) ∩ B(b, δ) = ∅, then

〈u∗, x − u〉 ≤ ‖x − u‖ ≤ ‖x − a‖ + ‖a − u‖ ≤ 2δ, d(b, F(x)) ≥ δ. (3.9)

Thus, (3.6) holds. Otherwise, one has

〈u∗, x − u〉 ≤ 〈
v∗, y − b

〉
+
ε

2
(‖x − u‖ + ∥∥y − b

∥∥) ≤ (1 + ε)
∥∥y − b

∥∥ + ε‖x − u‖, (3.10)

whenever y ∈ F(x) ∩ B(b, δ). Noting that d(b, F(x)) = d(b, F(x) ∩ B(b, δ)) (sine F(x) ∩
B(b, δ)/= ∅), it follows that

〈u∗, x − u〉 ≤ (1 + ε)d(b, F(x)) + ε‖x − u‖. (3.11)

It remains to show that (3.7) holds. Since

〈w∗, x − u〉 =
〈
w∗, x − x′〉 +

〈
w∗, x′ − u

〉 ≤ ∥∥x − x′∥∥ +
ε

2
∥∥x′ − u

∥∥

≤
(
1 +

ε

2

)∥∥x − x′∥∥ +
ε

2
‖x − u‖,

(3.12)

whenever x′ ∈ A ∩ B(a, δ). One has

〈w∗, x − u〉 ≤ d(x,A) +
ε

2
(d(x,A) + ‖x − u‖). (3.13)

Noting that u ∈ A, it follows that d(x,A) ≤ ‖x − u‖ which implies that (3.7) holds and
completes the proof.
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4. Main Results

This section is devoted to metric subregularity of generalized equation (GCE). We divide
our discussion into two subsections addressing the necessary conditions and the sufficient
conditions for metric subregularity.

4.1. Necessary Conditions for Metric Subregularity

There are two results in this subsection: one is on the Banach space setting and the other on
the Asplund space setting.

Theorem 4.1. Suppose thatX,Y are Banach spaces and that generalized equation (GCE) is metrically
subregular at a ∈ S. Then there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗) ∀u ∈ S ∩ B(a, δ). (4.1)

Proof. Let δGr(F) denote the indicator function of Gr(F) and δ > 0 such that (1.5) holds. Then
(1.5) can be rewritten as

d(x, S) ≤ δGr(F)
(
x, y

)
+ τ

(∥∥y − b
∥∥ + d(x,A)

) ∀(x, y) ∈ B(a, δ) × Y. (4.2)

Let u ∈ S ∩ B(a, δ) and u∗ ∈ N̂(S, u) ∩ BX∗ . Noting (cf. [9, Corollary 1.96]) that N̂(S, u) ∩
BX∗ = ∂̂d(·, S)(u), one gets that for any natural number n, there exists r ∈ (0, δ) such that
B(u, r) ⊆ B(a, δ) and

〈u∗, x − u〉 ≤ d(x, S) +
1
n
‖x − u‖ ∀x ∈ B(u, r). (4.3)

Hence, by (4.2), it follows that

〈u∗, x − u〉 ≤ δGr(F)
(
x, y

)
+ τ

∥∥y − b
∥∥ + τd(x,A) +

1
n
‖x − u‖ ∀(x, y) ∈ B(u, r) × Y, (4.4)

that is, (u, b) is a local minimizer of φ defined by

φ
(
x, y

)
:= −〈u∗, x − u〉 + δGr(F)

(
x, y

)
+ τ

∥∥y − b
∥∥ + τd(x,A) +

1
n
‖x − u‖ ∀(x, y) ∈ X × Y.

(4.5)

Hence, (0, 0) ∈ ∂cφ(u, b). It follows from [16] that

(0, 0) ∈ (−u∗, 0) +Nc(Gr(F), (u, b)) + {0} × τBY ∗ + τ∂cd(·, A)(u) × {0} + 1
n
BX∗ × {0}, (4.6)
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that is,

(
1
τ
u∗ +

1
τn

x∗
n,−y∗

n

)
∈ Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0}, (4.7)

for some x∗
n ∈ BX∗ and y∗

n ∈ BY ∗ . Since BX∗ and BY ∗ are weak∗ compact, without loss of

generality (otherwise take a generalized subsequence), we can assume x∗
n

w∗
−−→ x∗, y∗

n
w∗
−−→ y∗

for some x∗ ∈ BX∗ and y∗ ∈ BY ∗ as n → ∞. Noting that

Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0} (4.8)

is weak∗ closed (since Nc(Gr(F), (u, b)) is weak∗ closed and ∂cd(·, A)(u) × {0} is weak∗

compact), one has

(
u∗

τ
,−y∗

)
∈ Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0}. (4.9)

This implies that

u∗ ∈ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗). (4.10)

This shows that (4.1) holds true. The proof is completed.

WhenX and Y are Asplund spaces, the conclusion in Theorem 4.1 can be strengthened
with D∗

cF(u, b)(BY ∗) and Nc(A,u) ∩ BX∗) replaced by D∗F(u, b)(BY ∗) and N(A,u) ∩ BX∗),
respectively. Its proof is similar to that of Theorem 4.1.

Theorem 4.2. Suppose that X and Y are Asplund spaces and that generalized equation (GCE) is
metrically subregular at a ∈ S. Then there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗F(u, b)(BY ∗) +N(A,u) ∩ BX∗) ∀u ∈ S ∩ B(a, δ). (4.11)

4.2. Sufficient Conditions for Metric Subregularity

Under the subsmooth assumption, we will show in the next result that some conditions
similar to (4.1) turns out to be sufficient conditions for metric subregularity.

Theorem 4.3. Let X and Y be Banach spaces. Suppose that generalized constraint equation (GCE) is
subsmooth at a and that there exist τ, δ ∈ (0,+∞) such that

Nc(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗), (4.12)
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whenever u ∈ bd(S)∩B(a, δ). Then (GCE) is metrically subregular at a and, more precisely, for any
ε ∈ (0, 1/(2(1 + τ))) there exists δε ∈ (0, δ/2) such that

d(x, S) ≤ (1 + τ)(2 + ε)
1 − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δε). (4.13)

Proof. Let ε ∈ (0, 1/(2(1 + τ))). Then, by subsmooth assmption of (GCE) at a and
Proposition 3.3, there exists δ′ ∈ (0, δ/2) such that

〈
u∗
1, x − u

〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖,
〈
u∗
2, x − u

〉 ≤ d(x,A) + ε‖x − u‖,
(4.14)

whenever x ∈ B(a, δ′), u ∈ S ∩ B(a, δ′), u∗
1 ∈ D∗

cF(u, b)(BY ∗) ∩ BX∗ and u∗
2 ∈ Nc(A,u) ∩ BX∗ .

Let δε ∈ (0, δ′/2) and x ∈ B(a, δε) \ S. Now we need only show (4.13).

(i) If F(x)∩B(b, δ′) = ∅, then d(x, S) ≤ ‖x−a‖ < δε, d(b, F(x)) ≥ δ′. Hence (4.13) holds.

(ii) Suppose F(x) ∩ B(b, δ′)/= ∅ and let

β ∈
(
max

{
d(x, S)

δε
, 2(1 + τ)ε,

1
2

}
, 1
)
. (4.15)

By Lemma 2.1 there exist u0 ∈ bd(S) and u∗ ∈ Nc(S, u0)with ‖u∗‖ = 1 such that

β‖x − u0‖ ≤ min{〈u∗, x − u0〉, d(x, S)}. (4.16)

Thus, ‖x − u0‖ ≤ (d(x, S)/β) < δε. Hence,

‖u0 − a‖ ≤ ‖u0 − x‖ + ‖x − a‖ < 2δε < δ′ < δ. (4.17)

By (4.12) there exist y∗
1 ∈ BY ∗ , x∗

1 ∈ D∗
cF(u0, b)(y∗

1), and x∗
2 ∈ Nc(A,u0) ∩ BX∗ such that u∗ =

τ(x∗
1 + x∗

2). Applying (4.14) with ((τ/(1 + τ))x∗
1, (τ/(1 + τ))x∗

2, u0) in place of (u∗
1, u

∗
2, u), it

follows that

〈u∗, x − u0〉 = τ
(〈
x∗
1, x − u0

〉
+
〈
x∗
2, x − u0

〉)

≤ (1 + τ)(2 + ε)(d(b, F(x)) + d(x,A)) + 2(1 + τ)ε‖x − u0‖.
(4.18)

This and (4.16) imply that

d(x, S) ≤ ‖x − u0‖ ≤ (1 + τ)(2 + ε)
β − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)). (4.19)

Letting β → 1, it follows that (4.13) holds. The proof is completed.

When X and Y are Asplund spaces, the assumption in Theorem 4.3 can be weakened
withNc(S, u) replaced by N̂(S, u).
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Theorem 4.4. Suppose X and Y are Asplund spaces. Suppose that generalized constraint equation
(GCE) is subsmooth at a and that there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗), (4.20)

whenever u ∈ bd(S) ∩ B(a, δ). Then for any ε > 0 there exists δε > 0 such that (4.13) holds.

With the Asplund space version of Lemma 2.1 applied in place of the Banach space
version, similar to the proof of Theorem 4.3, it is easy to verify Theorem 4.4.

In general, (GCE) is not necessarily metrically subregular at a if (GCE) only has that
Nc(S, a) ∩ BX∗ ⊆ τ(D∗

cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗).
Finally, we end this subsection with a sufficient and necessary condition for the Clarke

tangent derivative mapping DcF(a, b) to be metrically subregular at 0 for 0 over the Clerke
tangent cone Tc(A, a).

Let

τ(F, a, b;A) := inf{τ > 0 : there exists δ > 0 such that (1.5)holds}. (4.21)

For u ∈ S, let

γ(F, u, b;A) := inf{τ > 0 : Nc(S, u) ∩ BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A,u) ∩ BX∗)}. (4.22)

The following lemma is known ([5, Theorem 3.2]) and useful for us in the sequel.

Lemma 4.5. Assume that F : X ⇒ Y is a closed convex multifunction, A is a closed convex subset
of X, and a ∈ S. And suppose that there exist a cone C and a neighborhood V of a such that S ∩ V =
(a + C) ∩ V . Then,

τ(F, a, b;A) = γ(F, a, b;A). (4.23)

Consequently, (GCE) is metrically subregular at a if and only if γ(F, a, b;A) < +∞.

Theorem 4.6. Let a ∈ S and

τ := inf{τ > 0 : d(h, Tc(S, a)) ≤ τ(d(0, DcF(a, b)(h)) + d(h, Tc(A, a))) ∀h ∈ X}. (4.24)

Suppose that

Tc(S, a) ⊆ Tc(A, a) ∩DcF(a, b)
−1(0). (4.25)

Then,

τ = γ(F, a, b;A). (4.26)



Journal of Applied Mathematics 11

If, in addition, τ < +∞, then

Tc(S, a) = Tc(A, a) ∩DcF(a, b)
−1(0). (4.27)

Consequently, DcF(a, b) is metrically subregular at (0, 0) over Tc(A, a) if and only if γ(F, a, b;A) <
+∞.

Proof. First, we assume that τ < +∞. By the definition of τ , we have

d(x, Tc(S, a)) ≤ τ(d(0, DcF(a, b)(x)) + d(x, Tc(A, a))) ∀x ∈ X. (4.28)

This implies that

Tc(A, a) ∩DcF(a, b)
−1(0) ⊆ Tc(S, a). (4.29)

This and (4.25) imply that (4.27) holds.
We consider the following constraint equation:

0 ∈ DcF(a, b)(x) subject to x ∈ Tc(A, a).
(
GCE′)

Let S′ denote the solution set of
(
GCE′). Then,

S′ = Tc(A, a) ∩DcF(a, b)
−1(0). (4.30)

Noting that

Nc

(
S′, 0

)
= Nc(Tc(S, a), 0) = Nc(S, a),

Nc(Gr(F), (a, b)) = Nc(Gr(DcF(a, b)), (0, 0)),
(4.31)

it is straightforward to verify that

τ = τ(DcF(a, b), 0, 0; Tc(A, a)), γ(F, a, b;A) = γ(DcF(a, b), 0, 0; Tc(A, a)). (4.32)

On the other hand, sinceDcF(a, b) is a closed convex multifunction from X to Y and Tc(A, a)
is a closed convex cone, Lemma 4.5 implies that

τ(DcF(a, b), 0, 0; Tc(A, a)) = γ(DcF(a, b), 0, 0; Tc(A, a)). (4.33)

This gives us τ = γ(F, a, b;A).
It remains to show that γ(F, a, b;A) = +∞when τ = +∞. Suppose that

γ(F, a, b;A) < +∞. (4.34)
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We need only show that τ < +∞. Let x ∈ X \ Tc(S, a) and β ∈ (0, 1). By Lemma 2.1 there exist
u ∈ Tc(S, a) and x∗ ∈ Nc(Tc(S, a), u)with ‖x∗‖ = 1 such that

β‖x − u‖ ≤ 〈x∗, x − u〉. (4.35)

Noting that Tc(S, a) is a convex cone, it is easy to verify that

x∗ ∈ Nc(Tc(S, a), 0) = Nc(S, a), 〈x∗, u〉 = 0. (4.36)

Take a fixed r in (γ(F, a, b;A),+∞). Then there exist y∗ ∈ rBY ∗ , x∗
1 ∈ D∗

cF(a, b)(y
∗) and x∗

2 ∈
Nc(A, a) ∩ rBX∗ such that

x∗ = x∗
1 + x∗

2. (4.37)

We equip the product space X × Y with norm

∥∥(x, y
)∥∥

r :=
r

1 + r
‖x‖ + ∥∥y

∥∥ ∀(x, y) ∈ X × Y. (4.38)

Noting that the unit ball of the dual space of (X × Y, ‖ · ‖r) is (((1 + r)/r)BX∗) × BY ∗ , it follows
from the convexity of DcF(x, y) and Tc(A, a) that

1
r

(
x∗
1,−y∗) ∈ Nc(Gr(F), (a, b)) ∩

((
1 + r

r
BX∗

)
× BY ∗

)

= Nc(Gr(DcF(a, b)), (0, 0)) ∩
((

1 + r

r
BX∗

)
× BY ∗

)

= ∂cd‖·‖r (·,Gr(DcF(a, b)))(0, 0),

1
r
x∗
2 ∈ Nc(A, a) ∩ BX∗ = Nc(Tc(A, a), 0) ∩ BX∗ = ∂cd(·, Tc(A, a))(0).

(4.39)

Hence,

1
r

〈
x∗
1, x

〉 ≤ d‖·‖r ((x, 0),Gr(DcF(a, b))) ≤ d(0, DcF(a, b)(x)),

1
r

〈
x∗
2, x

〉 ≤ d(x, Tc(A, a)),

(4.40)

whenever x ∈ X. Noting that 〈x∗, u〉 = 0, it follows from (4.35) that

β‖x − u‖
r

≤ d(0, DcF(a, b)(x)) + d(x, Tc(A, a)). (4.41)
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Therefore,

βd(x, Tc(S, a))
r

≤ d(0, DcF(a, b)(x)) + d(x, Tc(A, a)). (4.42)

Letting β → 1, one has

d(x, Tc(S, a)) ≤ r(d(0, DcF(a, b)(x)) + d(x, Tc(A, a))). (4.43)

This contradicts with τ = +∞. The proof is completed.

4.3. Strongly Metric Subregularity

Let F : X ⇒ Y be a multifunction and b ∈ F(a). Recall that F is strongly subregular at a if
there exist τ ∈ (0,+∞), neighborhoods U of a, and V of b such that

‖x − a‖ ≤ τd(b, F(x) ∩ V ) ∀x ∈ U. (4.44)

It is clear that this definition is equivalent to the next one when A = X.

Definition 4.7. One says that generalized constraint equation (GCE) is strongly metrically
subregular at a if there exists τ, δ ∈ (0,∞) such that

‖x − a‖ ≤ τ(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δ). (4.45)

It is clear that (GCE) is strongly metrically subregular at a if and only if a is an isolated point
of S (i.e., S∩B(a, r) = {a} for some r > 0) and it is metrically subregular at a. Thus, if (GCE) is
strongly metrically subregular at a, Then Nc(S, a) = X∗. We immediately have the following
Corollary 4.8 from Theorem 4.1.

Corollary 4.8. Suppose that there exists τ, δ ∈ (0,∞) such that (4.45) holds. Then,

BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.46)

Applying Theorem 4.3, one obtains a sufficient condition for (GCE) to be strongly
metrically subregular at a.

Corollary 4.9. Let X,Y be Banach spaces. Suppose that generalized constraint equation (GCE) is
subsmooth at a and that there exists τ ∈ (0,+∞) such that

BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.47)
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Then (GCE) is strongly metrically subregular at a and, more precisely, for any ε ∈ (0, 1/(1 + 2τ))
there exists δε > 0 such that

‖x − a‖ ≤ (1 + τ)(2 + ε)
1 − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δε). (4.48)

Proof. From Theorem 4.3, we need only show that S ∩ B(a, δ) = {a} for some δ > 0. Since the
assumption that (GCE) is subsmooth at a, by Proposition 3.3, for any ε ∈ (0, 1/2(1+τ)), there
exists δ > 0 such that

〈
a∗
1, x − a

〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖, (4.49)
〈
a∗
2, x − a

〉 ≤ d(x,A) + ε‖x − u‖, (4.50)

whenever x ∈ B(a, δ), a∗
1 ∈ D∗

cF(a, b)(BY ∗) ∩ BX∗ and a∗
2 ∈ Nc(A, a) ∩ BX∗ .

Take an arbitrary x∗ ∈ BX∗ . By (4.47), there exist x∗
1 ∈ D∗

cF(a, b)(BY ∗), x∗
2 ∈ Nc(A, a) ∩

BX∗ such that x∗ = τ(x∗
1 + x∗

2). Let x ∈ S ∩ B(a, δ). Applying (4.49)with (τ/(1 + τ))x∗
1 in place

of a∗
1, it follows from this and (4.50) that we have

τ
〈
x∗
1, x − a

〉 ≤ (1 + τ)ε‖x − a‖, 〈
x∗
2, x − a

〉 ≤ ε‖x − a‖. (4.51)

Then,

〈x∗, x − a〉 = τ
(〈
x∗
1, x − a

〉
+
〈
x∗
2, x − a

〉)

≤ (1 + 2τ)ε‖x − a‖.
(4.52)

And so,

‖x − a‖ = sup
x∗∈BX∗

〈x∗, x − a〉 ≤ (1 + 2τ)ε‖x − a‖. (4.53)

This shows that S ∩ B(a, δ) = {a}. The proof is completed.

From Corollaries 4.8 and 4.9, we also have the following equivalent results.

Corollary 4.10. Suppose that generalized constraint equation (GCE) is subsmooth at a. Then the
following statements are equivalent:

(i) (GCE) is strongly metrically subregular at a;

(ii) there exists τ ∈ (0,∞) such that BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗));

(iii) 0 ∈ int(D∗
cF(a, b)(Y

∗) +Nc(A, a));

(iv) X∗ = D∗
cF(a, b)(Y

∗) +Nc(A, a);

(v) DcF(a, b) is strongly metrically subregular at 0 for 0 over Tc(A, a).
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Proof. First, by Corollaries 4.8 and 4.9, it is clear that (i)⇔(ii). Noting that D∗
c(DcF

(a, b))(0, 0)(BY ∗) = D∗
cF(a, b)(BY ∗), (ii)⇔(v) is immediate from (i)⇔(ii).

It is clear that (ii)⇔(iii). Noting that Nc(A, a) and D∗
cF(a, b)(Y

∗) are cones, hence,

D∗
cF(a, b)(Y

∗) +Nc(A, a) =
∞⋃

n=1

(D∗
cF(a, b)(nBY ∗) +Nc(A, a) ∩ nBX∗). (4.54)

This shows that (ii)⇒(iv).
It remains to show that (iv)⇒(ii). Suppose that (iv) holds, by the Alaogu theorem, for

each n, the set D∗
cF(a, b)(nBY ∗) + Nc(A, a) ∩ nBX∗ is weakly star-closed, it follows from the

well-known Baire category theorem and (iv) that

0 ∈ int(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.55)

Hence, (ii) holds. The proof is completed.
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