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Summary. W. Gautschi's theory of attenuation factors for families of periodic 
functions in one variable is extended to families of functions in several vari- 
ables. Again, the linearity and the translation invariance of the operator 
which maps the data space onto the family are crucial. Special results are 
obtained for tensor product families and for the interpolation by translates 
of one generating function. Interesting examples are provided by box splines, 
which include certain finite elements. 
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1. Introduction 

It has been known for more than 50 years that the Fourier coefficients of an 
odd-degree periodic spline interpolant to data given at equidistant abscissas, 
which are also the knots (breakpoints) of the spline function, can be computed 
easily from the discrete Fourier transform (DFT) of the data, namely by multiply- 
ing the periodically extended sequence of DFT  coefficients by certain factors, 
called attenuation factors, which are independent of the data. In 1972 Gautschi 
[11] presented a general theory for attenuation factors, where he showed that 
such factors arise under much more general circumstances, namely, whenever 
the approximation process that maps the data into a family of periodic approxi- 
mants is linear and (in a natural sense) translation invariant. Gautschi [11] 
gave also a number of new examples, e.g., attenuation factors for defective spline 
functions, and new formulas based on a polynomial recurrence for the factors 
for splines interpolants of odd degree. (The respective formulas for even degree 
splines are listed in [12].) Moreover, Gautschi's article contains a brief historical 
survey of the earlier work on attenuation factors for periodic splines, notably 
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by Eagle (1928), Quade and Collatz (1938), Bauer and Stetter (1959), Ehlich 
(1966), and Golomb (1968) (see [-i1] for the complete references). In a more 
recent contribution Locher [16] studied the attenuation factors of interpolants 
from the linear space spanned by the translates h(. - j /N ) ,  jEZ,  of a periodic 
generating function h; he also gave a number of examples. 

Here we extend the basic results of both Gautschi's and Locher's paper 
to the multivariate case. It is not surprising that the linearity and the translation 
invariance of the approximation process are again crucial, and that in the tensor 
product case the attenuation factors are products of univariate ones. Yet in 
some points our results give improvements even in the univariate case. For 
example, in the basic characterization theorem our assumptions are weaker 
than Gautschi's. In the case of interpolation by translates of a periodic generating 
function h interesting relations hold if h is itself the sum of translates of a 
nonperiodic germ function H. Interesting examples for the latter are provided 
by box splines, which are treated in the last section. 

In the multivariate setting, suitable notation is important. There are several 
reasonable normalizations; for example, one might assume that the functions 
are 2n-periodic [11, 16] in each coordinate direction, or that the data points 
have integer coordinates [3-5, 8, 9, 13]. Since reducing the case of a rectangular 
domain to the one with square domain is trivial, we decided for 1-periodicity 
in each coordinate direction, but allowed for a different meshsize in each direc- 
tion. 

Among the possible applications for attenuation factors in several variables 
we mention the high-order fast Poisson solvers outlined in [12] for the case 
of periodic boundary conditions. 

2. Notation 

In R:=N ~ the following abbreviations are used for coordinatewise multiplication 
and division, for the inner product, and for a particular weighted inner product: 

x-y ==(Xd Yd)~= , , x/y :=(Xd/ya)O= l, 
D D 

(x,y).'= Z Xayd, (x ,y ) . '=  Z xaya/Ua" (2.1) 
d = l  d = l  

Na denotes the number of grid points per unit length in the coordinate direction 
d, and we set N==(Nd)~ 1. The following subsets of Z:=TZ ~ and of R play a 
role: 

K:={k~Z;O<=kd<Nd(d= 1 . . . . .  D)}, 

Q.'= {xeR;  O<Xd < l ( d =  1 . . . . .  D)}, 

•.'= {k/N; k6Z}.  

We mainly consider complex-valued functions f defined on R that are 1-periodic 
in each coordinate direction: f ( x ) = f ( x  + k)(V k ~ Z). The space of such periodic 
functions f whose restriction to the fundamental square Q is in LP(Q) is denoted 
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by 5FP(p > 1). (In the univariate case we use the standard notation LP(T) instead.) 
The restriction of any such f to the grid ~ is thought of as a periodic sequence 
f=(fk)k~z with multi-index k, i.e., f~H N, where 

H N :={f: Z ~ ~ ;  fk +I-N =fk(k, leZ)} 

is the space of N-periodic sequences. As usual, we set 

fP.-={~p" Z ~ ;  ~ [qOk]P<oo}, 
REZ 

and denote the corresponding space of bounded sequences by (~. The notation 
in (2.1) for coordinatewise multiplication and division is also used for elements 
of HN and #"; e.g., (f. ~0)k =fk ~Pk" 

Fourier analysis defines an invertible linear mapping ,~- from 5( '1 onto some 
subset of #oo ; the restriction of ~7 to 5P 2 is an isomorphism of ~ 2  onto (2 : 

~-: .f~L~ '1 ~--~ q~e# ~, ~p..= j f(x) e-Z'~i~"'X)dx (neZ). (2.2) 
(2 

The discrete Fourier transform (DFT) ~ is an automorphism of HN [13]" 

1 fk e 2ni(n,k) ~ :  f ~ H N ~ - ~ H N '  Y""=No0 Z (n6Z), (2.3) 
keK 

D 

where No.'= I ]  Na. Conversely, 
d = l  

f(x)  ~ ~ ~0, e z'~iO''x) 
IIEZ 

fk = Z }" eZ'~i<"'k> 
n ~ K  

(xeR), (2.4) 

(keZ). (2.5) 

(In the univariate case we write ~ r  and ~N instead of ,~- and ~ ,  respectively.) 
I f f  has an absolutely convergent Fourier series, i.e., i f f  lies in 

we always assume that f is continuous. Then (2.4) holds with the equality sign. 
If fE~r it is well known and easy to prove (e.g., see [I1], p. 381, or [13], 
p. 489, for the one-dimensional case) that q~..=~f and ~ , = ~ f ,  where fk"=f(k/N) 
is obtained by evaluating f on the grid, are related by aliasing: 

f . =  ~ ~0n+k. N (n~Z). (2.6) 
k~Z 

In Sect. 5 and 6 certain nonperiodic functions F e I / ( R )  will also play a role. 
The Fourier transform o~ associates with each such function a uniformly contin- 
uous function F = o ~ F  defined on R [15, p. 121]: 

.~R: F ~ L  1 (R) ~--~/~, if(u):= ~ F(x) e-2'~'~ (u~R). (2.7) 
R 
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(The factor 2~ in the exponent is not standard, but in our application some 
formulas are simplified.) 

On LJf ~, L 1 (R), and FIN we define shift operators Ey, Ey and E~, respectively, 
by 

(Eyf ) (x) ' .=f(x- -y)  (f~ ~o i orLl(R) ,y~R) ,  

(El  f)k : = f k _ l  (re FIN, leZ). 

The effects of shifts on Fourier transforms are described by the relations [13, 
15]: 

(,~ Eyf). = e -  2 ~/(., y) ( ~ - f ) .  

(0% Ey F)(u)  = e-  2~/(.,y)(.~ F)(u)  

(f in E l f ) .  : e -  2 ~i ("")  (0% f)n 

( fELf ' ,  yeR),  (2.8) 

(FeSq 1 (R), yeR), (2.9) 

(f~HN, I~Z). (2.10) 

We also make use of the Kronecker symbol and of various modifications of 
it: 

Finally, 

6m, :={0 if m=i=n, 

l if m = n ,  

M l 0  if m~g0(modM), 
J,,,, :=_1 if m = n (mod M), 

D D 
. . . . . .  Nd ~md ,nd  �9 

d = l  d= l  

N f l  if k / N e Z  
e'=(ek)kEZ with ek'=6k'0=<(0 otherwise, 

is the N-periodic unit pulse. 

3. Attenuation Factors  

The following treatment of attenuation factors for periodic functions of several 
variables is an extension of Gautsehi's theory in one variable [11]. Briefly, atten- 
uation factors exist if and only if the approximation process P: HN--+A vl is 
linear and translation invariant. (Of course, linearity implies continuity since 
HN is finite-dimensional.) 

Definition. P: FI N --+ 5f 1 is translation invariant if for all f~FIN and all I~Z 

P E l f =  El~ N Pf. (3.1) 

Theorem 1. P: H N ~  1 is linear and translation invariant if and only if there 
exists a sequence of attenuation factors, Z=(Zn)nEZ, such that for every f~HN 
the Fourier coefficients 7 . . = ~ P f  of P f  and the D F T  coefficients f:=0%f of f 
are related by 

y=z . f ,  i.e., 7n=rnfn (neZ). (3.2) 
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Proof Since f =  ~' fkEke, we obtain, assuming the linearity and translation 
kcK 

invariance of P, 

P f =  ~ fk Ek/N Pe. (3.3) 
k~K 

Due to the shifting relation (2.8), and in view of (n, k/N) = (n, k),  we get 

(a "~ Ek/N Pe).  = e-  2 ~i (n ,k )  ( f f  Pe)n, 

and then, using the linearity of ~ and (2.3), 

7n=( ,~Pf)n  : ~ fk('~Ek/N Pe)n= ~' fke-2ni(n'k)(.~Pe)n 
k~K kEK 

= Nof.(~,~ Pe)n= Z,,fn 
if we let 

z..'=N0 (,~- P e)n. (3.4) 

Conversely, if (3.2) holds, we conclude from the injectivity of ~ [15, p. 13] 
that 

p f = ~  l ~ p f = ~  1 ~ = ~ -  1 (T. ~) = ~ - -  1 (l.. ~-N f). 

Hence, P is a composition of linear maps, thus linear itself. Moreover, the shifting 
relations (2.8) and (2.10) now yield 

( ~  Elm P f)n ---- e -  2 ~zi(n,I/N)(.~-p f). = e -  2~/<.,,> z.fn = r .  ( ,~  E I f)n = ( ~  P E l f ) n ,  

which, by applying ~ -  1, gives (3.1). [] 
Note that even in the univariate case Theorem 1 generalizes Gautschi's Theo- 

rems 3.1 and 3.2 [11], where P f  is assumed to belong to a certain subset of 
L2(T)~--I~ [0, 1]. 

From now on we always assume that P: HN ~ L  pl is linear and translation 
invariant, and not the null operator, and that z=(z.)n~ z is the sequence of 
attenuation factors of P. From (3.4) and the fact that ff(oW p) _~ :q if 1 =<p < 2, 
1/q = 1 - lip [15, p. 25] we have 

C o r o l l a r y .  (i) z = N O o~- P e .  
(ii) I f  Pe ~ ~P, 1 < p < 2, then z ~ (q, where 1/q = 1 - 1/p. 

(iii) z~ :  1 if and only if P e ~ r  
In most applications, P has additional natural properties which are reflected 
by properties of z: 

T h e o r e m  2. (i) Zn6~,(VneZ) if and only if P preserves symmetry in the sense 
that 

f - I , = fk  ('v'kEK) =~ ( P f ) ( - x ) = ( P f ) ( x )  (a.e.x~g). (3.5) 

(ii) f -n  = zn(Vn~Z) if and only if P preserves the reality of the data, 

fkeF,  (VkeK) ~ (Pf)(x)eF-, (a.e. xeR).  (3.6) 
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(iii) Zo = 1 and T k . N = 0  (Vkz~=0) / f  and only if P preserves unity in the sense 
of 

fu=  1 (VkeK) ~ (Pf)(x)~ 1 (a.e. x~R). (3.7) 

Proof (i) Since (Pf)(x)= (W-l(T- f))(x) and 

(Pf)(-- x) ~ ~ ~ e z~i("'x) ~ ( ~  -1 ('~.~))(x), 
n~Z 

(Pf)(x) = (Pf)(--x) if and only if T-~= f-~, i.e., ~nfn~lR(Vn). Similarly, f_ k =fdv k) 
if and only iffn~;((Vn). Hence, (3.5) implies Tne~(Vn) and vice versa. 

(ii) ~7_. = 7n (V n) if and only if g :=~--1 ? is a real function. Hence "Y_, = ~n (V n) 
if and only if Pe  is a real function, cf. (3.4). In view of (3.3) this is seen to 
be equivalent to the implication (3.6). 

(iii) f k=  l(Vk) if and only if f=e .  Also, g (x ) -1  a.e. if and only if 7n=6n, O. 
Therefore, the implication (3.7) holds if and only if (~n,O=Tn:=~PJ~N-le= '~ne 
(here, (3.2) was used). For n :~ k-N the equality 6.,o = ~.e holds trivially. Hence, 
it holds for all n if and only if To = 1 and Tk-N = 0(V k #: 0). [] 

Of particular interest are operators P that interpolate any given data f6/7 N, 
i.e., satisfy P f ( k / N ) = f k ( V k ~ Z  ). In view of (3.3) it is sufficient to require that 
P interpolate e: 

Definition. P is an interpolation operator if P e ~ '  and Pe(k /N)= ek(kEZ). 

For an interpolation operator the aliasing formula (2.6) implies 

f . =  ~ 7.+~.N(n~Z) with ? . ' = ~ P f .  (3.8) 
kEZ 

From (3.2) and Corollary 1 we therefore readily conclude 

Theorem 3. P is an interpolation operator if and only if z ~  1 (i.e., Pe~,~') and 

"Cn+k. N = | (Vn6Z). (3.9) 
k~Z 

Gautschi's Theorem 3.3 [11] is a special means to compute attenuation factors 
of an interpolation operator. Its straightforward generalization to the multivar- 
iate case is left to the reader. In Sect. 5 we will discuss another method which, 
however, is restricted to a particular class of interpolation operators generated 
by translation of one (periodic or nonperiodic) function. The following trivial 
but very useful remark will be applied there: If for some data f we know the 
Fourier (series) coefficients 7 of P f  and compute the DFT coefficients ~ of f, 
then 

7. 
v . = f .  if fn#0 .  (3.10) 

In particular, if it is known that fn=0=~Vn=0, then all attenuation factors can 
be computed via the one FFT to determinefn. 
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4. Tensor Product Operators 

Many of the most widely used families of approximants for data given on rectan- 
gular domains are tensor product spaces of well-known univariant families. 
In fact, whenever the data can be approximated well by such a tensor product, 
this approach is very efficient. It is not surprising that the attenuation factors 
have product form in this case. 

Definition. P is a tensor product operator if there exist linear operators Pd" //Nd 
--* L 1 (T) such that 

D D 

f k :  H f k t ~ ( V k e Z ) ~ ( P f ) ( x )  = I ]  (PdOF[d])k~Z)(Xd) a.e. (4.1) 
d : l  d = l  

The usual notation is P =  | <_d<o ~ .  It is easy to verify that the translation 
invariance of P is inherited to every Pd- Also, Pd:#0 as a consequence of our 
assumption P 4= 0. 

Theorem 4. The following statements are equivalent ( for a linear and translation 
invariant operator P): 

(i) P is a tensor product operator. 
(ii) There are functions pd6L 1 (T), pn ~: O(d = 1,. . . ,  D) such that 

D 

(Pe)(x)= l-I Pd(Xd) a.e. (4.2) 
d = l  

(iii) There are sequences rtd]E Wr(L 1 (T)), ztd]:l: O(d = 1 . . . . .  D) such that 

D 

ZH = H -"drtdl" (4.3) 
d = l  

In view of (3.3), (4.2) generalizes for arbitrary f~F/N to 

D 

P f ( x ) =  ~ fk ~ pa(Xd--kd/Nd) a.e. (4.4) 
k ~ K  d = 1 

Proof  (i)~(ii):  Since ek--Hb0,k~,-- Nd (4.1) implies that Pe  has the asserted form. 
(ii)~(iii): Applying f f  to both sides of (4.2) we see that in view of (3.4) 

D D 

~. = No 1-I (~T Pd).d = l ]  Ud(~T p,).d, (4.5) 
d = l  d = l  

where o~ T Pd is now the sequence of Fourier coefficients of the univariate function 
pn. Hence (4.3) is satisfied with 

zta]= Na(j~r Pa),. (4.6) 
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(iii)=~(i): We define Pd by letting, for any univariate Na-periodic sequence 
f[d] ~ liNd ' 

Pd f[al .._ o~r- 1 (Ztdl. ~ d  f[d]), 

d = l  . . . . .  D. Since "['[d] = ~ T / ~  d for s o m e  Pd~LI(T) ,  Pd(6k,NdNd)k~Z = N d - I ~ T  1 ~ T  Pd 
=Nd-I~d~IJ(T), and by the obvious linearity of Pd, we have Pd: HNd-'L1(T). 
By Theorem 1 (with D = 1, N = Nd), Pd is translation invariant. Finally, it is easy 
to check that the tensor product operator defined now by (4.1) for data f =  (fk)k~Z 
of product form and extended to HN by linearity has exactly the attenuation 
factors (4.3). [] 

5. Generation by Translation 

As a consequence of the linearity and translation invariance of P, P f  can always 
be written as a linear combination of finitely many shifted versions of Pc, cf. 
Formula (3.3). In this section we investigate two similar representations of P 
- one more special, the other more general - and give appropriate formulas 
for the attenuation factors. In the first case, we assume that Pe is itself a superpo- 
sition of infinitely many shifted versions of a nonperiodic function which is 
the image of a nonperiodic unit pulse (6k, O)keZ" In the other case, P f  (and hence 
Pe) is some finite linear combination of translates of a given periodic generating 
function (as in [8]), and P f  interpolates f (as in [16]). 
Let HeLl(R) and define h by 

h(x).-=(y~ eiH)(x)= ~ H(x-j) (xzR). (5.1) 
jEZ j~Z 

Clearly, h is periodic; we say that it is generated by the germ function H. Since 
S [h (x)l d x < S I H (x)] d x (by the Monotone Convergence Theorem), h ~ •1. Using 
Q R 
Lebesgue's Convergence Theorem we get (cf. [15], p. 128): 

, n . ' = ( ~ h ) . =  ~ Z H(x-J)  e-2~"n'x)dx 
Q jEZ 

= ~_, ~ H(x-j)e-2~""'"-J)dx 
j~Z Q 

= ~ H(x)e-2~i("'X)dx 
R 

=/4(n), where / ~ = ~ H .  (5.2) 

We may now think of H as the image of the nonperiodic unit pulse (6k,O)k~Z 
under some linear and translation invariant operator, called P again, defined 
on the space ~z  of (in general nonperiodic) sequences. On the subspace//N c ~z 
this operator then satisfies 

(Pf)(x)= ~ fi H ( x - j / N ) =  ~ fk h(x - k / N )  (f~HN, xeR), (5.3) 
jeZ keK 



At tenua t ion  Fac tors  in Mul t iva r i a t e  Four ier  Analys is  623 

i.e., 
PI= Z,~ Ej/NH= ~ fk Ek/Nh. (5.3') 

j eZ keK 

Obviously, h = Pe, so by (3.4) and (5.2) the a t tenuat ion factors of P are 

~n = NO/4(n). (5.4) 

Let us now turn to interpolation by translates of a given periodic generat ing 
function he~4. (Trivially, a corresponding function HeL~(R) satisfying (5.1) 
always exists, but first we do not assume that  such a function is given.) For  
given data  f ~ H s  we want  to determine coefficients c k = ck(f)(k~K) such that 

fj= ~ Ck(f)h((j-k)/N) (jeZ), (5.5) 
kEK 

if this interpolat ion problem has a solution for all. As noted by Locher  [16], 
this linear systems becomes diagonal  after applying the D F T  since the r ight-hand 
side of  (5.5) is a convolut ion:  i.e., if we extend Ck periodically and let 

(5.5) is equivalent to 

C:=(Ck)k~Z, h=(hk)k~Z:=(h(k/N))k~Z, 
1~" = f in .f,, fZ'= JN C, fi-'=ffN h, (5.6) 

~= No(:.~. (5.7) 

Obviously, this system can be solved for the unknown ~z, and therefore (5.5) 
can be solved for e if and only if ~k = 0 implies fk = 0. In particular,  both  systems 
have for arbi t rary f ~ H s  a unique solution if and only if fik~:0 for all k [16]. 
In this case, P defined by 

(Pf)(x):=( ~, Ck Ek/Nh)(x)= ~, Ck h(x-k/N)  
kEK k~K 

(5.8) 

is an interpolat ion opera tor  as defined in Sect. 3. In particular,  Ph=h, i.e., Ck(h) 
N = ek = 6k,O. According to the basic relation (3.2) and the aliasing formula (2.6), 

the Fourier  coefficients 7, of h and the a t tenuat ion  factors zn of P satisfy 

~n t~n 
(neZ).  (5.9) 

~"-h.-  ~ ~.+js 
j eZ  

(The left-hand side equali ty is an example for (3.10). No te  also that  (3.9) holds.) 
If h itself is generated by a nonper iodic  germ function H in the sense of (5.1), 
then by (5.2), 

/~(n) /~(n) 
~" =~;~-~ = ~ ( .  +j-N) (neZ). (5.10) 

jEZ 
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Example. Univariate interpolation by periodic spline functions of order v (degree 
v - l )  with knots at the meshpoints, if v is even, or half-way in between, if 
v is odd, defines an interpolation operator with attenuation factors 

~k(n/N) ~k(x) (sin nx/~ 
zn= ~ ~9(k+n/N) where = \  7rx /-- (5.11) 

kEZ 

(see, e.g., Gautschi [111, p. 388, for v even). In view of sin(k+n/N)lt 
=(- -1)  k sin nrc/N this simplifies to 

z . =  ( - 1 ) k k + n / N ] l  " (5.12) 

~k is the Fourier transform (in our normalization) of Schoenberg's central cardi- 
nal B-spline M~, a result Schoenberg attributes to Laplace [20, p. 12]. Therefore, 
(5.11) is a special case of (5.10). (Since H(x)=Mv(Nx), the argument n in (5.10) 
has to be replaced by n/N). However, (5.11) is also a special case of (5.4): In 
fact, ~k(x)/Zql(k + x) is the Fourier transform of the cardinal spline interpolant 
to the unit pulse {6Ok}k~: ~ [19]. This derivation of (5.11) is due to Reinsch [11, 
p. 338]. (The factor No = N in (5.4) is again a consequence of replacing the mesh- 
size 1 by 1IN.) Assuming v even, Gautschi derived an elegant recursive formula 
for computing these attenuation factors, thus avoiding the infinite sum in (5.12) 
[11, pp. 377, 388]. A similar recursive formula holds for odd v [12]. A nearly 
as efficient way to compute these attenuation factors consists in determining 
the D FT  coefficients /~, of the periodically extended cardinal B-spline h(x) 
= ~ M~(Nx--Nk) (due to the compact support the sum always contains just 

keZ 

a finite number of nonzero terms, usually 0 or 1); then according to (5.10), 
z, = ~k (n/N)ffi,, i.e., h, is equal to the infinite sum in (5.11). 

6. Box Splines 

Interesting examples for the theory in Sect. 5 are provided by box splines, which 
include tensor product splines and certain finite elements as special cases. So 
the following treatment covers a variety of very useful examples. Box splines 
were introduced by de Boor and DeVore [2] and further studied mainly by 
de Boor and H611ig [3 51, Chui and Wang [6, 71, and Dahmen and Micchelli 
[8-101. We consider here interpolation by translates of periodically extended 
centered box splines. (The use of centered box splines is suggested by the univar- 
iate case, where for interpolation by even degree splines the interpolation points 
have to be chosen between the knots, preferably in the middle.) 

Given m>D vectors x 1 .... , x " ~  which span R, the centered box spline 
B(x)=B(x lx  1 .... , x") is implicitly defined by requiring that for every GeC(R) 
with compact support 

. . . . .  xm, dx  (61,  
[- �89189 e 1 g 
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B is a bounded function of compact support, (Our definition differs slightly 
from the standard one in that the grid S is used instead of Z.) 

We denote the span of a set A = {al, a2 .... } of vectors (in some linear space) 
by (A)  o r  ( a l ,  a 2 . . . .  ) ,  and IAI is the cardinality of A. 
Let X.'={x t . . . . .  x"} and 

6 , = 6 ( X ) : = m a x { 1 ; ( X \ Y ) = R  forall Y c X  with [Yl=l}. 

8 (X), which clearly satisfies 6 (X)< m - D ,  determines the smoothness of the spline 
space 5g(X)..={{B(---j/N)}j~z); one has [3] 

5f(X) = C a- '(R)\Ca(R), 

and, if .~ denotes the set of polynomials of total degree at most l on R, 

By choosing G (x)= e 2~i1~.,) in (6.1) one sees that the Fourier transform/~ = ~ B 
of B in our normalization is 

with 

/~(u) = f i  sin (u, xl)~ 
t= t  (u, x l ) ~  ' (6 .2)  

sin (u, x z) 
,--1 if (u, xZ)=0. (6.3) (u, x ~) 

As an example for Definition 5.1, we consider now periodically extended box 
splines: 

b(x).-= ~ B(x- j ) .  (6.4) 
jeZ 

As we have seen in Sect. 5, interpolation of arbitrary periodic data on ff by 
a linear combination of translates {b(" -k/N)}k~K of these periodically extended 
box splines is possible if and only if 

~ . . ' = ( ~  { b (k/N)} k~K). 4: 0, Vn~K, (6.5a) 

or, equivalently, 

/~(n + j .N)  4:0, Vn6K, (6.5b) 
jeZ 

and in this case the attenuation factors for this interpolation process are given 
by (5.10), 

/~(n) /~(n) 
~"= 6. - ~ /~(n+j.N) (neZ). (6.6) 

As in the univariate case, the last expression can be simplified. First, note that 

/t(u) = 0 ~ 3 I: (u, x~)cZ\{0}. (6.7) 
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Second, assume /~(n)4~0. Then (n, xt)E2~ is equivalent to (n,x~)=0; hence, 
(n + j-N, x l) = 0 implies (n, x l) = 0 since (j- N, x 1) ~ Z. Consequently, if we set 

(n, x') 
(n+ j .N ,  x t) : = ( -  1)WN'x'~ if (n, x t )= (n+ j .N ,  xl)----0, (6.8) 

we get, i f /~ (n)~0 ,  

1)(r N,Xx b .  ]Y] (n ,  x / ) (6.9) /~(n +j -N)  =/~(n)(-  
i .  (n+ j .N ,  x~)" l=1  

Hence, 

I0 if /3(n)=0, 

r ' =  [[i~z[L " 1~ (n+j.N,x')j(n'x')_]-1 (6.10, ( - 1 )  wN'zx'~ ~1 otherwise. 
l = l  

Summarizing, we obtain 

Lemma 5. Interpolation on the grid ~ by a linear combination of the translates 
{b("-k/N)}k,  K of the periodically extended box spline (6.4) is possible for arbi- 
trary data if and only if (6.5a) or, equivalently, (6.5b) holds. The attenuation 
factors are then given by (6.6) or, equivalently, by (6.10), where the convention 
(6.8) must be observed. 

Although the formula (6.10) may turn out to be useful in theoretical consider- 
ations, for the computation of the attenuation factors one will in practice use 
the first expression in (6.6), which essentially requires the evaluation of the peri- 
odic box spline b on ~ and the application of a D-dimensional FFT to the 
obtained values. (In the case of tensor product splines one should, of course, 
apply Theorem 4 instead.) The values of the box spline at the grid points can 
be computed either by applying the recurrence relation [3] or - in the bivariate 
case - by using the Bernstein-Bhzier representation [1, 17, 18]. 

It would be interesting and useful to know a necessary and sufficient condi- 
tion in terms of x ~ . . . . .  x m for (6.5) to hold. Here is a necessary one, which 
follows from a result of de Boor and H611ig [3] adapted to our situation (different 
grid, periodicity): 

Lemma 6. I f  {x' , . . . ,  x"} ~ ~ contains a basis {x ~1) . . . . .  x ~d)} of R for which 

and 
d .'=]det (N.x ~1) . . . . .  N-x~t~ ~= 1 

ea:=(0, ..., 0, 1, 0 . . . . .  0 ) T E ~ x X ( 1 ) - ~  - . . .  -]" 7~,X r (D) ,  d = l  . . . . .  D, 

(6.11) 

(6.12) 

then the functions {b(- -k/N)}k~r are linearly dependent and (6.5) does not hold. 

Proof As shown in [3], both the sets {B(--j/N)}j~ z and {A B(.--ZjdX~td))}j~Z 
provide a partition of unity. Hence this is also true for 

{ y, B(- - j - -  k/N)}kEK = {b(. - k/N)}kEK 
jEZ 

(6.13) 
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and, in view of (6.12), the sum over  the functions in the second set considered 
can be similarly reformulated as a sum of translates of A b. Hence  the cons tant  
1 can be represented (and interpolated)  by two different l inear combina t ions  
of t ranslates of  b. Since in terpolat ion on 2 by translates of b cor responds  to 
a linear m a p  between two spaces of the same dimension N o = / 7  Nd, uniqueness 
of the in terpolant  is equivalent  to existence of an in terpolant  for a rb i t ra ry  
data. [ ]  

No te  that  the b reakdown  of in terpola t ion described in L e m m a  6 is not or  
not only due to cancel lat ion in one of the infinite sums in (6.5b), but  due to 
all terms being zero in such a sum. In fact, the assumpt ions  of  L e m m a  6 persist 
if {x 1 . . . .  , x ' }  is replaced by {xl , . . . ,  x",  x I . . . . .  xm}, SO that  each direction appears  
an even n u m b e r  of times. But then all terms in the sum in (6.10) are nonnegat ive  
and, likewise, all nonvanish ing  terms in each sum in (6.5b) have the same sign. 

F r o m  this it follows, on the other  hand,  that  if directions are chosen such 
that  ~ I /~(n+j-N)[  > 0  for all n ~ K  and each direction appears  an even n u m b e r  

jeZ 

of times a m o n g  x ~ . . . . .  x",  then in terpola t ion is possible and is numerical ly  stable. 
(An example  is the tensor  p roduc t  of  odd  degree splines.) 

Here  is, as an i l lustrat ion for L e m m a  6, a simple, but  fairly general example,  
where in terpola t ion  is in general  impossible:  

Example. Let x l :=et/Nt:=(0 . . . . .  0, 1/Nl, 0 . . . . .  0) T, l =  1 . . . . .  D - 1, and  x ~ 
�9 "=(*, * . . . .  , *, v/No) T with v ~ Z \ {  - 1,0, 1 }, No/vEZ. Fur ther  directions x ~ 1 . . . . .  x m 
can be chosen arbitrarily.  Then, for n,=(No/v)e~ O, No~v), we have 
/ ~ ( n + j . N ) = 0 ,  V jeZ ,  and hence /~,=0. [Proof. If j q ~ ( e ~  j + 0 ,  then (n 
+ j . N ,  xZ)eZ\{0} for some I, 1 <l<O. I f j ~ ( n ) ,  then ( n + j . N ,  xD)= 1 + j o v 4 : 0 . ]  

Con t r a ry  to appearance  condi t ion (6.11) does not  depend on the meshsize 
determined by N (since N . x  * does not), while condi t ion (6.12) does depend 
on N (because x ~ does). Since one wants  to choose  box spline types (determined 
by N - x  1 . . . . .  N - x " )  which work  on every 1-periodic grid, (6.11) should not  hold, 
i.e., every basis {x ~1~ . . . .  , x ~{~ ~_ {x 1 . . . . .  x ' }  should satisfy 

A '=D det ( N - x  ~1) . . . . .  N .  x~D))l = 1. (6.14) 

De Boor  and H611ig [3] showed that  this condi t ion is necessary for the set 
{ B ( - - j / N ) } j ~  z to be globally linearly independent  (i.e., l inear combina t ions  of 
infinitely m a n y  member s  are identically zero only when all coefficients vanish). 
D a h m e n  and Micchelli [8] and  Rong-q ing  Jia [14] p roved  that  the condi t ion 
is also sufficient (even if the coefficients are al lowed to grow arbitrarily).  Conse-  
quently, (6.14) implies that  the functions (6.13) are linearly independent .  But 
from this we canno t  conclude that  then these functions are linearly independent  
on ~ (which would mean  tha t  there is always a unique interpolant) ,  t hough  
this seems to be very likely. 

In the bivar ia te  c a s e  R = ] R  2 (i.e., D = 2) condi t ion (6.14) leaves, up to obvious  
symmetries,  only  the vectors  N .  x = ( 1 ,  0), (0, 1) and (1, 1) as candidates  for ele- 
ments of  X. Let  /~l,#z,/~ 3 denote  the multiplicities with which they appear .  
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De Boor et al. [5] showed that for arbitrary g l, P2, ~3 > 0 with <X> = R cardinal 
interpolation or, in our normalization, interpolation on S from 5~(X) is always 
possible and unique. Consequently, interpolation of periodic data is also always 
possible and unique. 

Through reference to standard results on Toeplitz operators the question 
of cardinal interpolation is in [5] first reduced to that of proving 

B(j/N)e- 2~"j'x)#o, Vxr (6.15) 
jzZ 

which, in view of the Poisson summation formula, is equivalent to 

/ 3 (N-x+N. j )#0 ,  VxEQ. (6.16) 
jzZ 

In [5] the nonvanishing of this sum is then established in the bivariate case 
mentioned above. Note that in our condition (6.5b) for the periodic case, Q 
is just replaced by the finite subset K/N. Hence, (6.16) clearly implies (6.5). 

Acknowledgments. The author is indebted to Wolfgang Dahmen, Charles Micchelli, and Hartmut 
Prautzsch for their advice on box splines. 
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