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This paper develops a sequential appointment algorithm considering walk-in patients. In practice, the scheduler assigns an
appointment time for each call-in patient before the call ends, and the appointment time cannot be changed once it is set. Each
patient has a certain probability of being a no-show patient on the day of appointment. The objective is to determine the optimal
booking number of patients and the optimal scheduling time for each patient to maximize the revenue of all the arriving patients
minus the expenses of waiting time and overtime. Based on the assumption that the service time is exponentially distributed, this
paper proves that the objective function is convex. A sufficient condition under which the profit function is unimodal is provided.
The numerical results indicate that the proposed algorithm outperforms all the commonly used heuristics, lowering the instances
of no-shows, and walk-in patients can improve the service efficiency and bring more profits to the clinic. It is also noted that the
potential appointment is an effective alternative to mitigate no-show phenomenon.

1. Introduction

It is routine practice for a clinic patient to make an appoint-
ment before seeing a doctor. An effective appointment system
provides a balance between revenue and cost in terms
of the patients’ waiting and clinic overtime. Appointment
scheduling problems have received the attention of opera-
tions research (OR) scientists since Bailey’s initial work in
1952 [1], but the problem of long waiting times still exists in
the outpatient clinic. The no-show behavior of patients has
been identified as a key factor resulting in low efficiency in
many field study papers. Attempts to cut down on no-shows
by reminders, telephones, or emails play an important role in
mitigating no-show phenomenon, but it cannot eliminate the
negative effects entirely. A revolutionary appointment system
named the open-access system has been introduced as an
alternative method to reduce no-show behavior by giving
some patients appointments on the day they call.

Cayirli and Veral [2] provide a comprehensive review
of previous studies and classify the environmental fac-
tors influencing the problem formulation, commonly used

performance measures, the appointment rules, and the
researchmethodologies. Gupta andDenton [3] provide state-
of-the-art, new challenges and opportunities for primary
care appointment scheduling, specialty clinic appointment
scheduling, and elective surgery appointment scheduling.
The previous studies can be viewed in three categories. The
first category is the appointment capacity planning level,
which determines the optimal number of patients to be seen
to maximize the total utility or revenue (Kim and Giachetti
[4]; Qu et al. [5]; LaGanga and Lawrence [6]); the second
category is the appointment scheduling level, which decides
the optimal appointment time for each patient or the optimal
interval length for a predetermined number of patients in a
session (Kaandorp and Koole [7]; Hassin and Mendel [8];
Cayirli et al. [9]); the last category includes the joint decisions
of capacity planning and scheduling to search for the optimal
number and the corresponding schedule at the same time.
(Muthuraman and Lawley [10]; Chakraborty et al. [11, 12];
Zeng et al. [13]; Turkcan et al. [14]).The sequential scheduling
technique, which belongs to the last category, is developed in
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recent years to address overbooking and general stochastic
service time.

The most relevant study to sequential appointment
scheduling is as follows. Muthuraman and Lawley [10]
propose a sequential scheduling approach with exponential
service times (Kopach et al. [15] displayed the validity of
this assumption) to maximize the revenue minus the cost of
overflow and tardiness and prove that the objective function
is unimodal. Chakraborty et al. [11] generalizedMuthuraman
and Lawley’s [10] model for general distributed service time
and proved the unimodality of the profit function as well.
Each accepted booking request is arranged in one of the
predefined intervals in both papers, which is not required
here. Gupta and Wang [16] model appointment sequence
considering patients’ choice by a Markov decision process.
The optimum threshold policies, after which future booking
requests are rejected, are derived for single and multiple
physicians under the assumption of deterministic service
time; this paper includes exponential service time and walk-
in patients. Erdogan and Denton [17] formulate a two-stage
stochastic linear programmodel that minimizes the expected
cost of waiting time, idleness, and overtime considering
no-shows for a given appointment sequence. The optimal
solution is obtained by a standard L-shaped algorithm and
the upper bounds are derived without calculating the revenue
by seeing patients. Zeng et al. [13] demonstrate that the
profit function of their sequential appointment scheduling
problem for homogenous patients is multimodular, but the
multimodularity is not preserved under scenarios of hetero-
geneous patients, and a local search heuristic is developed
to find the local optimal schedules. Turkcan et al. [14] build
a stochastic multiobjective model to account for the impact
of the fairness measure on profit and presented a series
of sequential search algorithms to find the Pareto-optimal
schedules. Different from Muthuraman and Lawley’s [10]
model, Chakraborty et al. [12] design a sequential clinical
scheduling method without predefined intervals, providing
the patient with an exact appointment time before the call
ends. The convexity of the total cost and unimodality of the
net profit are derived under the assumption of exponentially
distributed service time. Walk-in patients are included in
none of the above research. As pointed by Cayirli and Veral
[2], walk-in patients are prevalent for general practitioners
who are responsible for the patients’ total care. It is also a
common phenomenon for the large hospital in China.

All the previous studies use overbooking to reduce the
negative effect of no-shows without incorporating walk-
in patients. Based on previous work, this paper formu-
lates a stochastic overbooking model for an open-access
clinic, which allows for moderate walk-in probability on
the appointed day.Thenumerical results demonstrate the cor-
relation between the total profit and the walk-in, no-show
probability. Anticipating future arrivals can be viewed as an
alternative method to reduce no-show. The paper is struc-
tured as follows. Section 2 presents the basic assumptions
and the model formulation considering walk-in patients.
Section 3 establishes the theoretical proof that the cost
function is convex under the assumption of exponential
service time together with a sufficient condition under which
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Figure 1: Illustration of the sequential appointment problem.

the objective evolution is unimodal. Section 4 provides an
illustrative example and parameter impact analysis. Section 5
concludes the main finding and provides future directions.

2. Assumptions and Model for
the Sequential Appointment Problem
with Walk-In Patients

2.1. Assumptions and Parameters. This paper develops a
model for a sequential appointment scheduling problem in
an open-access clinic, deciding an appointment time for
each booking request and a stopping criterion after which
the clinic should stop accepting any requests. To provide
consistent diagnoses to the patients, every doctor has their
own waiting list in realistic situations. A single-server queue-
ing system is utilized to describe the appointment system.
Some clinics allow the doctors to conclude the session after
the examination of the final patient, but open-access clinics
require the doctor to remain available throughout the day to
address walk-in patients. It is assumed that the service time
is exponentially distributed, and the mean is standardized
at 1. Let 𝑇 stand for the length of the session, and each
booking request will be given an appointment time in [0, 𝑇]
or rejected. 𝑟 represents the revenue from an individual
patient, and the cost of waiting and overtime per unit of time
are denoted by 𝑐

𝑤
and 𝑐
𝑜
, respectively. 𝑡

𝑛
stands for the optimal

appointment time assigned to the 𝑛th call-in patient, and 𝑆𝑛
is the optimal schedule after 𝑛 patients are arranged, where
𝑆
𝑛

𝑖
is the appointment time for the 𝑛th scheduled patient,

𝑆
𝑛

𝑛+1
= 𝑇, and 𝑆𝑛

𝑖
≤ 𝑆
𝑛

𝑖+1
. The 𝑛th scheduled patient is not

identical to the 𝑛th call-in patient, as illustrated in Figure 1,
which describes the scenario that the 𝑛th call-in patient is
the 𝑖th scheduled patient and the 𝑛 + 1st patient is attempted
to be arranged in 𝜏 ∈ [𝑆

𝑛

𝑖−1
, 𝑆
𝑛

𝑖
]. This updated schedule

is denoted by Π𝑛+1
𝑖−1

. It is assumed that the patients can be
categorized into 𝐽 groups according to no-show probabilities,
which can be inferred using statistics. Let 𝜃𝑛

𝑗
be the showing

probability of the 𝑛th call-in patient if he or she is of type 𝑗
and let 𝜃𝑛

𝑖
be the showing probability at 𝑆𝑛

𝑖
. 𝜂 gives the walk-

in probability, and it is assumed that 𝜂 ≤ 0.5. Cayirli et al.
[9] propose a procedure to calculate the walk-in probability
based on historical data. The probability, represented by 𝑝𝑛

𝑖𝑘
,

that 𝑘 patients actually arrive at 𝑆𝑛
𝑖
for the appointment can

be determined from formula (1). The first line represents
the probability of no arrivals, which is the joint probability
of no-show and no walk-in appointments. According to the
assumption, it is easy to obtain 𝑝

𝑛

𝑖1
≥ 𝑝
𝑛

𝑖2
from formula

(1). This is reasonable because too many walk-ins bring
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large uncertainty in the daily workload, which is the main
deficiency of open-access appointment system. Consider

𝑝
𝑛

𝑖𝑘
=

{{{

{{{

{

(1 − 𝜃
𝑛

𝑖
) (1 − 𝜂) , 𝑘 = 0,

(1 − 𝜃
𝑛

𝑖
) 𝜂 + 𝜃

𝑛

𝑖
(1 − 𝜂) , 𝑘 = 1,

𝜃
𝑛

𝑖
𝜂, 𝑘 = 2.

(1)

Let 𝑋𝑛
𝑖
denote the number of patients in the system at

𝑆
𝑛

𝑖
before new arrivals; obviously, 𝑋𝑛

𝑖
≤ 2𝑖 − 2; then 𝑄𝑛

𝑖ℎ
=

Pr{𝑋𝑛
𝑖
= ℎ}. 𝑌(𝑡) is a random variable subject to Poisson

distribution, representing the number of patients seen during
time 𝑡. Define 𝑓𝑛

𝑖𝑙
= Pr{𝑌(𝑆𝑛

𝑖
− 𝑆
𝑛

𝑖−1
) = 𝑙} and 𝐹𝑛

𝑖𝑙
= Pr{𝑌(𝑆𝑛

𝑖
−

𝑆
𝑛

𝑖−1
) ≥ 𝑙}. Consider

𝐴
𝑛

𝑚
=

{{{{{{{{{

{{{{{{{{{

{

𝐴
𝑛−1

2𝑛−2
𝑝
𝑛

𝜉2
, 𝑚 = 2𝑛,

𝐴
𝑛−1

2𝑛−2
𝑝
𝑛

𝜉1
+ 𝐴
𝑛−1

2𝑛−3
𝑝
𝑛

𝜉2
, 𝑚 = 2𝑛 − 1,

𝐴
𝑛−1

𝑚
𝑝
𝑛

𝜉0
+ 𝐴
𝑛−1

𝑚−1
𝑝
𝑛

𝜉1
+ 𝐴
𝑛−1

𝑚−2
𝑝
𝑛

𝜉2
, otherwise,

𝐴
𝑛−1

1
𝑝
𝑛

𝜉0
+ 𝐴
𝑛−1

0
𝑝
𝑛

𝜉1
, 𝑚 = 1,

𝐴
𝑛−1

0
𝑝
𝑛

𝜉0
, 𝑚 = 0.

(2)

𝑅
𝑛 is the total expected arrivals after 𝑛 patients are sched-

uled; then 𝐴𝑛
𝑚
= Pr{𝑅𝑛 = 𝑚}. If 𝑡

𝑛
= 𝑆
𝑛

𝜉
, that is, the 𝑛th call-

in patient is the 𝜉th scheduled patient, 𝐴𝑛
𝑚
can be calculated

recursively based on 𝐴𝑛−1
𝑚

as follows.
𝑂
𝑛 denotes the overtime after 𝑛 call-ins,𝑊𝑛

𝑖
denotes the

waiting time at 𝑆𝑛
𝑖
, and 𝑃(𝑆𝑛) represents the total net profit of

schedule 𝑆𝑛, with 𝐶(𝑆𝑛) denoting the total cost.

2.2. Model. The key point of modeling sequential appoint-
ment scheduling problem is the transition matrix from 𝑋

𝑛

𝑖−1

to 𝑋𝑛
𝑖
. With the initial condition that 𝑄𝑛

10
= 1, another 𝑄𝑛

𝑖ℎ

can be iteratively derived from 𝑄
𝑛

(𝑖−1)ℎ
as follows.

Formula (3) means that when ℎ ≥ 2, the probability of
ℎ patients in the waiting list (including the one in service) at
𝑆
𝑛

𝑖
before new arrivals comprises three terms: the first term

is the case that 𝜅 patients remain waiting at 𝑆𝑛
𝑖−1

before new
arrivals, no new patients come at 𝑆𝑛

𝑖−1
, and 𝜅 − ℎ services are

completed during 𝑆𝑛
𝑖
− 𝑆
𝑛

𝑖−1
; subsequent term represents the

joint probability that there are 𝜅 patients at 𝑆𝑛
𝑖−1

, 1 new patient
arrives at 𝑆𝑛

𝑖−1
, and 𝜅 − ℎ + 1 services are completed during

𝑆
𝑛

𝑖
− 𝑆
𝑛

𝑖−1
; likewise, the last term has the same implication

except that there are 2 new arrivals at 𝑆𝑛
𝑖−1

and 𝜅 − ℎ + 2
service completion during 𝑆𝑛

𝑖
− 𝑆
𝑛

𝑖−1
. By the same means, one

can obtain the probability when 𝑗 = 0, 1. Consider

𝑄
𝑛

𝑖ℎ
=

2𝑖−4

∑

𝜅=ℎ

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)0
𝑓
𝑛

𝑖(𝜅−ℎ)
+

2𝑖−4

∑

𝜅=ℎ−1

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)1
𝑓
𝑛

𝑖(𝜅+1−ℎ)

+

2𝑖−4

∑

𝜅=ℎ−2

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)2
𝑓
𝑛

𝑖(𝜅+2−ℎ)
, ℎ ≥ 2, 𝑄

𝑛

𝑖1

=

2𝑖−4

∑

𝜅=1

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)0
𝑓
𝑛

𝑖(𝜅−1)
+

2𝑖−4

∑

𝜅=0

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)1
𝑓
𝑛

𝑖𝜅

+

2𝑖−4

∑

𝜅=0

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)2
𝑓
𝑛

𝑖(𝜅+1)
, 𝑄
𝑛

𝑖0

=

2𝑖−4

∑

𝜅=0

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)0
𝐹
𝑛

𝑖𝜅
+

2𝑖−4

∑

𝜅=0

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)1
𝐹
𝑛

𝑖(𝜅+1)

+

2𝑖−4

∑

𝜅=0

𝑄
𝑛

(𝑖−1)𝜅
𝑝
𝑛

(𝑖−1)2
𝐹
𝑛

𝑖(𝜅+2)
.

(3)

The expected waiting time at 𝑆𝑛
𝑖
after 𝑛 call-ins is calcu-

lated by

𝐸 (𝑊
𝑛

𝑖
) = 𝑝
𝑛

𝑖1
𝐸 (𝑋
𝑛

𝑖
) + 𝑝
𝑛

𝑖2
(2𝐸 (𝑋

𝑛

𝑖
) + 1)

= (𝑝
𝑛

𝑖1
+ 2𝑝
𝑛

𝑖2
)

2𝑖−2

∑

ℎ=1

ℎ𝑄
𝑛

𝑖ℎ
+ 𝑝
𝑛

𝑖2
.

(4)

Similarly, the expected overtime after 𝑛 patients are
scheduled is given by

𝐸 (𝑂
𝑛

) = 𝐸 (𝑋
𝑛

𝑛+1
) =

2𝑛

∑

ℎ=1

ℎ𝑄
𝑛

(𝑛+1)ℎ
. (5)

The sequential appointment scheduling problem is to
determine the optimal number of booking requests and how
to schedule these patients in a session day towards maximiz-
ing the total net profit, which is the difference between the
revenue and total cost:

max𝑃 (𝑆𝑛) = 𝑟𝐸 (𝑅𝑛) − 𝑐
𝑤

𝑛

∑

𝑖=1

𝐸 (𝑊
𝑛

𝑖
) − 𝑐
𝑜
𝐸 (𝑂
𝑛

) , (6)

where 𝐸(𝑅𝑛) = ∑2𝑛
𝑚=1

𝑚𝐴
𝑛

𝑚
.

Of course, when 𝑛 is fixed, the objective function is
equivalent to minimizing the total cost as follows:

min𝐶 (𝑆𝑛) = 𝑐
𝑤

𝑛

∑

𝑖=1

𝐸 (𝑊
𝑛

𝑖
) + 𝑐
𝑜
𝐸 (𝑂
𝑛

) . (7)

3. Sequential Appointment
Scheduling Algorithm

3.1. Characteristics of the Objective Function

Proposition 1. The first patient is scheduled at time 0.

Proof. Suppose that the first patient is scheduled at time 𝜏;
then formula (3) can be simplified as

𝑄
1

10
= 1,

𝑄
1

𝑇1
= 𝑝
1

11
Pr {𝑌 (𝑇 − 𝜏) = 0} + 𝑝1

12
Pr {𝑌 (𝑇 − 𝜏) = 1} ,

𝑄
1

𝑇2
= 𝑝
1

12
𝑃𝑟 {𝑌 (𝑇 − 𝜏) = 0} .

(8)
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From (4), (5), and (8), the waiting time and overtime can be
calculated as

𝐸 (𝑊
1

1
) = 𝑝
1

12
,

𝐸 (𝑂
1

) = 𝑝
1

11
𝑒
−(𝑇−𝜏)

+ 𝑝
1

12
(𝑇 − 𝜏) 𝑒

−(𝑇−𝜏)

+ 2𝑝
1

12
𝑒
−(𝑇−𝜏)

.

(9)

Differentiating the total cost so far with respect to 𝜏,
𝑐
𝑜
(𝑝
1

11
𝑒
−(𝑇−𝜏)

+ 𝑝
1

12
(𝑇 − 𝜏)𝑒

−(𝑇−𝜏)

+ 𝑝
1

12
𝑒
−(𝑇−𝜏)

) > 0. Then the
total cost is monotonically increasing with respect to 𝜏, and,
tominimize the total cost, the first patient is scheduled to time
0, 𝑡
1
= 0.

Next, it is proved that the total cost is convex function for
𝜏 ∈ [𝑆

𝑛

𝑖−1
, 𝑆
𝑛

𝑖
]. Central to the proof are the first-order and the

second-order derivatives of 𝑊𝑛
𝑖
and 𝑂𝑛. Firstly, it is shown

that the waiting time at time 𝜏 is decreasing convex function
of 𝜏. Secondly, it is noted that the waiting time at time 𝑆𝑛

𝑖
is

increasing convex function of 𝜏. Thirdly, it is proved that the
waiting time at time 𝑆𝑛

𝜍
(𝜁 > 𝑖) is increasing convex function

of 𝜏 by induction. Finally, the overtime is demonstrated to be
an increasing convex function of 𝜏.

Theorem 2. For schedule 𝑆𝑛, the cost function is convex of 𝜏, if
the 𝑛 + 1st patient is arranged at 𝜏 ∈ [𝑆𝑛

𝑖−1
, 𝑆
𝑛

𝑖
].

Proof. It is easy to get that Π𝑛+1
𝑖−1

= {𝜋
𝑛+1

1
, 𝜋
𝑛+1

2
, . . . , 𝜋

𝑛+1

𝑛+2
}

satisfies 𝜋𝑛+1
𝜍

= 𝑆
𝑛

𝜁
, 𝜁 ≤ 𝑖 − 1; 𝜋𝑛+1

𝑖
= 𝜏; 𝜋𝑛+1

𝑙
= 𝑆
𝑛

𝜁−1
, 𝜁 ≥ 𝑖 + 1.

The systemparameters corresponding toΠ𝑛+1
𝑖−1

are𝑝 𝑛+1
𝜍𝑘

, 𝑋𝑛+1
𝜍

,
𝑄
𝑛+1

𝜁ℎ
, 𝑓𝑛+1
𝜁𝑙

, 𝐹𝑛+1
𝜁𝑙

, �̃�𝑛+1
𝜁

, and 𝑂𝑛+1, for 𝜁 ∈ [1, 𝑛 + 1]. Because
the system states prior to 𝜏 are not influenced by the new
arrival, the cost will not change. The cost function since 𝜏
(𝜋𝑛+1
𝜍

, 𝜁 ≥ 𝑖) is classified to four parts.
(1) The waiting time at time 𝜏 (𝜋𝑛+1

𝜍
, 𝜁 = 𝑖) is monotoni-

cally decreasing convex function of 𝜏.
For ℎ ≥ 2, from formula (3),

𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖ℎ
=

2𝑖−4

∑

𝜅=ℎ+1

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)0
(𝑓
𝑛+1

𝑖(𝜅−ℎ−1)
− 𝑓
𝑛+1

𝑖(𝜅−ℎ)
)

− 𝑄
𝑛+1

(𝑖−1)ℎ
𝑝
𝑛+1

(𝑖−1)0
𝑓
𝑛+1

𝑖0

+

2𝑖−4

∑

𝜅=ℎ

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)1
(𝑓
𝑛+1

𝑖(𝜅−ℎ)
− 𝑓
𝑛+1

𝑖(𝜅−ℎ+1)
)

− 𝑄
𝑛+1

(𝑖−1)(ℎ−1)
𝑝
𝑛+1

(𝑖−1)1
𝑓
𝑛+1

𝑖0

+

2𝑖−4

∑

𝜅=ℎ−1

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)2
(𝑓
𝑛+1

𝑖(𝜅−ℎ+1)
− 𝑓
𝑛+1

𝑖(𝜅−ℎ+2)
)

− 𝑄
𝑛+1

(𝑖−1)(ℎ−2)
𝑝
𝑛+1

(𝑖−1)2
𝑓
𝑛+1

𝑖0
= 𝑄
𝑛+1

𝑖(ℎ+1)
− 𝑄
𝑛+1

𝑖ℎ
.

(10)

Likewise,

𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖1
=

2𝑖−4

∑

𝜅=2

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)0
(𝑓
𝑛+1

𝑖(𝜅−2)
− 𝑓
𝑛+1

𝑖(𝜅−1)
)

− 𝑄
𝑛+1

(𝑖−1)1
𝑝
𝑛+1

(𝑖−1)0
𝑓
𝑛+1

𝑖0

+

2𝑖−4

∑

𝜅=1

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)1
(𝑓
𝑛+1

𝑖(𝜅−1)
− 𝑓
𝑛+1

𝑖𝜅
)

− 𝑄
𝑛+1

(𝑖−1)0
𝑝
𝑛+1

(𝑖−1)1
𝑓
𝑛+1

𝑖0

+

2𝑖−4

∑

𝜅=0

𝑄
𝑛+1

(𝑖−1)𝜅
𝑝
𝑛+1

(𝑖−1)2
(𝑓
𝑛+1

𝑖𝜅
− 𝑓
𝑛+1

𝑖(𝜅+1)
)

= 𝑄
𝑛+1

𝑖2
− 𝑄
𝑛+1

𝑖1
,

(11)

∵

2𝑖−2

∑

ℎ=0

𝑄
𝑛+1

𝑖ℎ
= 1, ∴

2𝑖−2

∑

ℎ=0

𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖ℎ
= 0. (12)

From (10), (11), and (12), it is simple to derive

𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖0
= 𝑄
𝑛+1

𝑖1
. (13)

Using (10) and (11), the first-order and second-order deriva-
tives of 𝐸(𝑋𝑛+1

𝑖
) are calculated by

𝑑

𝑑𝜏
𝐸 (𝑋
𝑛+1

𝑖
) =

2𝑖−2

∑

ℎ=1

ℎ
𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖ℎ
=

2𝑖−2

∑

ℎ=1

ℎ (𝑄
𝑛+1

𝑖(ℎ+1)
− 𝑄
𝑛+1

𝑖ℎ
)

=

2𝑖−2

∑

ℎ=1

ℎ𝑄
𝑛+1

𝑖(ℎ+1)
−

2𝑖−2

∑

ℎ=1

ℎ𝑄
𝑛+1

𝑖ℎ
= −

2𝑖−2

∑

ℎ=1

𝑄
𝑛+1

𝑖ℎ
< 0,

𝑑
2

𝑑𝜏2
𝐸 (𝑋
𝑛+1

𝑖
) = −

2𝑖−2

∑

ℎ=1

𝑑

𝑑𝜏
𝑄
𝑛+1

𝑖ℎ

= −

2𝑖−2

∑

ℎ=1

(𝑄
𝑛+1

𝑖(ℎ+1)
− 𝑄
𝑛+1

𝑖ℎ
) = 𝑄

𝑛+1

𝑖1
> 0.

(14)

Then, from formula (4), the result is established by

𝑑

𝑑𝜏
𝐸 (�̃�
𝑛+1

𝑖
) < 0,

𝑑
2

𝑑𝜏2
𝐸 (�̃�
𝑛+1

𝑖
) > 0. (15)

(2) The waiting time at time 𝑆𝑛
𝑖
(𝜋𝑛+1
𝜍

, 𝜁 = 𝑖 + 1)
is monotonically increasing convex function of 𝜏.
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For ℎ ≥ 3, formula (3) is reduced to

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)ℎ
=

2𝑖−2

∑

𝜅=ℎ+1

𝑄
𝑛+1

𝑖𝑘
𝑝
𝑛+1

𝑖0
(𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ−1)
)

+

2𝑖−2

∑

𝜅=ℎ+1

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ)

+ 𝑄
𝑛+1

𝑖ℎ
𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0
+ (𝑄
𝑛+1

𝑖(ℎ+1)
− 𝑄
𝑛+1

𝑖ℎ
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=ℎ

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖1
(𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ+1)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ)
)

+

2𝑖−2

∑

𝜅=ℎ

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ+1)

+ 𝑄
𝑛+1

𝑖(ℎ−1)
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+ (𝑄
𝑛+1

𝑖ℎ
− 𝑄
𝑛+1

𝑖(ℎ−1)
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=ℎ−1

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ+2)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ+1)
)

+

2𝑖−2

∑

𝜅=ℎ−1

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)(𝜅−ℎ+2)

+ 𝑄
𝑛+1

𝑖(ℎ−2)
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0

+ (𝑄
𝑛+1

𝑖(ℎ−1)
− 𝑄
𝑛+1

𝑖(ℎ−2)
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
= 0.

(16)
Using formula (3), further result is expressed as

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝜅)ℎ
= 0, ∀𝜅 ≥ 1, ℎ ≥ 2𝜅 + 1. (17)

Accordingly, when ℎ = 2, 1,

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2
=

2𝑖−2

∑

𝜅=3

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖0
(𝑓
𝑛+1

(𝑖+1)(𝜅−2)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−3)
)

+

2𝑖−2

∑

𝜅=3

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)(𝜅−2)

+ 𝑄
𝑛+1

𝑖2
𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0
+ (𝑄
𝑛+1

𝑖3
− 𝑄
𝑛+1

𝑖2
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=2

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖1
(𝑓
𝑛+1

(𝑖+1)(𝜅−1)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−2)
)

+

2𝑖−2

∑

𝜅=2

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)(𝜅−1)

+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
+ (𝑄
𝑛+1

𝑖2
− 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=1

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)𝜅
− 𝑓
𝑛+1

(𝑖+1)(𝜅−1)
)

+

2𝑖−2

∑

𝜅=1

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)𝜅

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0

= 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
,

(18)

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)1
=

2𝑖−2

∑

𝜅=2

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖0
(𝑓
𝑛+1

(𝑖+1)(𝜅−1)
− 𝑓
𝑛+1

(𝑖+1)(𝜅−2)
)

+

2𝑖−2

∑

𝜅=2

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)(𝜅−1)

+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0
+ (𝑄
𝑛+1

𝑖2
− 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖0
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=1

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖1
(𝑓
𝑛+1

(𝑖+1)𝜅
− 𝑓
𝑛+1

(𝑖+1)(𝜅−1)
)

+

2𝑖−2

∑

𝜅=1

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)𝜅

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+

2𝑖−2

∑

𝜅=1

𝑄
𝑛+1

𝑖𝜅
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)(𝜅+1)
− 𝑓
𝑛+1

(𝑖+1)𝜅
)

+

2𝑖−2

∑

𝜅=1

(𝑄
𝑛+1

𝑖(𝜅+1)
− 𝑄
𝑛+1

𝑖𝜅
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)(𝜅+1)

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)1
− 𝑓
𝑛+1

(𝑖+1)0
)

+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1
= 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)1
− 𝑓
𝑛+1

(𝑖+1)0
) ,

(19)

∵

2𝑖

∑

ℎ=0

𝑄
𝑛+1

(𝑖+1)ℎ
= 1, ∴

2𝑖

∑

ℎ=0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)ℎ
= 0. (20)

By (17), (18), and (19), it is noted that

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)0
= −

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)1
−
𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2

= −𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
− 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1
.

(21)

Using (17), (18), and (19), the first-order and second-order
derivatives of 𝐸(𝑋𝑛+1

𝑖
) are given by

𝑑

𝑑𝜏
𝐸 (𝑋
𝑛+1

𝑖+1
) =

2𝑖

∑

ℎ=1

ℎ
𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)ℎ

=
𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)1
+ 2

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2

= 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
(𝑓
𝑛+1

(𝑖+1)1
+ 𝑓
𝑛+1

(𝑖+1)0
)

> 0,
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𝑑
2

𝑑𝜏2
𝐸 (𝑋
𝑛+1

𝑖+1
) = 𝑄

𝑛+1

𝑖0
(𝑝
𝑛+1

𝑖1
− 𝑝
𝑛+1

𝑖2
) 𝑓
𝑛+1

(𝑖+1)0
+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0

+ 𝑄
𝑛+1

𝑖1
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1
+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1

+ (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0

> 0.

(22)

Again, from formula (4), the result is established by

𝑑

𝑑𝜏
𝐸 (�̃�
𝑛+1

𝑖
) > 0,

𝑑
2

𝑑𝜏2
𝐸 (�̃�
𝑛+1

𝑖
) > 0. (23)

(3) The waiting time at time 𝑆
𝑛

𝜍
, 𝜁 > 𝑖(𝜋

𝑛+1

𝜍+1
), is

monotonically increasing convex function of 𝜏.
First, the following two equations are established by

induction:

2𝜐

∑

ℎ=𝜅

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝜐)ℎ
> 0, 1 ≤ 𝜅 ≤ 2𝜐, 𝜐 ≥ 2,

2𝜐

∑

ℎ=𝜅

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+𝜐)ℎ
> 0, 1 ≤ 𝜅 ≤ 2𝜐, 𝜐 ≥ 2.

(24)

For the base case, when 𝜐 = 2, applying (3), (17), (18), and
(19), it is found that

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+2)4
= 𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2

= 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0
> 0,

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+2)3
= 𝑝
𝑛+1

(𝑖+1)1
𝑓
𝑛+1

(𝑖+2)0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2

+ 𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)2

+ 𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+1)1

= 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
(𝑝
𝑛+1

(𝑖+1)1
− 𝑝
𝑛+1

(𝑖+1)2
) 𝑓
𝑛+1

(𝑖+2)0

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)1

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0

+ 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0
.

(25)

Thus, (𝑑/𝑑𝜏)𝑄𝑛+1
(𝑖+2)3

+ (𝑑/𝑑𝜏)𝑄
𝑛+1

(𝑖+2)4
> 0.

Combining equations (13) and (25),

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+2)4
= (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0
> 0.

(26)

According to the assumption, 𝑝𝑛+1
𝑖1

≥ 𝑝
𝑛+1

𝑖2
; hence,

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+2)3
+
𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+2)4

= (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)1
𝑓
𝑛+1

(𝑖+2)0

+ (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)1

+ (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖1
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0

+ (𝑄
𝑛+1

𝑖0
+ 𝑄
𝑛+1

𝑖1
) 𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)1
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0

− 𝑄
𝑛+1

𝑖0
𝑝
𝑛+1

𝑖2
𝑓
𝑛+1

(𝑖+1)0
𝑝
𝑛+1

(𝑖+1)2
𝑓
𝑛+1

(𝑖+2)0
> 0.

(27)

In the same way, ∑4
ℎ=𝜅
(𝑑/𝑑𝜏)𝑄

𝑛+1

(𝑖+2)ℎ
> 0, 𝜅 = 1, 2;

4

∑

ℎ=𝜅

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+2)ℎ
> 0, 𝜅 = 1, 2. (28)

Due to the limited space and tedious computation pro-
cess, the concrete steps are omitted.

Suppose that (24) holds for 𝜐 < 𝛼 (𝛼 > 2); the next step is
the proof that they also hold for 𝜐 = 𝛼.

Consider 𝜅 = 2𝛼; from equations (3) and (17) and the
hypothesis, it is easy to get

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼)2𝛼
= 𝑝
𝑛+1

(𝑖+𝛼−1)2
𝑓
𝑛+1

(𝑖+𝛼)0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)(2𝛼−2)
> 0,

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+𝛼)2𝛼
= 𝑝
𝑛+1

(𝑖+𝛼−1)2
𝑓
𝑛+1

(𝑖+𝛼)0

𝑑
2

𝑑𝜏2
𝑄
𝑛+1

(𝑖+𝛼−1)(2𝛼−2)
> 0.

(29)

When 2 ≤ 𝜅 < 2𝛼, from∑
2𝑖+2𝛼−4

ℎ=0
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ
= 1 and (17), it

can be obtained that∑2𝛼−2
ℎ=0

(𝑑/𝑑𝜏)𝑄
𝑛+1

(𝑖+𝛼−1)ℎ
= 0. Using (3) and

(17) and the hypothesis, one can get

2𝛼

∑

ℎ=𝜅

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼)ℎ
=

2𝛼

∑

ℎ=𝜅

2𝛼−2

∑

𝑙=ℎ

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)0
𝑓
𝑛+1

(𝑖+𝛼)(𝑙−ℎ)

+

2𝛼

∑

ℎ=𝜅

2𝛼−2

∑

𝑙=ℎ−1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)1
𝑓
𝑛+1

(𝑖+𝛼)(𝑙−ℎ+1)

+

2𝛼

∑

ℎ=𝜅

2𝛼−2

∑

𝑙=ℎ−2

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)2
𝑓
𝑛+1

(𝑖+𝛼)(𝑙−ℎ+2)

= 𝑝
𝑛+1

(𝑖+𝛼−1)0

2𝛼−𝜅−2

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝜅+𝑙

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)1

2𝛼−𝜅−1

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝜅+𝑙−1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)2

2𝛼−𝜅

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝜅+𝑙−2

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ
> 0.

(30)

Differentiate with respect to 𝜏; then∑2𝛼
ℎ=𝜅
(𝑑
2

/𝑑𝜏
2

)𝑄
𝑛+1

(𝑖+𝛼)ℎ
> 0.
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As for 𝜅 = 1, similar to the previous discussion,

2𝛼

∑

ℎ=1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼)ℎ
=
𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼)1
+

2𝛼

∑

ℎ=2

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼)ℎ

=

2𝛼−2

∑

𝑙=1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)0
𝑓
𝑛+1

(𝑖+𝛼)(𝑙−1)

+

2𝛼−2

∑

𝑙=0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)1
𝑓
𝑛+1

(𝑖+𝛼)𝑙

+

2𝛼−2

∑

𝑙=0

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)𝑙
𝑝
𝑛+1

(𝑖+𝛼−1)2
𝑓
𝑛+1

(𝑖+𝛼)(𝑙+1)

+ 𝑝
𝑛+1

(𝑖+𝛼−1)0

2𝛼−4

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙+2

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)1

2𝛼−3

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙+1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)2

2𝛼−2

∑

𝑙=1

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

= 𝑝
𝑛+1

(𝑖+𝛼−1)0

2𝛼−3

∑

𝑙=0

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙+1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)1

2𝛼−2

∑

𝑙=1

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ

+ 𝑝
𝑛+1

(𝑖+𝛼−1)2

2𝛼−1

∑

𝑙=2

𝑓
𝑛+1

(𝑖+𝛼)𝑙

2𝛼−2

∑

ℎ=𝑙−1

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝛼−1)ℎ
> 0.

(31)

Differentiate on both sides; ∑2𝛼
ℎ=1
(𝑑
2

/𝑑𝜏
2

)𝑄
𝑛+1

(𝑖+𝛼)ℎ
> 0.

Equation (24) hold from induction.
Calculating the first and second derivatives of 𝐸(𝑋𝑛+1

𝑖+𝜐
)

following equations (17) and (24),

𝑑

𝑑𝜏
𝐸 (𝑋
𝑛+1

𝑖+𝜐
) =

2𝑖+2𝜐−2

∑

ℎ=1

ℎ
𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝜐)ℎ

=

2𝑖+2𝜐−2

∑

ℎ=1

2𝑖+2𝜐−2

∑

𝑙=ℎ

𝑑

𝑑𝜏
𝑄
𝑛+1

(𝑖+𝜐)𝑙
> 0,

𝑑
2

𝑑𝜏2
𝐸 (𝑋
𝑛+1

𝑖+𝜐
) > 0.

(32)

Hence, from formula (4), the result is followed by

𝑑

𝑑𝜏
𝐸 (�̃�
𝑛+1

𝑖
) > 0,

𝑑
2

𝑑𝜏2
𝐸 (�̃�
𝑛+1

𝑖
) > 0. (33)

(4) The overtime is a monotonically increasing convex
function with respect to 𝜏.

From (3), (𝑑/𝑑𝜏)𝐸(𝑋𝑛+1
𝑛+2
) > 0, (𝑑2/𝑑𝜏2)𝐸(𝑋𝑛+1

𝑛+2
) > 0.

From formula (5), (𝑑/𝑑𝜏)𝐸(𝑂
𝑛+1

) > 0, (𝑑
2

/

𝑑𝜏
2

)𝐸(𝑂
𝑛+1

) > 0.
All in all, the new generated cost function is convex with

respect to 𝜏.

Based on Proposition 1 and Theorem 2, the optimal 𝜏 ∈
[𝑆
𝑛

𝑖−1
, 𝑆
𝑛

𝑖
] can be easily found by any algorithm designed for

convex optimization. For schedule 𝑆𝑛, 𝑛 best 𝜏s are found
when the 𝑛 + 1st booking request arrives. The optimal
appointment time for this patient is the one with the lowest
cost.The appointment time alsomaximizes the profit increase
considering that the revenue per patient is fixed. The next
thing to do is deciding when the scheduler should stop
accepting new appointments.Theorem 3 provides a sufficient
condition for rejecting new requests.

Theorem 3. If scheduling a patient who is sure to come lowers
the profit, the clinic should reject all future appointments.

Proof. Define 𝑆𝑛
𝑖
to denote the optimal updated schedule

from 𝑆
𝑛 after accepting a patientwho is sure to showup for the

appointment; 𝛾𝑛
𝑘
represents the event that 𝑘 patients actually

arrive at time 𝑡
𝑛
.

If scheduling a patient who is sure to come lowers down
the profit, which can be expressed as

𝐶 (𝑆
𝑛+1

) − 𝐶 (𝑆
𝑛

) > 𝑟, (34)

then

𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

) > 𝑟,

𝐶 (𝑆
𝑛+𝜅

| 𝛾
𝑛+1

0
, . . . , 𝛾

𝑛+𝜅−1

0
, 𝛾
𝑛+𝜅

1
) − 𝐶 (𝑆

𝑛

) > 𝑟,

∵ 𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

2
) − 𝐶 (𝑆

𝑛+1

| 𝛾
𝑛+1

1
)

> 𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

) ,

∴ 𝐶 (𝑆
𝑛+1

) − 𝐶 (𝑆
𝑛

)

= 𝑝
1
(𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

))

+ 𝑝
2
(𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

2
) − 𝐶 (𝑆

𝑛

))

= 𝑝
1
(𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

))

+ 𝑝
2
(𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

))

+ 𝑝
2
(𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

2
) − 𝐶 (𝑆

𝑛+1

| 𝛾
𝑛+1

1
))

> (𝑝
1
+ 2𝑝
2
) (𝐶 (𝑆

𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

))

> (𝑝
1
+ 2𝑝
2
) 𝑟 = 𝐸 (𝑅

𝑛+1

) − 𝐸 (𝑅
𝑛

) .

(35)
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Step 1. 𝑡
1
= 0, 𝑄1

10
= 0, 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = ⌀, 𝑛 = 1;

Step 2. Suppose the n + 1st patient is of type 𝑗 ∈ [1, . . . , 𝐽];
If 𝑗 ∈ 𝑡𝑒𝑠𝑡𝑠𝑒𝑡, reject the patient, go to Step 2;
Else for [𝑆𝑛

𝑖−1
, 𝑆
𝑛

𝑖
], 𝑖 ∈ {2, . . . , 𝑛 + 1}, compute

𝜏
𝑛+1

𝑖−1
= argmin

𝜏∈[𝑆
𝑛

𝑖−1
,𝑆
𝑛

𝑖
]
𝐶(Π
𝑛+1

𝑖−1
) , 𝐶𝑛+1
𝑖−1

= min
𝜏∈[𝑆
𝑛

𝑖−1
,𝑆
𝑛

𝑖
]
𝐶(Π
𝑛+1

𝑖−1
),

�̃� = argmin
𝑖∈{2,...,𝑛+1}

𝐶
𝑛+1

𝑖−1
, 𝑡
𝑛+1

= 𝜏
𝑛+1

(�̃�−1)
;

Step 3. If 𝑃(𝑆𝑛+1) > 𝑃(𝑆𝑛), accept the patient, 𝑛 = 𝑛 + 1,
𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = ⌀, go to Step 2;
Else reject this patient, go to Step 4;

Step 4. If 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 ̸=⌀, 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = [𝑡𝑒𝑠𝑡𝑠𝑒𝑡, 𝑗];
If 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = [1, . . . , 𝐽], stop;

Else go to Step 5;
Step 5. Scheduling a patient who is sure to come to

[𝑆
𝑛

𝑖−1
, 𝑆
𝑛

𝑖
], 𝑖 ∈ {2, . . . , 𝑛 + 1} respectively, compute

𝐶
𝑛+1

𝑖−1
= min

𝜏∈[𝑆
𝑛

𝑖−1
,𝑆
𝑛

𝑖
]
𝐶(Π̂
𝑛+1

𝑖−1
), 𝐶(𝑆𝑛+1) = min

𝑖∈{2,...,𝑛+1}
𝐶
𝑛+1

𝑖−1
.

If 𝐶(𝑆𝑛+1) − 𝐶(𝑆𝑛) > 𝑟, stop;
Else 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = [𝑗], go to Step 2.

Algorithm 1

This means that

𝐶 (𝑆
𝑛+1

| 𝛾
𝑛+1

1
) − 𝐶 (𝑆

𝑛

) > 𝑟 ⇒ 𝑃 (𝑆
𝑛

) > 𝑃 (𝑆
𝑛+1

)

∵ 𝐶 (𝑆
𝑛+𝜅

| 𝛾
𝑛+𝜅

1
) − 𝐶 (𝑆

𝑛+𝜅

| 𝛾
𝑛+1

0
, . . . , 𝛾

𝑛+𝜅−1

0
, 𝛾
𝑛+𝜅

1
)

> 𝐶 (𝑆
𝑛+𝜅−1

) − 𝐶 (𝑆
𝑛

) , 𝜅 ≥ 2,

∴ 𝐶 (𝑆
𝑛+𝜅

| 𝛾
𝑛+𝜅

1
) − 𝐶 (𝑆

𝑛+𝜅−1

)

> 𝐶 (𝑆
𝑛+𝜅

| 𝛾
𝑛+1

0
, . . . , 𝛾

𝑛+𝜅−1

0
, 𝛾
𝑛+𝜅

1
) − 𝐶 (𝑆

𝑛

) > 𝑟.

(36)

It is equivalent to 𝑃(𝑆𝑛+𝜅) > 𝑃(𝑆𝑛+𝜅−1).
The results follow from the above inequality.

Theorem 3 provides a stopping criterion for rejecting new
arrivals and a sufficient condition that the objective function
is unimodal.

3.2. Sequential Appointment Scheduling Algorithm. Based on
Proposition 1 and Theorems 2 and 3, each call-in request
is scheduled to a time to maximize the profit increase. If
scheduling a patient who is sure to come or scheduling a
patient of any type lowers the profit, the algorithm terminates.
The concrete steps are as shown in Algorithm 1.

The proposed algorithm first initializes the input param-
eter, and the first patient is arranged at time 0 based on
Proposition 1. Every new booking request is attempted to
schedule to [𝑆𝑛

𝑖−1
, 𝑆
𝑛

𝑖
], 𝑖 ∈ {2, . . . , 𝑛 + 1}; the minimum 𝐶

𝑛+1

𝑖−1

in each [𝑆𝑛
𝑖−1
, 𝑆
𝑛

𝑖
] is obtained based on the convexity of the

cost function. 𝑡
𝑛+1

is the selected time with minimum cost; if
𝑃(𝑆
𝑛+1

) > 𝑃(𝑆
𝑛

), then accept this patient and arrange him or
her at 𝑡

𝑛+1
; otherwise, check whether set “testset” is empty.

If 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = ⌀, testify whether scheduling a patient who
is sure to come lowers down the profit. The algorithm will
terminate according to Theorem 3 if 𝐶(𝑆𝑛+1) − 𝐶(𝑆𝑛) > 𝑟

holds. Put 𝑗 into set “testset” until 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 = [1, . . . , 𝐽], if
𝑡𝑒𝑠𝑡𝑠𝑒𝑡 ̸=⌀.The algorithm stops with any further acceptances
lowering the profit.

4. Numerical Analysis

To demonstrate the effectiveness of the proposed algorithm,
a randomly generated call-in sequence is analyzed to display
the trends of the objectives.The average performance of 1000
random sequences is used to compare with the commonly
used heuristics in practice. The impacts of no-shows and
the walk-in probability on the performance are investigated.
The basic parameters for the numerical experiments are as
follows: the length of the session is 𝑇 = 48 (typically, the
clinic is open for 4 hours in the morning and the afternoon;
the average service time is five minutes, standardized at 1),
the revenue per patient is 𝑟 = 1, and the waiting cost 𝑐

𝑤
and

overtime cost 𝑐
𝑜
per unit of time are 0.2 and 1.5, respectively;

(an overtime cost larger than the marginal revenue per
patient avoids an infinite increase in patients; otherwise, the
clinic will always benefit from serving additional patients
through extending the working time.) Suppose that 𝐽 =

4; then the corresponding no-show probability is [0.5, 0.4,
0.3, 0.2]. It is assumed that each patient arrives indepen-
dently, and walk-in patients are independent of patients with
appointments.The basic walk-in probability is 0.25.Themin-
imum 𝐶

𝑛+1

𝑖−1
in the interval [𝑆𝑛

𝑖−1
, 𝑆
𝑛

𝑖
] is derived by the Matlab

7.8 (product of MathWorks Company, Natick, Massachusetts,
USA) optimization solver “fmincon,” which implements the
sequential quadratic programming algorithm.

4.1. Illustrating Example. Figure 2 presents the changing
trend of the objective function and the appointment time
allocated to each patient for a specific call-in sequence. The
abscissa represents the patient type in the call-in sequence;
for example, 4, 4, 1 means that the first three patients belong
to types 4, 4, 1; the left ordinate represents the profit, and
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Figure 2: Illustration of the schedule and the expected profit
evolution.

Table 1: Statistics of 1000 random sequences.

Scheduled patients Profit
Maximum 37 23.84
Minimum 34 22.93
Average 35.378 23.43

the right ordinate represents the appointment time.The curve
displays the profit changes during the call-in process.The dot
is the appointment time provided by the algorithm for each
booking request. Ten additional patients are used to display
the trend of the profit after the stopping criterion is achieved.
It is shown that the optimal schedule accepts 34 patients,
and the profit function monotonically increases initially and
decreases later. After the terminating criterion, the profit
decreases quickly, and half of the 10 additional patients are
arranged at the end of the clinic session. Intuitively speaking,
it is of no use incorporating them into the schedule when
the system is congested except increasing the waiting time
of prescheduled patients. These extra patients are served
in overtime when the system is overloaded. Theorem 3
provides sufficient conditions that the objective function is
unimodal, but the algorithm stops if any type of patient
lowers the profit according to the above procedure. 192 of 1000
random generated call-in sequences satisfy the conditions
in Theorem 3, and no better solutions are observed for the
10 more patients in the other sequences. The statistics of
performance of interest are presented in Table 1, and it is
noted that the proposed approach is very stable with small
fluctuations. The average of 100 random generated call-in
sequences is adopted in a subsequent experiment.

4.2. Comparison with Commonly Used Heuristics. Cayirli
et al. [18] sum up some appointment rules, including the IBFI
(individual block/fixed interval), 2BEG (individual block,
fixed interval rule with an initial block of two patients), OFF-
SET (individual block/variable interval rule, where initial 𝑘

1
−

1 patients are scheduled earlier, and the rest of the patients are
scheduled later), DOME (individual block/variable interval

rule, where initial 𝑘
1
−1 patients are scheduled earlier, patients

𝑘
1
+ 1 through 𝑘

2
− 1 are scheduled later, and the rest are

scheduled earlier), 2BGDM (combination of the 2BEG and
the DOME rules), MBFI (multiple block/fixed interval rule
calls two patients at a time with the interval length equal
to twice the mean service time), and MBDM (combination
of the MBFI and DOME rules). These rules are listed in
Table 2 to compare with the proposed policy. No patients
are scheduled before the beginning of the session because
unpunctual patients are not included. 𝑘

1
= 24, 𝑘

2
= 40,

𝛽
1
= 0.1,𝛽

2
= 0.2, and 𝛽

3
= 0.05 are used for Cayirli’s rule,

and the other parameters are identical to the basic case. The
optimal scheduled number and the corresponding profit of
all the heuristics are obtained to compare with the algorithm.
The numerical results show that the heuristics accept more
patients, but they lower the net expected profit significantly.
IBFI performs best in all the heuristics considered, but it still
leads to a fall in profit by 28%.

4.3. Impacts of No-Show Probability. The impact of no-shows
is analyzed from two aspects: themean and the variance. Four
groups of no-show probability are used to display the results:

(1) impact of mean: [0.65, 0.55, 0.45, 0.35], [0.35, 0.25,
0.15, 0.05];

(2) impact of variance: [0.4, 0.367, 0.333, 0.3], [0.65, 0.45,
0.25, 0.05].

Table 3 summarizes the performances for these four
groups of the no-show probability. It is noted that a large no-
show probability can incur more uncertainty, bringing about
a decrease in profit. An interesting result which is contrary to
the intuition is thatwhen themean of the no-showprobability
is fixed, a small fluctuation lowers the profit. The patients
with large show-up and no-showprobabilities can bringmore
profits because of small uncertainty. That is to say, the clinic
will benefit from reducing the average no-show probability
and controlling the difference between the maximum and
minimum no-show probabilities.

4.4. Impacts of Weight of Patient Type. This subsection inves-
tigates the influence of the weight of patient type on the total
profit. The no-show probability is the same as in the basic
case. The four types of weight are analyzed as follows: (1)
4 : 3 : 2 : 1; (2) 1 : 2 : 3 : 4; (3) 1 : 2 : 2 : 1; (4) 2 : 1 : 1 : 2.

Table 4 summarizes the statistics for these four groups
of weight. Consistent with the previous results, (2) brings
more profit than (1) by cutting down the weight given to
patients with a high no-show probability. The average no-
show probability of (3) and (4) is the same, but the large
fluctuation produces more profits.

4.5. Impacts of Walk-In Patients. Table 5 displays the per-
formances for six walk-in probabilities: 0, 0.1, 0.2, 0.3, 0.4,
and 0.5. It is observed that a large walk-in probability with
more uncertainty leads to a decrease in the profit. Walk-in
appointments are an alternative approach to compensate for
no-shows, but overbooking ismore efficient.This implies that
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Table 2: Comparison of overbooking and walk-in policies on system performance.

Appointment rule Interval length Scheduled patients Profit
The proposed algorithm — 35.26 23.45
IBFI 𝑠

𝑖
= (𝑖 − 1)𝜇

−1 40.24 16.96

OFFSET
𝑠
1
= 0;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 − 𝛽

1
) 𝜇
−1, 2 ≤ 𝑖 ≤ 𝑘

1
;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 + 𝛽

2
) 𝜇
−1, 𝑖 > 𝑘

1

42.89 16.37

DOME
𝑠
1
= 0;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 − 𝛽

1
) 𝜇
−1, 2 ≤ 𝑖 ≤ 𝑘

1
;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 + 𝛽

2
) 𝜇
−1, 𝑘
1
< 𝑖 ≤ 𝑘

2
;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 − 𝛽

3
) 𝜇
−1, 𝑖 > 𝑘

2

42.4 16.35

2BEG 𝑠
1
= 𝑠
2
= 0;

𝑠
𝑖
= (𝑖 − 2) 𝜇

−1, 𝑖 > 2 40.89 16.26

2BGDM
𝑠
1
= 𝑠
2
= 0;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 − 𝛽

1
) 𝜇
−1, 2 < 𝑖 ≤ 𝑘

1
;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 + 𝛽

2
) 𝜇
−1, 𝑘
1
< 𝑖 ≤ 𝑘

2
;

𝑠
𝑖
− 𝑠
𝑖−1
= (1 − 𝛽

3
) 𝜇
−1, 𝑖 > 𝑘

2

43.03 15.62

MBFI 𝑠
𝑖
= 𝑠
𝑖+1
= (𝑖 − 1) 𝜇

−1, 𝑖 = 1, 3, 5, . . . 39.86 15.49

MBDM
𝑠
1
= 𝑠
2
= 0;

𝑠
𝑖
− 𝑠
𝑖−1
= 𝑠
𝑖+1
− 𝑠
𝑖−1
= 2 (1 − 𝛽

1
) 𝜇
−1, 2 < 𝑖 ≤ 𝑘

1
;

𝑠
𝑖
− 𝑠
𝑖−1
= 𝑠
𝑖+1
− 𝑠
𝑖−1
= 2 (1 + 𝛽

2
) 𝜇
−1, 𝑘
1
< 𝑖 ≤ 𝑘

2
;

𝑡
𝑖
− 𝑡
𝑖−1
= 𝑡
𝑖+1
− 𝑡
𝑖−1
= 2 (1 − 𝛽

3
) 𝜇
−1, 𝑖 > 𝑘

2

42.06 15.00

Table 3: Impact of no-show probability on system performance.

No-show probability Scheduled patients Profit
0.5, 0.4, 0.3, 0.2 35.26 23.45
0.65, 0.55, 0.45, 0.35 42.1 22.54
0.35, 0.25, 0.15, 0.05 32.07 24.21
0.4, 0.367, 0.333, 0.3 34.6 23.39
0.65, 0.45, 0.25, 0.05 36.13 23.64

Table 4: Impact of patients’ weight on system performance.

No-show probability Scheduled patients Profit
1 : 1 : 1 : 1 35.26 23.45
4 : 3 : 2 : 1 37.28 23.07
1 : 2 : 3 : 4 34.13 23.79
1 : 2 : 2 : 1 35.16 23.42
2 : 1 : 1 : 2 35.51 23.45

Table 5: Impact of walk-in probability on system performance.

Walk-in probability Scheduled patients Profit
0 50.62 24.8
0.1 43.27 23.91
0.2 37.59 23.5
0.3 34.02 23.43
0.4 31.22 23.19
0.5 28.03 23.16

appointment scheduling is an effective approach to smooth
the patient flow in the clinic; the administrator of the clinic

should make some constraint on the proportion of walk-
in patients, allowing the clinic to provide diagnosis to more
patients and gain more profits as well.

4.6. Impacts of Anticipating Future Arrivals. According to
Theorem 2 and the experimental results about no-show prob-
ability, it is noted that the clinic can benefit from restricting
the patients with large no-show probability. This motivates
a heuristic that only patients with small no-show probability
are accepted during the initial portion of the booking horizon
and appointment requests with large no-show probability are
considered only in the later portion when not enough future
arrivals are anticipated. It is easy to see that the proof of
Theorems 2 and 3 hold when future arrivals are considered;
so the proposed algorithm can be implemented for this
scenario. The numerical experiment generates a call-in
sequence including 80 patients: type 4 will be accepted for
the first 20 patients, types 3 and 4 will be accepted for the
next 20 patients, and so on. Figure 3 displays the evolution of
objective for a given call-in sequence denoted by the horizon-
tal coordinate. 10 more patients are scheduled to illustrate the
evolution of the profit after the stopping criteria are achieved.
In this special case, it is seen that the optimal number of
patients is 34 with the expected profit of 24.02. The statistic
results of 100 randomly generated call-in sequences show
that 33.7 patients are scheduled on average with the mean
profit of 24.01. Compared with performances from Table 1,
it is noted that rejecting some patients with high no-show
probabilities will schedule fewer patients but will increase
the expected revenue in the meanwhile. This means that
future arrivals can be also viewed as an alternative approach
to substitute for patients with high no-show probabilities. If
the clinic has enough potential booking requests, patients
with large no-show probabilities are not accepted.
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Figure 3: Illustration of the schedule and the expected profit
anticipating future arrivals.

5. Conclusion

This paper develops a stochastic programming model for
a sequential appointment scheduling problem with walk-
in patients. An algorithm terminating with the myopic
optimal number of patients scheduled and the corresponding
appointment time is proposed based on the convexity of cost
function. A sufficient condition regarding the unimodality
of the profit function is established. The numerical results
show that this algorithm outperforms the commonly used
heuristics in terms of the profit. Numerical results implicate
that large no-show probabilities are key factors influencing
the profit. Lowering downmean and variance of the no-show
probabilities can bring extra profit for the clinic. Although
walk-in patients can fill in gaps resulted in by no-show,
overbooking is preferable in terms of total profit. Rejecting
patients with large no-show probabilities when the clinic has
enough potential appointments is an alternative approach to
mitigate the negative effects of no-show behaviors.

Future directions can introduce other types of variability
in the appointment system. An immediate direction is the
inclusion of generally distributed service time to see to
what extent the previous conclusion holds. Future researches
should take into account other behaviors such as patients’
preference, unpunctuality, and service interruption which
also have significant impacts on the optimal schedule. As seen
from this paper, reducing no-show behavior benefits both the
clinic and patients. Intuitively speaking, the indirect waiting
time between the call to make an appointment and the actual
appointed day may influence the no-show probability. More
accurate models should contain multiperiods to account for
this effect quantitatively. It is noted that restricting walk-
in patients will increase the profit of the clinic, but several
field studies favor the so-called open-access appointment
system, which provides same-day service to the patients.This
paradox stimulates further studies to decide the length of
time intervals left vacant for same-day appointments and
when these intervals start simultaneously.
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