
Elastic Allocation of Docker Containers
in Cloud Environments

Matteo Nardelli

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

nardelli@ing.uniroma2.it

Abstract Docker containers wrap up a piece of software together with
everything it needs for the execution and enable to easily run it on
any machine. For their execution in the Cloud, we need to identify an
elastic set of virtual machines that can accommodate those containers,
while considering the diversity of their requirements. In this paper, we
briefly describe our formulation of the Elastic provisioning of Virtual
machines for Container Deployment (EVCD), which takes explicitly into
account the heterogeneity of container requirements and virtual machine
resources. Afterwards, we evaluate the EVCD formulation with the aim
of demonstrating its flexibility in optimizing multiple QoS metrics.

Keywords: Container, Cloud computing, Resource allocation, QoS

1 Introduction

Docker1 containers enable to package an application together with all of its
dependencies and then run it smoothly in other environments. They exploit the
operating system level virtualization, therefore multiple containers can co-exist
and run in isolation on the same machine, thus improving resource utilization.
Differently from virtual machines, containers are lightweight [4], because they
bundle only the application dependencies while reusing the underlying operative
system. For the execution, a container needs to be deployed on a hosting machine,
which provides computing and memory resources. While doing this, we still want
to exploit the Cloud computing principles, which promote the elastic usage of
on-demand resources. This problem is named container deployment problem (or
container allocation problem). If the deployment of a single container can be done
easily, deploying lots of them, belonging to multiple applications with different
requirements, can be complicated and might lead to resource shortage or resource
under-utilization. In the literature only few solutions consider container features
while determining their allocation (e.g., [3,6,9,11]) and the most of them are
characterized by different assumptions and optimization goals. Aside from the
work presented in [6], there is no general formulation of the container deployment
problem in the Cloud.

1 https://www.docker.com/

O. Kopp, J. Lenhard, C. Pautasso (Eds.): 9th ZEUS Workshop, ZEUS 2017, Lugano,
Switzerland, 13-14 February 2017, published at http://ceur-ws.org/

https://www.docker.com/
http://ceur-ws.org/

In this paper, we investigate the problem of deploying containers in the
Cloud. Specifically, we evaluate EVCD [8], a general formulation of the container
deployment problem that determines the optimal allocation on virtual machines,
acquired on-demand, while considering the QoS attributes of containers and
virtual machines. Besides computing the initial deployment and the following
runtime adaptation, EVCD provides a benchmark against which other deployment
algorithms can be compared. With respect to our previous work [8], in this paper
we show how EVCD can optimize different user-oriented QoS metrics, such as
the deployment time and cost.

This paper is organized as follows. We review related work in Sect. 2; in Sect. 3
we describe the system model and the problem under investigation, before
formulating EVCD as an Integer Linear Programming problem in Sect. 4. We
evaluate the flexibility of EVCD in Sect. 5 and conclude in Sect. 6.

2 Related Work

In literature a limited number of works provides a formal definition of the
allocation problem for containers; however, due to NP-hardness of the problem,
many heuristics have been proposed. As regards the modeling, in [1] the authors
propose a constraint programming model that, differently from our approach,
finds a feasible (but not optimal) deployment solution. The work most closely
related to ours has been presented by Hoenisch et al. [6]. Their model accounts
for container replication as well as their allocation, while considering several
QoS attributes. We do not explicitly consider container replication, however we
postpone to future work the extension of EVCD for considering it.

The existing heuristics aim at optimizing a diversity of utility functions,
namely fairness, load balancing, network traffic, or energy consumption. The
fairness of resource allocation is considered in [5,10]. In [5], Ghodsi et al. propose
the Dominant Resource Fairness (DRF) policy, which works in a system containing
different resource types (i.e., CPU, memory) and assigns them to containers in
a Pareto-optimal manner. Then, Wang et al. [10] further generalize the notion
of DRF to work with multiple heterogeneous servers. Considering a topology
of communicating containers, Zhao et al. [11] propose a policy that minimizes
the traffic exchanged using the network, while balancing the load among virtual
machines. The minimization of energy consumption is considered in [3,9]; these
works propose a greedy placement scheme that allocates containers on the most
energy efficient machines first. All these works focus on system-oriented metrics,
whereas we consider user-oriented metrics, such as the deployment time and
cost. However, EVCD provides a general framework for solving the deployment
problem that can be easily extended to incorporate also those kind of metrics.
Proprietary solutions that support container allocation (e.g., Amazon ECS2,
Google Container Engine3) and open-source alternatives (e.g., Kubernetes4,
2 https://aws.amazon.com/ecs/
3 https://cloud.google.com/
4 http://kubernetes.io/

60 Matteo Nardelli

https://aws.amazon.com/ecs/
https://cloud.google.com/
http://kubernetes.io/

Docker Swarm5) usually bundle simple scheduling heuristics and also enable
the execution of custom policies. Among the most common heuristics, we can
find the round-robin policy, which tries to evenly use resources, and well-known
heuristics that solve the bin packing problem, namely greedy best-fit and first-
fit. Specifically, Docker Swarm, the official Docker component that allocates
containers on a centralized pool of resources, includes a bin packing policy and
a strategy that balances the number of containers among computing nodes.
In our previous work [8], we used EVCD to compare some of these heuristics
(i.e., round-robin, greedy first-fit) in terms of achievable QoS performance.

3 System Model and Problem Statement

Devising an optimal container deployment strongly depends on the assumptions
made about the domain it will be applied to. In this section, we provide a formal
description of the domain entities: containers and virtual machines.

Software Container Model. A Docker container is an instance of an image,
which represents a container snapshot and contains all the data needed for its
execution. For efficiency reasons, an image is structured as a series of layers (e.g.,
libraries, custom files), where each one can be downloaded independently from the
others. We define the set of containers as S. A container s ∈ S is characterized by
the following QoS attributes: Cs, the number of required CPUs; Dsc

s , the startup
time; Ms, the amount of required memory; and Is, the set of image layers needed
for its instantiation. We assume Is ⊆ I, where I is the set of all the available
containers images. Each image layer i ∈ I is characterized by the size of data li
composing the layer.

Virtual Machine Model. A virtual machine (VM) hosts and executes
containers with respect to its capabilities. Being a Cloud resource, a VM can
be acquired and released as needed and paid for the amount of, albeit partially,
consumed Billing Time Units (BTU). Finally, although in theory unlimited, we
assume the number of leasable virtual machines to be limited in a certain time
period. Let V be the set of all VMs, including the active (leased) ones and the
leasable ones. A virtual machine v ∈ V has the following QoS attributes: Cv,
the amount of available CPUs; Mv, the available memory capacity; DRv, the
download data rate of v; Dsv

v , the startup time; Pv, the cost per BTU; and Iv,
with Iv ⊆ I, the set of image layers available in v without downloading them
from an external repository.

Container Deployment Problem. To solve the deployment problem, we
need to determine a mapping between the set of containers S and the set of
virtual machines V in a such a way that all constraints are fulfilled. We investigate
the initial deployment as well as its adaptation at runtime, therefore we solve
EVCD periodically, every τ unit of time. We model the container deployment
with binary variables xs,v, s ∈ S, v ∈ V : xs,v = 1 if s is deployed on v and
xs,v = 0 otherwise. The variables zv denote whether v ∈ V is active and hosts
5 https://www.docker.com/products/docker-swarm

Elastic Allocation of Docker Containers in Cloud Environments 61

https://www.docker.com/products/docker-swarm

at least one container. Relying on the deployment configuration determined at
time t − τ , we also define the following auxiliary binary variables: av, which
indicates whether v ∈ V , turned off in t − τ , has to be activated in t; as,v, which
indicates whether s is deployed on a newly activated virtual machine v (i.e., with
av = 1); and δs,v, which indicates whether, in t − τ , s ∈ S was not allocated or
was allocated on u ̸= v, with u ∈ V .

4 Elastic Provisioning Model

In this section we present our formulation of EVCD (acronym of Elastic pro-
visioning of Virtual machines for Container Deployment) as an Integer Linear
Programming (ILP) model. Due to space limitations, we do not report the full
formulation of EVCD, which can be found in [8]. EVCD is solved periodically,
every τ unit of time. We model as QoS metrics the deployment time D(x, z) and
cost C(x, z). The former represents the time needed to deploy every container
in S, whereas the latter represents the monetary cost of the virtual machines
leased for executing the containers. Since the relative importance of these metrics
depends on the utilization scenario, EVCD provides a general formulation that
can be aimed at optimizing specific QoS attributes. Therefore, the objective
function of EVCD is the minimization of F (x, z), which is defined as a weighted
sum of the normalized QoS attributes:

F (x, z) = wd
D(x, z) − Dmin
Dmax − Dmin

+ wc
C(z) − Cmin
Cmax − Cmin

(1)

where wd, wc, with wd, wc ≥ 0, wd + wc = 1, are weights for the different QoS
attributes, and Dmax (Dmin) and Cmax (Cmin) denote, respectively, the maximum
(minimum) value for the overall expected deployment time and cost. Observe
that these normalization factors can be computed by solving other optimization
problems or can be approximated relying on previous experiments or on statistical
analysis of the runtime execution. The overall deployment time D(x, z) accounts
for the time needed to spawn new VMs, retrieve container images, and finally
start the containers. It can be formally defined as:

D(x, z) =
∑

s∈S

∑

v∈V

Dsv

v as,v +
∑

i∈Is\Iv

li
DRv

xs,v + Dsc
s δs,v

 (2)

where Dsv
v is the startup time of a new VM, considered only if a new one is

needed,
∑

i
li

DRv
represents the time needed to download the images Is not yet

on v, and Dsc
s is the startup time of s, if s was not already running on v. The cost

C(x, z) includes the leasing of the new VMs and the renewing the expired ones
which are still needed. Relying on the activation vector z and on the auxiliary
variables av, we have that:

C(z) =
∑

v∈V

Pvav +
∑

v∈V exp

Pvzv (3)

62 Matteo Nardelli

 0

 10

 20

 30

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

Simulated Time (min)

Active Containers

(a) Number of active containers

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u
m

b
e
r

o
f
A

c
ti
v
e
 V

M
s

Simulated Time (min)

EVCD_C
EVCD_D

EVCD_CD

(b) Number of active virtual machines

Figure 1: Elastic provisioning of virtual machines when EVCD receives a varying
demand for resource allocation by containers.

where the first term on the right end side accounts for the cost of newly acquired
VMs, and the second one accounts for renewing the expired leasings, if needed
(i.e., if the related VM is still used). The set V exp ⊆ V includes the VMs whose
leasing is going to expire between the current time t and the next execution of
EVCD in t + τ .

The full optimization in [8] includes constraints that limit the number of
containers deployable on a VM with respect to the available resources as well as
the formal definition of the auxiliary variables.

5 Experimental Results

To evaluate the EVCD model, we simulate its execution in a system that receives
containers and allocates them on VMs. The aim of this experiment is to show the
flexibility of EVCD, which can elastically acquire and release VMs to host and
execute software containers while optimizing the deployment time of containers,
the cost of leased VMs, or a combination thereof.

We solve EVCD with CPLEX©6, the state-of-the-art solver for ILP problems,
on a machine with 4 CPUs and 16 GB RAM. We simulate the execution of EVCD
6 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Elastic Allocation of Docker Containers in Cloud Environments 63

http://www-01.ibm.com/software/commerce/optimization/ cplex-optimizer/

Table 1: QoS metrics and VMs acquired under different configurations of EVCD
Average values of the QoS metrics of interest

QoS metric EVCD_C EVCD_D EVCD_CD
Cost of leased VMs per hour 3.8 4.9 4.1

Deployment time per container 24.0 s 13.6 s 14.8 s

Relative number of used virtual machines
VM type EVCD_C EVCD_D EVCD_CD

type A 23.4% 44.8% 36.8%
type B 76.6% 55.2% 63.2%

every τ = 15 minutes. Each container requires unitary resources (i.e., CPU,
memory) and has a lifespan of L = 30 minutes. A container depends on a set
of image layers, whose cardinality is uniformly chosen between 2 and 4; this set
includes 70% of existing images (if any) and 30% of new images. Each image layer
has a size li uniformly defined in [200, 800] MB. The startup time Dsc

s of s ∈ S
ranges uniformly in [8.5, 11.5] s. Two type of VMs are available in V : type A with
4 CPUs, 16 GB of RAM, and Pv = 1; and type B with 8 CPUs, 32 GB of RAM,
and Pv = 1.7. Similarly to the most popular commercial solutions, the BTU is
60 minutes. The startup time Dsv

v of v ∈ V ranges uniformly in [85, 115] s, in
accordance with [7]. During the experiment, the number of containers requiring
resources fluctuates between 0 and 20 during the timespan of a (simulated) day,
and this pattern is repeated for the following two days. Figure 1a shows the
number of active containers during the whole experiment; being L ≥ τ , the
number of active container can be greater than 20.

We evaluate the effects on the containers deployment of three different config-
urations of EVCD, namely EVCD_C, EVCD_D, and EVCD_CD. EVCD_C
deploys containers by minimizing, as QoS metric, the cost C(x, z), i.e., it solves
EVCD with F parametrized with weights wc = 1 and wd = 0. EVCD_D mini-
mizes the deployment time D(x, z), by solving EVCD with wd = 1 and wc = 0.
Finally, EVCD_CD minimizes both the QoS metrics, by solving EVCD with
wd = wc = 0.5, and normalization terms Dmin = 8.5 s, Dmax = 152.1 s, Cmin = 0,
and Cmax = 10.1. These values result from preliminary experiments. Figure 1b
shows the number of active VMs during the experiment, whereas Table 1 reports
the average values of the considered QoS metrics and the relative number of
used VMs per type. From Fig. 1b we can see that, although every configuration
of EVCD acquires and releases VMs to satisfy the incoming load, each of them
follows a different strategy. Differently from the other configurations, EVCD_C
tries to use as few VMs as possible and, if needed, prefers type B VMs (76.6%
of the time, see Table 1), because of their economy of scale. However, this leads
to the highest deployment time, which is higher then the optimal one of about
76% (see Table 1). EVCD_D neglects the differences in terms of price between
VMs of type A and type B, which are used almost equally. This strategy has the
highest cost (29% higher than the optimal one), however it obtains the lowest

64 Matteo Nardelli

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
s
o
lu

ti
o
n
 T

im
e
 (

s
)

Simulated Time (min)

EVCD_C
EVCD_D

EVCD_CD

Figure 2: Resolution time of EVCD.

possible deployment time, because it allocates containers on VMs that already
host some of the needed image layers, thus reducing the container startup time.
EVCD_CD finds a trade-off between the previous strategies, as can be seen from
Table 1. It optimizes both the QoS metrics, achieving a deployment time and
cost about 9% and 8% higher than the optimal values, respectively. Moreover,
this strategy shows that, by selecting the weights of F according to the user
preferences, EVCD can be aimed at optimizing different QoS metrics of interest.
Observe that any other combination of weights wc, wd lead to configurations
that lie in between EVCD_C and EVCD_D. Determining the best trade-off
between deployment time and cost depends on the relative importance of these
QoS metrics on the utilization scenario (e.g., different user preferences).

On EVCD Resolution Time. We now discuss about the resolution time of
EVCD and its relationship with the optimization goals. We consider as resolution
time the time needed to compute the exact solution of the ILP problem. During
this experiment, the maximum number of managed virtual machines (both active
and leasable) in V is 19, whereas the maximum number of active containers in S is
40. Figure 2 reports the resolution time of EVCD for the different configurations
(i.e., EVCD_C, EVCD_D, and EVCD_CD) during the experiment. In general,
we observe that the resolution time is influenced by the size of the problem
as well as by the optimization function F resulting from the different set of
weights. Optimizing a single QoS attribute, i.e., solving EVCD_C or EVCD_D,
is less computationally demanding and has better performances; as can be seen
from Fig. 2, the resolution time of EVCD_C and EVCD_D is always below
1 s. Conversely, solving a multi-objective optimization problem is harder and
produces higher resolution times with greater fluctuations with respect to the
previous configurations. The complexity of CPLEX does not easily reveal the
motivations behind the number and amplitude of these fluctuations. During the
whole experiment, the 95th percentile of the resolution time for EVCD_C and
EVCD_D is 189 ms and 33 ms, respectively, whereas EVCD_CD has a 95th
percentile of about 24.6 s, i.e., two order of magnitude higher.

It can be demonstrated that the deployment problem is NP-hard (see [2]),
therefore EVCD does not scale well as the problem instance increases in size.
Nevertheless, by determining the optimal deployment of containers over an elastic

Elastic Allocation of Docker Containers in Cloud Environments 65

set of VMs and evaluating the subsequent runtime reconfigurations, EVCD
provides a benchmark for evaluating heuristics, for developing new ones, and for
identifying the most suitable ones with respect to specific optimization objectives.

6 Conclusion

In this paper we have described and evaluated EVCD, a formulation of the elastic
provisioning of virtual machines for container deployment. EVCD is a general
and flexible model that can be conveniently configured to optimize different QoS
metrics. Aside computing the initial allocation, EVCD can adapt the containers
deployment at runtime, if needed. The experimental evaluation has shown the
flexibility of the proposed model, which has optimized the deployment time of
containers, the monetary cost for their execution, and a combination thereof.
As future work, we plan to extend the formulation of EVCD to include other QoS
attributes (e.g., network traffic, resource utilization) and the runtime replication
of containers. Moreover, we plan to develop efficient heuristics to deal with large
instances of the container deployment problem for the initial deployment and to
support runtime reconfigurations.

References

1. Abdelbaky, M., Diaz-Montes, J., Parashar, M., et al.: Docker containers across
multiple clouds and data centers. In: Proc. of IEEE/ACM UCC 2015 (2015)

2. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proc. of ACM DEBS ’16 (2016)

3. Dong, Z., Zhuang, W., Rojas-Cessa, R.: Energy-aware scheduling schemes for cloud
data centers on google trace data. In: Proc. of IEEE OnlineGreenComm 2014 (2014)

4. Felter, W., Ferreira, A., Rajamony, R., et al.: An updated performance comparison
of virtual machines and linux containers. In: Proc. of IEEE ISPASS 2015 (2015)

5. Ghodsi, A., Zaharia, M., Hindman, B., et al.: Dominant resource fairness: Fair
allocation of multiple resource types. In: NSDI. vol. 11 (2011)

6. Hoenisch, P., Weber, I., Schulte, S., et al.: Four-fold auto-scaling on a contemporary
deployment platform using docker containers. In: Proc. of ICSOC 2015 (2015)

7. Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud.
In: Proc. of IEEE CLOUD 2012 (2012)

8. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines
for container deployment. In: Proc. of ACPROSS 2017, colocated with ACM/SPEC
ICPE ’17 (2017)

9. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., et al.: A framework and algorithm
for energy efficient container consolidation in cloud data centers. In: Proc. of IEEE
DSDIS 2015 (2015)

10. Wang, W., Li, B., Liang, B.: Dominant resource fairness in cloud computing systems
with heterogeneous servers. In: Proc. of IEEE INFOCOM 2014 (2014)

11. Zhao, Z., Mandagere, N., Alatorre, G., et al.: Toward locality-aware scheduling for
containerized cloud services. In: Proc. of IEEE Big Data 2015 (2015)

66 Matteo Nardelli

