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ABSTRACT

Real world materials often change their appearance over
time. If these variations are spatially and temporally homoge-
neous then the material visual appearance can be represented
by a dynamic texture which is a natural extension of clas-
sic texture concept including the time as an extra dimension.
In this article we present possible way to handle multispec-
tral dynamic textures based on a combination of input data
eigen analysis and subsequent processing of temporal mix-
ing coefficients. The proposed method exhibits overall good
performance, offers extremely fast synthesis which is not re-
stricted in temporal dimension and simultaneously enables to
compress significantly the original measured visual data.

Index Terms— dynamic texture, texture analysis, texture
synthesis, data compression, computer graphics

1. INTRODUCTION AND RELATED WORK

Dynamic textures (DT) can be defined as spatially repetitive
motion patterns exhibiting homogeneous temporal properties.
Examples might be smoke, fire or liquids, also waving trees
or straws or some moving mechanical objects. A sequence
of either monospectral or multispectral images (frames) is the
simplest representation of DT. Measured DT data are always
represented by a finite length sequence, sometimes too short
for an intended application. This property may limit possi-
ble use of DTs in virtual reality systems so temporally un-
constrained synthesis of DT is an interesting and challenging
research problem in several computer graphics, computer vi-
sion, and pattern recognition applications. DT synthesis can
be also considered when the original dynamic texture mea-
surements have to be compressed.

Already published articles dealing with DTs can be di-
vided according to the application to: recognition, represen-
tation and synthesis [1]. The DT synthesis is the most dif-
ficult and there are only few papers on this topic available
[2, 3, 4, 5, 6]. Some methods [2, 3] are limited by time con-
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suming synthesis algorithm [5]. In addition method [2] re-
quires some high level of temporal homogeneity of the input
and this method is restricted to monospectral DTs. Method
[4] is limited to finite length sequence generation [5].

Another possibility is to utilize so called video editing
techniques [7, 8, 9], developed for general video sequences
originally, which can be used for DT synthesis as DT can be
considered as a special case of general video sequence. For
example video texture generation based on searching for tran-
sition points for looping with additional blending and morph-
ing [8]. Evident drawback is using blend and morphing to
achieve continuity of the synthesized sequence which may
introduce blur and other unfavourable visual artifacts. This
issue was solved in [9]. Another possibility is tree structured
vector quantization published in [7]. This method sometimes
fail to reproduce global structures which may appear in the
original data [9]. Video editing techniques are also very often
time demanding [5]. We compare most of the above men-
tioned methods with our approach in Section 6.

The contribution of this paper is to propose straightfor-
ward multispectral DT modeling method with low computa-
tional demands enabling extremely fast synthesis of arbitrar-
ily long DT sequence and in addition compression of original
data. The method consists of input data dimensionality reduc-
tion using eigen analysis based on [5] and selective elimina-
tion of resulted temporal coefficients.

2. METHOD OVERVIEW

The scheme of the proposed method is shown in Fig.1. The
whole modeling process can be divided into analysis and syn-
thesis. The first step of the analysis is DT normalization: a
per-pixel average frame from all frames in the sequence is
computed and subtracted from each frame in this sequence.
The results of following eigen analysis are eigen images and
temporal mixing coefficients which are further processed dur-
ing the temporal mixing coefficients reduction step. Aver-
age frame, eigen vectors and reduced temporal mixing coeffi-
cients are saved for synthesis purposes. Synthesis procedure
consists of temporal mixing coefficients choice, normalized
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Fig. 1. Dynamic texture modeling method scheme.

frames synthesis driven by chosen coefficients and denormal-
ization (inverse procedure to the normalization).

3. DYNAMIC TEXTURE EIGEN ANALYSIS

We used traditional PCA method for this task, similarly as
in [5], because of its optimal performance beside alternative
choices as for example non-linear techniques [10].

Values corresponding to pixels intensities of individual
frames from the normalized sequence are arranged into col-
umn vectors forming (n× t) matrix C where n is a num-
ber of values equals frame width× frame height× number of
spectral planes in the DT and t is a number of frames. Then a
covariance (t×t) matrix A is computed as A = CTC. The
matrix A is decomposed using singular value decomposition
so that A = UDUT , where U is an orthogonal matrix of
eigen vectors and D is a diagonal matrix of corresponding
eigen numbers. Each eigenvalue is proportional to its signif-
icance for data reconstruction. Therefore only k < t eigen
vectors corresponding to eigenvalues representing the most of
the information are saved. Unlike the approach [5] we use a
threshold τ for selecting the vectors which are not used. The
threshold is computed from the eigenvalues as:

τ =
1

t

t∑
i=1

D(i,i) . (1)

If D(i,i) > τ , i ∈ {1, . . . , t} then i-th column of D and
i-th column of U are used. All used columns of D and U
form new matrices D∗ and U∗ respectively. The (n × k)
matrix I of eigen images can be computed as: I = CT ,
where T is a (t× k) matrix with elements:

T(i,j) =
U∗(i,j)√
D∗(j,j)

. (2)

Computed matrix I represents the reduced basis for the
reconstruction of the original data therefore a matrix repre-

senting linear combination coefficient is needed. This role is
played by a matrix of temporal mixing coefficients which is
computed as: M = ITC. The (k × t) matrix M , which in
fact reflects the overall dynamics of the sequence, is a subject
of further processing described in following section.
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Fig. 2. The reduction algorithm schematic example.

4. TEMPORAL MIXING COEFFICIENT
REDUCTION

The matrix of temporal mixing coefficients M is further
processed to provide additional compression. M enables
to apply non-deterministic synthesis algorithm guarantee-
ing potentially infinite DT sequence generation. For non-
deterministic synthesis purposes analyzed DT is redefined
in terms of graph theory so that the sequence is represented
as a directed graph G where the individual frames play the
role of vertices and the order of the frames plays the role
of edges, i.e., the graph structure defines for each frame the
set of frames which may immediately follow. Thus before
the reduction an adjacency matrix A of G is formed as:
A(i,j) = 1 ⇐⇒ j = i + 1 , A(i,j) = 0 otherwise , i ∈
{1, . . . , t} , j ∈ {1, . . . , t}. The idea of the reduction is to
keep only those columns of M for which there is no other
sufficiently similar column in M , in terms of certain metric,
or generally distance. Let a (t × t) matrix ∆ is composed
of the elements:

∆(i,j) =

k∑
l=1

(M(l,i) −M(l,j))
2 , (3)

i.e., ∆ consists of all mutual distances of the columns of M .
Apparently, ∆ is symmetric, with zero diagonal, and there-
fore it is sufficient to take into account only those elements
∆(i,j) for which i < j holds and let ∆(i,j) = 0 otherwise.
The distance (3) was chosen because of its proven reasonable
properties for column comparison purpose and low comput-
ing demands.

An average distance δ is defined by the elements of ∆
as follows:

δ =
1

|Z|
∑
Z

∆(i,j) , (4)

where Z is the set defined as {∆(i,j) : i < j}. The average
distance δ plays the role of the criterion determining the



similarity of the columns of M , in the sense of the distance
(3). The matrix M is processed using ∆ and δ.

Every column j which fulfils D(i,j) ≤ δ is removed and
A is updated this way: A(i,j) = 0, A(i,i) = A(i,i) + 1, and
if j < k holds then A(j,j+1) = 0, A(i,j+1) = 1. Reduc-
tion is step-wise applied to all columns of M . Remaining r
columns of M , i.e., every column i : ∃j ∈ {1, . . . , t} :
A(i,j) = 1, form new (k × r) matrix M∗ which has to be
stored and is later used for synthesis.

The reduction algorithm is illustrated on Fig.2. The se-
quence is represented by a graph structure, frames are the
vertices, edges denote their order (thick arrows), and numbers
correspond to the order of the frames in the original sequence.
Vectors of the mixing coefficients corresponding to the indi-
vidual frames are symbolically represented in the form of bar
graphs (the height of each bar equals to the value of an in-
dividual coefficient, i.e., component of the vector). In this
example reduction is performed in three steps. 1: vector of
mixing coefficients of the first frame is compared with vec-
tors of mixing coefficients of the frames of the rest of the
sequence. 2: second frame was evaluated as too similar to the
first so it was removed, vector of mixing coefficients of the
third frame is compared with vectors of mixing coefficients
of the remaining frames. 3: resulting graph structure to be
stored.

5. DYNAMIC TEXTURE SYNTHESIS

DT synthesis produces a required length DT sequence. Syn-
thetic frames have identical resolution with the original DT
frames, i.e., the method is restricted to temporal enlargement.
The only data needed for this task are: average frame com-
puted during the normalization, matrix of eigen images I ,
matrix of reduced mixing coefficients M∗ and adjacency
matrix A.

During the synthesis a (k × t†) matrix of temporal mix-
ing coefficients M†, where t† is a length of the synthesized
sequence (in general different from t) is created column wise
according to the following algorithm. The first column of M†

is randomly chosen column of M∗. Let the last chosen col-
umn of M∗ has index i ∈ {1, . . . , r} then the next column
is randomly chosen column of M∗ from those which fulfill
A(i,j) = 1, j ∈ {1, . . . , r}. This provides required continu-
ity of the synthesized sequence since the set from which the
selection is performed consists of the frames such that there
exists an edge between them and the last chosen one in G
(see Section 4). If there does not exist any such column in
M∗ then the column closest to the i-th column of M∗, in
sense of (3), is chosen. This can occur if the graph repre-
senting the DT after reduction step described in Section 4 is
not connected. Above mentioned rule provides continuous se-
quence with no need to utilize any additional technique such
as morphing which could introduce some unfavourable arti-
facts to the visual information.

The same columns should not be chosen several times in
succession to avoid violation of texture dynamics. It was ob-
served that up to three identical consecutive frames have neg-
ligible observable impact on the result. Synthesized normal-
ized DT sequence C† which is an (n × t†) matrix can be
then computed simply as: C† = IM† as explained in Sec-
tion 3. The last step is an per-pixel addition of the average
frame to each synthesized frame in the sequence.

15 30 45 60

Fig. 3. Original DT flame frames (top row), their synthesis
using the method [9]-temporal, and our method (bottom row).
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Fig. 4. The original fire DT frames (first row), their synthesis
using the proposed method (second row), and the DT 3DCAR

method [5], respectively.

6. RESULTS

We used dynamic texture data sets from DynTex texture
database [11] as the first source of test data. Each dynamic



texture from this database is typically represented by 250
frames, which equals 10 seconds, long video sequence. We
extracted its frames, converted, saved and used as 400× 300
RGB colour images, so that (n = 360000, t = 250). As test
DTs were chosen: smoke, steam, streaming water, sea waves,
river, candle light, detail of running escalator, sheet, waving
flag, leaves, straws and branches.

Several examples of achieved results can be seen in Fig.4.
From the shown results it is apparent that although there are
some differences between original and synthesized sequences
the overall dynamics is preserved.

DT Gr. cut Gr. cut Video Vect. Text. Dyn. pres.
(temp.) (sp.-t.) text. quant. mix. text. method

[9] [9] [8] [7] [4] [3]
clouds 23.05 15.81 4.43
flame 9.61 3.12
fountain 29.74 6.76 2.86
grass 15.28 18.46 6.02
ocean 34.13 31.34 4.52 20.34 6.34
pond 14.3 13.78 7.5
river 40.4 11.92
smoke 37.0 15.47 23.85 1.79
sparkle 9.59 1.55
waterfallA 18.78 21.45 55.84 5.08
waterfallB 10.95 17.68 1.96

Table 1. Comparison of MAD quality modeling criterion val-
ues on the Graphcut texture database for six alternative DT
synthesis methods.

For a comparison with alternative synthesis methods we
also tested our method on video textures from Graphcut tex-
ture database 1 [9] (see (Fig.3)). This database consists of
several very different textures including corresponding tex-
tures synthesized by alternative approaches.

It is really hard to compare visual quality of the results
of those methods exactly as robust and reliable similarity
comparison even between two static textures is still unsolved
problem up to now. We decided to compare differences be-
tween original DT and synthesised DTs of individual meth-
ods. Let the original DT O is a LO long sequence of
WO ×HO images with SO spectral planes and the synthe-
sized DT S is a LS long sequence of WS × HS images
with SS spectral planes then Mean Absolute Difference of
the original DT and the synthesized DT (MAD) is defined as:

MAD =
1

LSHW

L∑
l=1

S∑
k=1

H∑
j=1

W∑
i=1

|O(i,j,k,l) − S(i,j,k,l)| ,

where L = min{LO;SS}, similarly S, H , W . From the
results listed in Tab.1 it is apparent that our method outper-

1http://www.cc.gatech.edu/cpl/projects/graphcuttextures/

forms, with one exception, the others, in this concept. Al-
though there is not exist any DT in Graphcut database which
would offer results obtained by all alternative methods, Tab.1
clearly demonstrates certain quality of our method.

Criterion (1) allows to adjust the compression level for
each type of texture. Loss of the information can be expressed
in the amount of energy (sum of used eigenvalues divided by
the sum of all eigenvalues) which was preserved. In case
of tested DTs: fire: 73%, clouds: 92%, flame: 78%, foun-
tain: 82%, grass: 65%, ocean: 83%, pond: 77%, river: 80%,
smoke: 93%, sparkle: 87%, waterfall: 62%, waterfall2: 90%.
The processing time of the method on the 2GHz Pentium CPU
needed to produce the same length DT as the original is the
following (texture - frames×width×height, analysis / synthe-
sis [min : s]): clouds,waterfall2 - 61×128×128, 0:10 / 0:01;
flame - 89× 320× 240, 1:52 / 0:04; grass - 100× 224× 144,
1:06 / 0:03; ocean,smoke - 32×160×112, 0:04 / 0:01. Further
comparison is discussed in following section.

7. DISCUSSION

The main advantage of this method is its simplicity, efficiency
and performance, using optimal method for compression. Ex-
tremely fast synthesis can be even more efficiently performed
by contemporary graphical hardware since only elementary
instructions and matrix operations have to be realized. Our
synthesis algorithm is less demanding than in case of most
other methods. The synthesis is not restricted on number of
frames to be generated, unlike [4], and it is not necessary to
verify synthesized frames to prevent extremely long sequence
to turn static as for example like in case [5]. However eigen
analysis may cause observable loss of information (high fre-
quencies which may occur in the original more precisely). In
contrast to the sampling based DT modeling method called
dynamic roller [6], our method cannot simultaneously enlarge
the frames of the DT. On the other hand, this avoids possible
spatial repetition of patterns which may appear in the synthe-
sized DT produced by the dynamic roller.

8. CONCLUSION

We presented a novel method for fast synthesis of multispec-
tral dynamic textures (DT). The main part of the approach
is based on reduction of temporal coefficients resulted from
DT dimensionality analysis step using the singular value de-
composition which enables compress significantly the orig-
inal data. This solution also enables extremely fast synthe-
sis of arbitrary number of required multispectral DT frames,
which can be even more efficiently performed by contempo-
rary graphical hardware. From many presented results it is
apparent that the visual properties of the original DTs stayed
preserved in the synthesized ones. We also compared our
method with several existing DT synthesis and video texture
generation approaches. This method avoids some problems of



the alternative methods. On the other hand, proposed synthe-
sis algorithm does not extend DT in spatial domain. Overall,
this method represents undemanding alternative to the exist-
ing approaches.
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R. Durikovič and H. Rushmeier, Eds., New York, NY,
USA, May 2013, SCCG ’13, pp. 005:5–005:12, ACM.

[7] L. Wei and M. Levoy, “Texture synthesis using tree-
structure vector quantization,” in ACM SIGGRAPH
2000. 2000, pp. 479–488, ACM Press / Addison Wes-
ley Longman.

[8] Arno Schodl, Richard Szeliski, David H. Salesin, and
Irfan Essa, “Video textures,” in ACM SIGGRAPH 2000,
New Orleans, July 2000, ACM, pp. 489–498, ACM.

[9] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: Image and video synthesis using
graph cuts,” ACM T Graphic, vol. 22, no. 3, pp. 277–
286, July 2003.

[10] L. J. P. van der Maaten, E. O. Postma, and H. J. van den
Herik, “Dimensionality reduction: A comparative re-
view,” Tech. Rep. TiCC-TR 2009-005, Tilburg Univer-
sity, Tilburg, The Netherlands, 2009.

[11] Renaud Peteri, Sndor Fazekas, and Mark J. Huiskes,
“Dyntex: A comprehensive database of dynamic tex-
tures,” Pattern Recognition Letters, vol. 31, no. 12, pp.
1627 – 1632, 2010.


