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ABSTRACT 

This paper aims to combine neural network modelling with 
model-based fault detection. An accurate and robust model is 
critical in model-based fault detection. However, the 
development of such a model is the most difficult task 
especially when a non-linear system is involved. The problem 
comes not only from the lack of concerned information about 
model parameters, but also from the inevitable linearization. In 
order to solve this problem, neural networks are introduced in 
this paper. Instead of using conventional neural network 
modelling, the neural network is only used to approximate the 
non-linear part of the system, leaving the linear part to be 
represented by a mathematical model. This new scheme of 
integration between neural network and mathematical model 
(NNMM) allows the compensation of the error from 
conventional modelling methods. Simultaneously, it keeps the 
residual signatures physically interpretable.  

 
INTRODUCTION 

Model-based fault detection and diagnosis has received 
considerable attention in recent years [1]. By comparing the 
model estimation and the real behaviour, the residual signal 
contains only fault or noise information of the monitored 
system [2]. Different methods can be used to generate and 
analyse the residuals. The most frequently used methods are 
observer-based methods, parameter estimation methods and 
parity space methods [3-6]. Because the residual is generated 
by comparing the model prediction and the real measurement, 
all model-based techniques rely heavily on the mathematical 
model. Unfortunately, the majority of applications use linear 
models or linearised models for those nonlinear systems [7]. 
Since there usually exists modelling errors under realistic 
conditions, no accurate or sufficiently accurate mathematical 
models can be obtained [8]. This is particular in the case with 
complex nonlinearity and the case that lacks adequate 
information. Consequently, the linearised model-based methods 
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suffer from poor performances [9]. In order to overcome the 
problem in modelling accuracy, some efforts are made in the 
aspects such as non-linear observer development [10-11] and 
many neural networks [7, 12-13].  

 
There are two purposes for introducing neural networks 

into the model-based fault approach. When there is a lack of 
analytical knowledge of the system, a neural network can 
approximate the input and output performance of the system 
and provide a non-parametric model. This non-parametric 
model can then replace the mathematical model to implement 
model-based fault detection and diagnosis, as used by [7, 14-
15]. Besides, neural networks provide a convenient approach to 
solve the fault classification problem in the model-based 
approach [16]. However, although neural networks can be used 
both in modelling and in classification, many problems are not 
satisfied and need further research, especially the neural 
network modelling [3]. This paper focuses on this topic and 
presents a combination of a neural network model and model-
based approach.  

 

NEURAL NETWORK MODELLING 
In recent years, neural networks have found more and more 

applications in system modelling and system control [7, 17]. 
Neural network modelling does not need any prior knowledge 
of the component or of the system. A trained neural network 
can approximate the behaviour of any system using the historic 
data of the system, whether linear or non-linear [18]. When 
used in fault diagnosis, the healthy inputs and outputs of a 
control system will be used to train the neural network and to 
represent a system with a non-parametric model. This model 
can consequently be used in a model-based approach.  

 
For modelling purposes, an input-output structure shown in 

equation (1) is suitable for a non-linear system model. 
u represents the system input and y denotes system output, 
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and ŷ denotes the output of neural network (NN) model, which 
approximates the output of the system. 
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Two determinations are necessary in this modelling. One is 
neural network topology, which is related to both the network 
complexity and the speed in implementation. The other is the 
number of time delay ( ), nm , which affects the network 
complexity. The topology is a dominant factor to the 
complexity therefore it is chosen before the determination of 
the number of time delay.  
 

The Choice of Radial Basis Function Network 
Among the variety of neural networks, the most used 

networks are multi-layer perceptron (MLP) networks and radial 
basis function (RBF) networks [19]. Both them are capable of 
approximating any nonlinear unique static function. Their 
difference is that the RBF networks possess good interpolation 
but the MLP networks possess good extrapolation abilities.  
The RBF network is chosen in this paper because of the 
advantages outlined below.  

 
As shown in Fig. 1, an RBF network has a single hidden 

layer, and its output layer is merely a linear combination of the 
non-linear hidden layer signals. In contrast, an MLP network 
has at least two layers and all layers are no-linear [19]. 
Therefore, an RBF network allows for a much simpler weight 
updating procedure.  
 

Another feature of the RBF network is its localised 
approximation to non-linear input-output mapping due to the 
use of an exponentially decaying structure (e.g. the Gaussian 
function). Besides, the neurons of the hidden layer can be 
increased according to the approximation requirement. This 
provides the RBF with the ability to model any non-linear 
function in a relatively straightforward way [19]. It has also 
been shown that given enough hidden neurons, an RBF 
network can approximate any continuous function with 

Figure 1: The structure of an RBF network 
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arbitrary accuracy. This is just the factor that is used to improve 
modelling accuracy. Moreover, the RBF network is faster in 
convergence than that of multi-layer perceptron networks [19]. 
This is because the simpler structure and the localised 
approximation mean that this type of network is capable of fast 
learning. Also, its rapid training makes it suitable for on-line 
implementation and model adaptation, which is desirable in this 
project. 

 
The RBF network has poor extrapolation performance. 

This is to say that the RBF gives poor approximation when 
untrained data are processed. This drawback can be partially 
overcome by normalisation and regression.  
 

Improvement of the RBF Network 
As shown in Fig. 2, the RBF network can be improved by 
connecting to a special output layer. This network is called a 
generalised regression neural network (GRNN) and has three 
major advantages over the RBF network. Firstly, a special 
output layer as shown in Fig. 2 is added to the output layer. 
Each output value in the output layer is divided by the sum of 
all hidden layer outputs. This provides the network with an 
optimal normalisation function. The normalisation keeps the 
output within a specific range. Secondly, a generalised 
regression neural network is a method for estimating system 
behaviour given only one training set. Because the probability 
density function (pdf) is derived from the data with no 
preconception about its form, the network is perfectly general. 
This generalisation enables the inputs that are not identical to 
those encountered in the training set to be correctly classified. 
This property provides the generalised regression neural 
network with the capability to tolerate noises and some random 
factors from the system. Finally, a generalised regression neural 
network has the desirable property of requiring no iterative 
training. This is because the weights in this network are simply 
assigned to the target value directly from the training set 
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Figure 2: The structure of a generalised regression 
neural network 
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associated with the input training vector and its corresponding 
output vector. This property makes the training procedure 
simple and fast. 
 

IMPLEMENTATION ON A CONTROL SYSTEM 

System Description 
The neural network model is applied on the modelling of a 

real system. As shown in Fig. 3, it is an electro-hydraulic servo 
system. The system consists of an actuator, an electro-hydraulic 
servo valve and a displacement transducer. The computer is 
used as a controller in this system to receive feedback signal 
from the transducer and to send out control commands to the 
electro-hydraulic servo valve, which control the flow rate 
through the valve to drive the actuator. The servo valve is such 
a high integrity unit that no structure parameters can be 
obtained by measurement. Furthermore, the fluid power part of 
it often behaves in a non-linear way. Therefore, an accurate 
mathematical model of it is very difficult to be developed 
although some performance information can be found in its 
specification. In consideration of these difficulties, a non-
parametric model is developed using neural networks.  

Data Set Preparation 
Theoretically, the training data set should include all 

possible operating conditions of the system. The movement of 
the actuator is forwards and backwards between 100mm and 
200mm. The stroke of the actuator is arbitrary within 
0~100mm. If all inputs and their responses are used to train the 
neural network, the data set will be extremely large, and this 
will make the number of hidden neurons unacceptably large.  

 
As is well known, there is a receptive field for each neuron 

of an RBF network. This receptive field can handle the data 
around the neuron centre within this field. This is called 
generalisation capability of the neural network [19]. If the 

Figure 3: The control system to be monitored 
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receptive field is enlarged, the generalisation capability will be 
improved, although the modelling accuracy will be slightly 
decreased. The neural network performance can also be 
improved by data set pre-processing, in which the input and 
target data can be normalised so that they always fall within a 
specific range, [-1 1] for instance. All these methods are used in 
conjunction with the application of neural networks to the 
monitored system.  

 
In order to cover all possible situation of the system, 

operation, the measured data from the maximum stroke of the 
actuator (100mm) is used for normalisation. The normalised 
data are then used in the training of the network. During the 
training, the receptive field is optimised in accordance with the 
training data. The time delay in equation (1) is also needed to 
be determined during training. It is discussed below. 

Determination of Time Delay 
Theoretically, the number of time delay must be equal or 

greater than the system order [3]. In practice, the order of the 
system is not known beforehand, and therefore the time delay 
needs to be determined by a trial and error method.  

 
Different numbers of time delay are tried. In equation (1), 
0=m is tried first with 1=n . As shown in Fig. 4(a), the 

maximum training error is as large as 4.04mm, and it does not 
decrease significantly as n increases to 2 and 3. Therefore, 
further increase of n is given up and instead of increasing m  
to 1. The maximum training error decreases to 0.35mm when 
m  is 1 and n  is either 2 or 3. When m  increases to 2 with 
n being 3, the maximum training error decrease to 0.273mm. It 
seems that the increase of m  can decrease the training error. 
However, Fig. 4(b) shows that the estimation error in real 
applications will increase when n  is larger than 3 and m  is 
larger than 2. This means that further increase of time delay can 
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not decrease the modelling accuracy but decrease the capability 
in data generalisation.  Besides, the increase of time delay also 
increases the network complexity. Therefore, the optimal 
choice of the time delay is 21 == nandm . This model 
structure is used in conjunction with an RBF network to 
approximate the monitored system.  
 

COMBINATION OF NN MODEL WITH MATHEMATICAL 
MODEL (NNMM) 

Conventional Application 
After training, the neural network is used as a model, the output 
of which can be used in model-based fault detection. The 
general scheme of NN-model based approach is given by 
literature [4]. As shown in Fig. 5, a neural network replaces the 
mathematical model to generate the residual. To fulfil this task, 
the network has to be trained under normal condition, as 

Figure 5 Training and application of NN for 
residual generation 
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illustrated in Fig. 5(a). After finishing the training, the neural 
network output can be used for comparison with the real 
measurement to generate residual signals. Figure 5(b) illustrates 
this procedure, which is similar to what happens in a 
conventional model-based fault detection approach. In this 
paper, this is called a conventional NN model-based approach. 
Following examples are used to evaluate the effectiveness of 
this approach. 

 
Figure 6(a) shows the comparison of the NN model 

estimation and the measurement of the system under normal 
conditions in 100% stroke (100mm). Figure 6(b) shows their 
corresponding residual. The normal residual is within ±1mm, 
which seems to be acceptable.  

 
However, when this trained network is used for an 80% 

stroke of the actuator (80mm), the network output deviates 
from the correct value. Figure 7 shows this situation. The 
modelling error is more than 20mm. This implies that the 

Figure 7: Estimation error for an 80% stroke 
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Figure 6: NN model error in maximum stroke 
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network is not reliable in all system operations.  The reason is 
that the real input, although within 0~100mm, is going outside 
of the receptive field.  

 
The situation gets even worse when the stroke is further 

deduced. Enlarging receptive field does not give any help 
unless all data set from different strokes are taken into training. 
If all data in the scope of the overall operation are used for 
network training, the modelling accuracy may be adequate but 
the complexity of the network will be unaffordable and the 
network will work slowly due to this complexity. Obviously, 
this network model will cause a false alarm or time delay if it is 
used in model-based fault detection. 
 

The Scheme of NNMM and its application 
In the conventional application, neural network models 

replace the mathematical model completely. This type of non-
parametric model relies heavily on the training data. As 
demonstrated later, the training data should cover the overall 
input scope of the system under investigation. This makes the 
structure of the neural network model very complex. Although 
the network can be simplified by dividing the overall input 
scope into small pieces according to the receptive fields, a look-
up table or another layer of neural network is needed in 
application to identify the input and determine which piece of 
NN-model should be used. In this paper, a new scheme of 
integrating the neural network with the mathematical model is 
developed. In this approach, only one set of system input and 
its response are necessary in the network training but the 
modelling is more accurate than that of a pure NN model. 
 

Figure 8 shows the new scheme of integration. The 
integration of the neural network with the output observer is 
based on the following considerations. Firstly, although the 
mathematical model is not accurate enough, it is more robust 
than a neural network. A mathematical model can respond to 
arbitrary system inputs, but a neural network can only give a 
relative accurate respond to those system inputs that are 
covered by the training data set. Secondly, the generalised 
regression neural network has high capability to approximate a 
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non-linear system. This performance of the generalised 
regression neural network can be used to compensate for the 
inaccuracy of the mathematical model. Thirdly, the modelling 
error of a mathematical model is much less than that of the 
model output itself. If it is normalised and used in network 
training, the receptive field of the network provides an 
acceptable result. This network model is only used for 
modelling the inaccurate part of the mathematical model. Thus, 
the mathematical model can be linearised and simplified and 
leave the non-linearity and modelling error to be approximated 
by the generalised regression neural network. A NN model is 
provided in this way. This novel idea is represented in 
equations (2) and (3) and also illustrated in Fig. 8.   
 

))2(),1(),1(),((ˆˆ −−−++= krkrkukufuBxAx�  (2) 

xCy ˆˆ =      (3) 

where ))2(),1(),1(),(()( −−−= krkrkukufkr  is the prediction 

error of the generalised regression neural network.  

The model accuracy will be improved significantly. The 
effectiveness is shown in Fig.9. An 80% stroke is used to 
evaluate its modelling accuracy. The modelling error is 
between [-2 1] mm. This accuracy can be maintained even 
when a 20% stroke is operated. Comparing Fig. 9 with Fig. 7 
shows that the modelling error of a NNMM is only 5% of that 
of a pure NN model. This means that the NNMM is more 
accurate than the pure generalised regression neural network 
model and is more suitable for model-based fault detection. 
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IMPLEMENTATION TO MODEL-BASED FAULT 
DETECTION 

The new developed approach is applied to fault detection 
of the electro-hydraulic control system as shown in Fig. 3. An 
actuator leakage is simulated in the system.  

 
Figure 10 shows the residuals under normal condition but 

generated by different approaches. The solid line shows the 
NNMM model-based results and the dashed line shows the 
result of the mathematical model-based approach. The 
modelling error of the NNMM is within the range of [-1.5 1.5] 
mm and is almost a random signal, whilst the modelling error 
of the mathematical model varies significantly with a peak 
amplitude as high as [-2.8 2.8] mm. The comparison in 
modelling errors indicates that the NNMM is more accurate 
than the mathematical model.  

 
Recalling the modelling accuracy comparison that is made 

in figures 9 and 7, a NNMM is more accurate than either a pure 
NN model or a conventional mathematical model.  

Figure 11 shows the sensitivity of NNMM-based approach 
comparing to that of a mathematical model-based approach. 
Both residuals are generated under a fault condition of a small 
leakage in the actuator. g residual comparing to that of 
conventional mathematical model-based approach. The 
NNMM-based residual (Solid line) gives out higher peak 
values during the transient period than the mathematical model 
does (Dashed line). The threshold is set to ±5mm, and clearly it 
is exceeded by the residual form NNMM-based approach in 
some periods (transient periods), but not touched by the 
residual from the mathematical model-based approach. This 
means that the NN model-based approach is more sensitive to 
faults than a mathematical model. 
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CONCLUSION 
In this paper, a new scheme of using NNMM for model-

based fault detection is developed combining the conventional 
mathematical model with a generalised regression neural 
network (GRNN). Rather than using the neural network to 
model the whole system, this scheme uses it only to model the 
nonlinear portion that can not be approximated well by 
linearised mathematical models. Its modelling accuracy is 
compared to that of both a pure NN model and a mathematical 
model. It can be concluded that the NNMM is more accurate 
than either of them. The fault sensitivity of this new scheme is 
evaluated by an incipient fault of an actuator leakage. 
Compared with the conventional model-based approach, the 
NNMM is more sensitive to the incipient fault. The detection 
results show that it is superior over either a pure NN model or a 
mathematical model in the aspects of accuracy, robustness and 
effectiveness when applied to model-based fault detection and 
diagnosis. 
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