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The paper describes an approach for the optimal placement of sensors in composite beam 
structures for online detection of damage. The ability to identify damage is based on establishing 
a mapping between the charactgeristics of specific damage mechanisms (location and extent) 
such as delamination, fiber breakage, and matrix cracking, and strain measurements at the 
selected sensor locations; a trained neural network is proposed as a tool to generate this 
mapping. The design problem considered in the present paper was to place the least number of 
sensors in the structure so that the ability of the neural network to predict the extent and location 
of damage is not compromised. The optimization problem involved a mix of discrete and integer 
variables, and a genetic algorithm was used as the search tool. 

~ T R O D U C T I O N  

A "smart" structure, instrumented with sensors and 
actuators, and responding in an intelligent manner to a 
dyoamically changing environment, is an intriguing 
concept. The key ingredients in the reafization of such a 
system include an adequate instrumentation of the 
structure, ability to rapidly analyze measured data and 
correlate to the existing state of the system, and to limit 
adverse structural behavior by providing real-time reaction 
in response to the evaluated state of the system. The 
present paper focusses on the use of strain measurements 
to detect delamination damage in composite beams. The 
approach can be extended to include other commonly 
encountered damage mechanisms in composites such as 
fiber breakage and matrix cracking, and analytical models 
relating the location and size of damage to strain fields in 
the structure under an applied load, are presented in 
(Teboub & Hajela, 1992). Since the damage can be in 
more than one place, and furthermore, there can be 
multiple modes of damage present at the same time, the 
identification space in such a problem is often nonunique. 
Artificial neural network (ANN) based classifiers present 
themselves as a logical tool for relating specific strain 
response to damage type and location. Once trained, these 
networks can rapidly generalize new strain measurements 
into an estimated state of the structure, and are therefore 
ideal for online damage detection systems. 

An adequate instrumentation of the structure, however, 
continues to be a pivotal problem. The least number of 
sensors is clearly desirable from a standpoint of 

complexity of hardware. However, a sufficient number must be 
placed to resolve problems of nonunique identification and to 
have a robust system that is relatively insensitive to partial 
failures in the sensor array. The problem of optimally locating 
the least number of sensors that would identify damage over 
some admissible range of degradation and location, is explored 
in subsequent sections of this paper. Placement of sensors at 
some predefined grid in the structure is a discrete optimization 
problem, and computationally burdensome to handle using 
traditional branch-and-bound methods in nonlinear 
programming. The use of a genetic algorithm (Hajela 1993) is 
adopted in the present work, as this method is naturally 
amenable to search in a discrete space. 

Once the placement of the sensors is known, a neural network 
can be trained to develop the mapping between the 
characteristics of damage, and the strain measurements at the 
sensor locations. However, to determine the optimal location 
of sensors by genetic search requires that a very large number 
of function evaluations be performed. Such function 
evaluations would involve determining the strain state for 
many different sizes and locations of damage, and then varying 
the number and locations of sensors to find the optimal 
distribution of the sensors in the structure to success_fully 
identify various occurrences of damage. This is clearly a 
computationally intensive procedure, and in the present work, 
a trained neural network was used as an approximate analysis 
tool. Note that in optimizing for sensor locations, each strain 
reading may correspond to a totally different set of sensor 
locations. A novel hybrid neural network and a 
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counterpropagation (CP) neural network (Szewczyk and 
Hajela, 1992) were used to construct approximations to the 
function information required in the optimization process. 
The characterzafion of delamination damage and analysis of 
the damged beam, statement of the optimal sensor placement 
problem, and the solution strategy are described in 
subsequent sections of this paper. 

DELAMINATION 1N COMPOSITES 

Delamination is a commonly encountered mode of damage 
in laminated composites, and appears as debonding of 
adjoining pries. It may result from interlaminar stresses 
created by impact, eccentricities in structural load paths, 
discontinuities in the structure, or during manufacturing. 
Delamination can result in reductions in composite strength 
of up to 65 % (Ramkumar 1983, Rosenfeld and Gauss 
1981). The reduction in load bearing capacity, and 
degradation of structural integrity and stiffness, has been 
the subject of concern in engineering applications of 
composite materials. 

The presence of delamination prevents proper load 
distribution between pries, and the composite is reduced to 
a number of independent longitudinal plies acting in 
parallel to support the applied load. The weakest of these 
pries fails, and may trigger failure of the remaining 
longitudinal plies. The effect of internal damage on 
macroscopic material response is observed only when the 
frequency of intemal damage is sufficiently high. Since 
normal inspection practice relies on visual examinations, it 
is possible that intemal delaminafions ( e.g. caused by low 
velocity impacts) may go undetected for some length of 
time. It is of some importance to assess whether such 
internal damage has the potential for catastrophic growth. 
The model of delamination behavior described in this 
section extends the work of (Tracy 1989), to include 
unsymmetric laminates and the effects of shear 
deformation. It is assumed that the delamination divides 
the beam into four regions and extends over the entire 
width as shown in Figure 1. The delamination is located 
along a plane z=constant, and the thickness-to-span, and, 
delamination to length ratios are assumed to be small. 

Consider a laminated composite beam of length L, width b, 
and height h, made of layers of orthotropic materials. The 
principal material axes of a layer may be oriented at an 
arbitrary angle with respect to the x-axis. The following 
assumptions are made in developing the equifibfium 
equations: 

1) All layers behave elastically. 
2) Displacements, rotations and strains are small relative to 
the beam thickness. 
3) Perfect bonding exists between non delaminated layers. 
4)The laminate of each region is equivalent to a single 
auisotropic layer. 

The assumed displacement field for the composite beam, 
based on the first ordei: shear deformation theory, is given 
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as follows: 

u l(x,z)  = u(x) + z v ( x )  (1) 

u 3 (x, z) = w (x) (2) 

Here u, w are the displacements of a point on the midplane, 
and V is the rotation of the normal to the midplane about x 
axis. The strain-displacement relations are given as follows, 

e x = U x(X) +ZVx(X) (3) 

Txz = V (x) + W x (x) (4) 

~x = V,x (x) (5) 

where, the comma indicates differentiation with respect to 
x. The constitutive equations of a laminate are given by the 
classical lamination theory, [] [:11 110 001lx:XO I 

Mx = 11 D l l  

x 0 A 5 

where, N x is the resultant stress and M x is the resultant 
moment. The coeficients All, Bll,  and Dll are the exten- 
sional, coupling, and bending stiffness coefficients, respec- 
tively; A55 is the shear stiffness coefficient. These 
coefficients are computed as follows: 

(6) 

A 11' Bll '  Dll '  A55/ (7) 

N z k 
= k__~l~Zk_ i (QiI '~XXZ'QllZ2'KQ55)k dz 

In the above equation, Q55' Q l l  are the transformed 

elasticity constants, N is the number of layers in the 
composite laminate, and K is the shear correction factor. 
This factor is necessary in first order shear deformation 
theory to account for the effects of nonuniform shear strain 
distribution. Methods to obtain values of the shear 
correction factors for different laminates have focussed on 
matching gross response predicted by fisrt order shear 
deformation theory with that of 3-D elasticity. For 
rectangular cross sections and low to intermediate 
thickness, a value of K=5/6 is widely adopted, and was 

o are the midplane used in the present work; e x and ~:x 

strain, and the bending curvature, respectively. 

For the delaminated beam structure, the equations of equilib- 
rium can be developed for each of the four distinct sections 
i=1,4 shown in Figure 1 From the principle of minimum 
potential energy, we obtain the following system of equa- 
tions, 

(All)iUi, xx+(Bll)iU/i,  xx = p l 6 ( x - a )  (8) 

( A 5 5 ) / ( ~ i , x + w i , x x ) =  q(x) (9) 
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(Bll)iUi, xx+(Dll)iU/i, xx (10) 

-(A55)i(~i+Wi, xl =(ml-m215(x-a) 
where i denotes the beam segment under consideration. 
These equations can be integrated to obtain the following 
solution for the axial displacement u(x), transverse 
displacement w(x), and rotation ~(x). 

( B l l / i  3 ~ t t . ' C / ~  
ui(x) = 6"15~ qx - +Ci2x+Ci3 + 

t - (11) 

1 D 
~ / [ (  ll)iPx-(Bll)i(mx-m2)] (x-a)H(x-a) 

C i 1 x3 Ci4 x 
6 2 (12) w i(x) = 2 ~  i 24D. 

l 

( CilDi I 1 
+[(m55)i(mll)i-Ci5 x+Ci6 2D i 

I-(Blll~Ol+(All)i(ml-m2)~(x-a) 2H(x-a' 

A l l / i  3 Cil x2 1 Wi(x) - 6D. qx + ~ + C i 4  x+Ci5+~. 
l l 

(13) 

• 2(x2) ° ~4(x2) 
• 3(x2) ° ~4(x2) 

h 3 
u2(xl)- Ul(Xl )+"~ '~ l (X l ]  = 0  

h 2 
u3(xl)-Ul(Xl)-'~-~l(Xl) = 0  

U2(X2) _u4ix2 ) h~  4(x2) = + 0 

h 2 
u3(x2)-u4(x2 / --~-W4(X2) = 0  

Continuity of  moments  and forces 

~ l i x l / - ~ / ~ l ) - ~ i x l )  ° 0  

- M4(x2) h~N2(x2] h~N3(x2) = + - 0 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

E-(Bll)~°l+(All)iIml-m2]](x-a)H(x-a) 
Where D i is obtained as follows: 

= - B 2 De (all)i(Dxl)i ( 11)i (14) 

The constants of integration are obtained upon substitution 
of the appropriate boundary conditions, the kinematic 
continuity conditions, and continuity of forces and 
moments. These are defined as follows: 

Boundary  conditions 

u 1(0) = 0 w 1(0) = 0 (15) 

V 1(0) = 0 N 4(L) = 0 (16) 

M 4(L) = 0 V 4(L) = 0 (17) 

Kinematic continuity 

w~i xll -- w~ixl ) 
wll ~i) -- w~Ix, ) 

w~ x~l _- w41x~l 
w~Ix~l -- w41x~l 

condition 

M2(x2) ÷ M3(x2/ 
h 3 h 2 

- M 4(x2) + "~'N2(x2) - "~-N3(x2) = 0  

(35) 

APPROXIMATE STRAIN R E S P O N S E  USING ANN's  (18) 

(19) An important step in the design of sensor instrumented 
structures is to determine the appropriate placement of such 

(20) sensors. A minimal number of such sensors is desirable from 
(21) the standpoint of simplicity, but should be distributed so as to 

make use of available readings to correctly identify the 
(22) location and intensity of damage. In the present problem, the 

sensors are assumed to record strain readings at discrete 
(23) locations. To recover stiffness properties that yield these 

strains, and then correlate the stiffnesses to a state of the 

Ml(Xl) M2(Xl) 
h 3 h 2 

-M3(Xl)-yN2(x,) + ~-N3(Xl) = 0 
The strains can be computed from the displacement field as 
in Equs. (3-5). This analysis provides a capability of 
computing the strain field in the beam under a general 
loading, and for a specific length and location of the 
delaminafion damage. Note further, that the delamination 
damage is characterized in terms of three parameters - the x 
and z locations of the center of the delamination, and the 
length of the delaminafion. 
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Table 1: General izat ion e r ro r  with missing input  da ta  

Number of sensors N s BP- Network 
Average % Error/pattern 

CP - Network 
Average % Error/pattern 

Hybrid Network Average % 
Error/pattern 

7 126.49 10.04 112.3 

9 113.67 9.79 14.9 

12 81.65 4.62 7.0 

15 5.81 1.36 5.79 

Table 2 :800  test pat terns  - CPN (400K-N), Ns<7 Ep=11.29% 

Table 3 :800  test pat terns  - CPN (603K-N), Ns<7 E p = l l . 1 9  % 

Table 4 :800  test pa t terns  - Hybr id  (200K-N), Ns<7 Ep=21.18% 

Table 5 :800  test pa t te rns  - Hybr id  (400K-N), Ns<7 Ep=12.82% 

Table 6 :800  test pa t terns  - Hybr id  (603K-N), Ns<7 Ep=12.31% 
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structure, requires the solution of a very involved inverse 
problem• with no assurance of uniqueness. Furthermore, 
since online detection of damage is a key consideration, the 
strain measurements available at the sensor locations should 
be rapidly mapped into a physical state of the structure. This 
mapping can be developed by training a neural network with 
some predetermined training samples; in the present case, the 
training set consisted of strain measurements corresponding 
to a number of simulated delaminations, where both the 
location and size of the delamination were randomly varied 
between some prescribed range. The strain measurements 
were assumed to be available at a number of predetermined 
locations, and the locations themselves were distributed so as 
to adequately cover the regions of the structure where 
damage may occur. The underlying assumption is that once a 
neural network can be trained using such measurements, it 
would be capable of generalizing a set of new strain 
measurements into a given state of del amin afion. The present 
work explored the application of the backpropagation and the 
connterpropagation network to construct the mapping 
between the strains and the parameters characterizing the 
delamination damage. 

The BP network can be described as a layer of input neurons 
(a neuron is the basic computing element which transforms a 
received input into an output through a preselected transfer/ 
activation function) connecting through one or more hidden 
layers of neurons to an output layer. A schematic sketch for 
such a network architecture is shown in Fig. 2, which also 
shows a widely used sigmoid activation function. Each 
neuron in the input and output layers corresponds to one 
input or output component, respectively. As shown in the 
figure, neurons in successive layers couneC~mtO one another 
through a set of interconnection weights w.. where the 
subscripts and superscnpts denote a connefffion between the 
i-th neuron of layer '1' and the j-th neuron of layer 'm'. 
During the neural network training process, these strength of 
interconnections and the charactersfics of the neuron 
activation function are adjusted so that for all samples in the 
training data (input-output pairs), the network learns to 
provide a good estimate to any input vector belonging to the 
domain of training. The training process is initiated by 
assigning random initial values to the weights. For the 
training patterns, presentation of the input to the neural 
network produces an output which may be considerably in 
error of the known output, and this error is backpropagated 
through the network to correct the interconnection weights - 
hence the name 'backpropagation network'. The BP network 
can be proven to approximate any function to an arbitrary 
degree of accuracy (Homik et. al. 1989)]. Such networks 
have been used in recent engineering applications to 
construct function approximations (Hajela & Berke 1991, 
Rehak et. al. 1989 ). The principal concerns in trainin~ such 
a network reside in a proper selection (both number and 
distribution) of the training data, and in the specification of a 
network architecture that does not result in an under- or over- 
fitted response surface. In many instances, the time involved 
in training such networks is not trivial. 

The CP network (Hecht-Nielsen 1988) is another approach 
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of providing input-output mapping between given 
parameters, and is a combination of two specific 
architectures• namely the Kohonen and Grossberg models 
(Fig. 3). The data presented to the network is first classified 
as belonging to a specific category by the Kohonen layer of 
neurons. Hence, the interconnection weights to a particular 
neuron are nothing more than an averaged vector of all input 
patterns belonging to the particular category. The second 
layer of neurons (Grossberg layer) generates an output 
corresponding to each cluster identified by the Kohonen 
layer. The accuracy of generalization of this network is 
greatly dependent upon the radius of each cluster - the 
smaller the radius (larger number of Kohonen neurons)• the 
better is the generalization effectiveness. This decrease in 
cluster radius is possible to the extent that the number of 
Kohonen neurons is equal to the number of training patterns. 
In this event, the network functions as a look-up table. A 
clear disadvantage to the approach of decreasing the cluster 
radius is the increase in storage requirements of the network. 

An improvement to the basic approach was proposed by 
(Szewczyk and Hajela 1992). In this modified approach, the 
input vector to be generalized was categorized as belonging 
to more than one cluster, albeit to different degrees. A 
nonlinear averaging scheme was then used to construct the 
generalization for the input vector. This approach was shown 
to be effective in reducing the network size, and in providing 
improvements in the CCP network generalization capability. 
An important feature of this network which is particularly 
relevant in the optimal distribution of sensors in the structure, 
is its pattern completion capability. As shown in Figure 3, 
the CP network allows for the generation of an identity map 
where the input X and output Y are mapped into their 
approximations X' and Y', respectively. If only a portion of 
the input• say a few components of the X or Y vector are 
input• the network generates an approximation to the 
complete output. The use of this capability is explained in 
greater detail in a subsequent section. Application of the CP 
network in function approximation has been examined in 
previous efforts (Hajela & Lee 1994, Szewczyk & Hajela 
1993). 

Another network architecture that was explored in the 
present work is shown schematically in Figure 4, and is a 
combination of the BP and the counterpropagation (CP) 
networks• The motivation behind examining this architecture 
was seated in the generally accepted notion that higher 
quality approximations are generally available from the BP 
network; however, this network has no capacity for pattern 
completion. In those instances where generalization of an 
incomplete input vector is required• the front-end of the 
proposed hybrid combination (the CP network) can be used 
to complete the input vector• and which can then presented to 
the BP network for generalization. 

OPTIMAL SENSOR PLACEMENT 

A moderately large number of sensors were first distributed 
uniformly in the beam structure. Strain readings at these 
locations under predefmed loads, and for a number of 
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Table 7:800 test patterns - CPN (100K-N), Ns<=12 Ep=3.46% 

Table 8 : 8 0 0  test pa t t e rns  - CPN (400K-N), Ns<=12 Ep=0 .48% 

Table 9 : 8 0 0  test pa t t e rns  - H y b r i d  (100K-N), Ns<=12 Ep=6 .16% 

Delamination 

Fig. 1. Beam segmented into four regions due to delamination 

Hidden Layer 

XI ~ Y1 

Fig. 2 Schematic sketch of a backpropagation neural network 
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random variations in characteristics defining the location and 
magnitude of damage, comprised the training set for the 
neural networks described in the previous section. The 
optimization problem in the present work was formulated to 
eliminate those sensors from the initial set that were deemed 
redundant. Such an approach would clearly depend upon the 
definition of redundancy, and in the present work, those 
retained sensors were defined as critical for which the error 
between the network predicted (based on limited strain 
inputs) and known values of location/extent of delamination 
corresponding to a set of test strain patterns, was a minimum. 
This can be mathematically stated as follows: 

Given a set of possible sensor locations M by the set S, find 
s i c S as the positions at which sensors are actually placed 
so as to minimize 

[ N (yaCtual  yp. redicted~2 

l l 
where F(s) is the cumulative error in network prediction for P 
testing patterns, and N is the number of components used to 
describe the damage. In the case of delamination, N=3 and 
corresponds to x and z locations of delamination center, and 
the length of delaminafion. In this phase of the work, a num- 
ber of training patterns were generated which assumed the 
existence of two strain components E x and Txz at each of the 
M locations of the sensors. Both the BP and the CP networks 
were trained to map these strains into the three parameters 
describing the delamination size and location. 

Appl Mech Rev 1995 Supplement 

selected by the optimizer were presented to the CP network; 
this network completed the pattern based on the concept of 
the nearest neighbor classification and yielded an approxima- 
tion to the complete slrain field. The completed pattern was 
then presented to the trained BP network for generalization 
purposes, and the output from this network used to compute 
the error function F(s). The pattern completion capability of 
the CP network would be compromised if the number of sen- 
sors dropped below some minimal levels. A second 
approach was to use the full feed-forward CP network output 
directly in computing the error function F(s). 

GENETIC SEARCH 

GA's can be described as belonging to a general category of 
stochastic search techniques that have a philosophical basis 
in Darwin's theory of survival of the fittest. A set of design 
alternatives which are analogous to a population of a species 
in natural evolution, are subjected to transformation opera- 
tors that allow favorable characteristics of the more fit mem- 
bers of the population to be combined in the progeny 
population. If the measure which indicates the fitness of the 
population is also the desired goal of the design process, suc- 
cessive generations will result in better objective function 
values. The method does not require the use of gradients of 
objective or constraint functions, and is therefore effective in 
problems where this information is unavailable. It works 
with discrete representation of design variables rather than 
the variables themselves, and is therefore ideally suited to 
handling of the 0/1 type variables of the present problem. 

Note that this optimization problem involves M binary vari- 
ables, where a I or 0 value of the variable indicates whether a 
sensor is present or absent at a given location, respectively. 
A solution to this nonlinear integer programming problem is 
difficult to obtain with traditional mathematical program- 
ming algorithms. Consequendy, a genetic algorithm based 
approach (Hajela, 1993) was used in the present work. A 
basic discussion of this approach is presented in a subsequent 
section. The nature of this stochastic search procedure is such 
that it requires a very significant number of functional evalu- 
ations to determine the optimal solution. In the absence of an 
approximation tool, a new analysis would have to be set up 
and executed for every trial arrangement of sensors proposed 
by the optimizer. With trained neural networks available to 
relate measured strains to the state of the structure, the func- 
tion evaluations required by genetic search are very inexpen- 
sive. The important issue was how to use a network trained 
for strain measurements at fixed locations, to describe the 
state of  the structure on the basis of strain measurements 
available at only a subset of the previously defined locations, 
where this subset was specified by the optimizer. 

In general, the BP network can be trained to yield much 
higher quality approximations than the CP network (for the 
same number of training patterns), where the latter functions 
largely as a look-up table with somewhat lesser generaliza- 
tion capabilities. In the hybrid network approach used in this 
work, the strain measurements corresponding to the location 

Central to this approach is the step by which a design is 
coded into a bit string of finite length, and a commonly used 
approach is to represent each variable by a fixed length 
binary number representation of the variable value. In the 
present problem, however, this problem was considerably 
simplified. The design of placing sensors at M possible loca- 
tions can be represented by an M-digit binary string, where 
each digit on the string corresponds to a particular sensor 
location; the presence of a 0 or a 1 indicates the absence or 
presence of a sensor at that location, respectively. Several 
such chromosomal strings are defined to constitute a popula- 
tion of designs. This population of designs is then subjected 
to three basic genetic transformations including reproduc- 
tion, crossover, and mutation. 

The reproduction process is nothing more than biasing the 
population of designs by introducing multiple copies of bet- 
ter designs (measured in terms of objective function value) 
and simultaneously eliminating designs with poorer values of 
the fitness function. Reproduction represents an elitist selec- 
tion process which retains only the most fit members of a 
population for mating; it does not in any way improve or cre- 
am new designs. It is the crossover transformation that 
allows the characteristics of the designs in the population 
pool to be altered, thereby exploring new designs. A simple 
crossover operation (two-poin0 consists of randomly select- 
hag two mating parents from the pool, randomly choosing 
two sites on the genetic strings, and swapping strings of O's 
and l's between two chosen sites among the mating pair. A 
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Kohonen Layer 

Output Layer 

X '  

Fig. 3. Schematic sketch of a counterpropagafion neural network 

Kohonen Layer 

Input Lay 

O 
O 
O 

YI 

Y2 

Ym 

© 

Fig. 4. Schematic sketch of a hybrid (CP-BP) neural network 

q = 1000 N/m m = 1 0 0 N m  

1 X 4 X X X X 13 " 

2 X 5 X X X X 14 .~ p=5 

3 X 6 X  X X X 15 = 

3 4 4 4 4 6 

m = 8 0 N m  
L = 2 5  cm 

)I 

Fig. 5. Loading and sensor arrangement on beam 

X 
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probability of crossover Pc is defined to determine ff cross- 
over should be implemented. The third transformation oper- 
ator, mutation, safeguards the genetic search process from a 
premature loss of 'genetic' information due to reproduction. 
The process of mutation simply involves selecting few mem- 
bers from the population pool, and to switch a 0 to 1 or vice 
versa at a randomly selected mutation site on the chosen 
string. This operation is done with a low probability of muta- 
tion Pro. The process of reproduction, crossover and muta- 
tion are repeated over a number of generations so that all 
designs in the population converge to a design with the best 
fitness value. More details on the use of the GA approach are 
available in Goldberg (1989). 

NUMERICAL EXPERIMENTS 

A hygrothermally curvature stable, unsymmetric beam made 
of Graphite/Epoxy composite laminae of thickness 0.15 ram, 
was used in this study. The layup sequence was as follows: 

[30/-602/_+ 30/ 602/~30 /-602/-+ 30/-602/-30] 

The beam was subjected to 4 distinct load conditions as 
shown in Figure 5 - a distributed transverse load of 1000Nhn, 
a tensile end-load of 5000 N/m, and positive and negative 
bending moments of 100 N-m and 80 N-m, respectively. 
Strains corresponding to each of these load conditions were 
included in constructing the mapping between strains and the 
delamination characteristics; use of multiple load conditions 
was important to make the identification space as unique as 
possible. Assuming that sensors were placed at each of the 
15 indicated sites on the beam, 800 sets of training data 
(strains) were generated in which the x and z location of the 
delamination center varied between 4-20 cms and 0.15-2.25 
mm, respectively. Another set of 15 testing patterns were 
generated for the range of training data, but were not used for 
network training. At each sensor location, five strain compo- 
nents were considered to be critical; e x, Txz, due to transverse 
loading, and E x for the tensile load and the two bending 
moments. This resulted in a total of 75 input strains used to 
relate to the state of the structure. The following numerical 
experiments were performed with this data: 

Case A: The first phase of these experiments was directed 
towards validating the use of ne.~al network based modeling 
of the relationship between strain measurements and parame- 
ters describing the loc~tion/magnitude of the damage. A BP 
network was trained,to within 0.01% training accuracy with 
200 training patterns. Additionally, the larger training sam- 
ple with 800 sets of training data were used to train the CP 
network to comparable levels of resolution. These trained 
networks were also used to construct the hybrid BP-CP net- 
work described in the earlier section. Each of these networks 
was tested for its generalization capacity by using the 15 test 
patterns (strains) not used in training to predict the state of 
damage in the structure. Strain readings from a number of 
sensors were eliminated (all strain components from a partic- 
ular sensor) to simulate the situation of incomplete data, and 
to assess the generalization capability of each network. 
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Case B: This set of numerical experiments were designed to 
study the optimal placement of sensors on the structure. The 
objective was to limit the number of sensors below a speci- 
fied number, by selecting those locations for removing sen- 
sors which had the least adverse effect on the generalization 
capability of the network trained with the original 15 sensors. 
To implement this example, an additional set of 20 test pat- 
terns were developed in the range of network training, and 
used in the optimal sensor location problem; the sum of the 
squares of network generalization error for each of these 20 
patterns was minimized. The optimization problem was 
solved using a genetic algorithm, where the location and 
number of sensors were design variables. A population size 
of 30 was selected for these simulations and probabilities of 
crossover and mutation were selected as 0.8 and 0.02, respec- 
tively. 

DISCUSSION OF RESULTS 

Numerical results corresponding to network testing are sum- 
marized in Table 1, which shows the average error per pattern 
from each of the three network architectures considered in 
this work. A total of 15 test patterns were generated ran- 
domly in the range of variable variation for which the net- 
works were trained. For the case when all 15 sensor readings 
are provided at the input, all three architectures produce min- 
imal errors ranging from 1.36% to 5.81%, with the CP net- 
work doing better due to the fact that a larger number of 
training patterns were used. Strain measurements from the 
outboard sensors were systematically eliminated from the 
input vector to assess the quality of approximations available 
from the network. Quite clearly, the BP network performed 
the worst of the three architectures, and showed no pattern 
completion capabilities. This poor performance continues to 
exist even as the number of training patterns are increased. 

The optimal placement problem was investigated using both 
the CP network and the hybrid network to compute the objec- 
tive function for the optimization problem. In both of these 
networks, the effect of cluster size was investigated by 
changing the number of Kohonen layer neurons in the net- 
work. It is important to emphasize the smaller number of 
Kohonen neurons implies lower data storage requirements, 
and furdaer, faster look-up capabilities during the network 
generalization phase. Smaller number of Kohonen neurons 
also implies a coarser generalization result. Three different 
cases of cluster size were considered, including 100, 400 and 
603 Kohonen neurons. For the number of sensors restricted 
to less than 7, the results of optimal placements using a CP 
network are shown in Tables 2-4. Comparable results of opti- 
mal placement using a hybrid network are summarized in 
Tables 5-7. In each of these tables, a filled-in area in a partic- 
ular column or row represents the presence of a sensor as 
determined by the optimizer. It is obvious from these tables 
that as the number of Kohonen neurons increases, the gener- 
alization capability of both the CP and the hybrid networks 
improves; in this particular case, increasing the number of 
Kohonen neurons to above 400 shows only a marginal 
improvement in the generalization capability. Although 
results of optimal placements are qualitatively similar for the 
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different cases, there are minor differences which may be 
attributed to tile nature of the stochastic search process. 

A similar set of results and conclusions can be drawn with 
respect to another simulation, where a total of upto 12 sen- 
sors were permitted on the structure. The average error per 
test pattern is considerably lower in this case, with a maxi- 
mum of 3.46% error for a case with only 100 Kohonen neu- 
rons. Increasing the number of Kohonen neurons to 400 
drops the average error to less than 0.5%. When using the 
hybrid network, with 100 Kohonen neurons, the average gen- 
eralization error was 6.16%. Note however, that the upper 
bound of 12 sensors was not selected by the optimization 
routine, indicating premature convergence of the optimiza- 
tion process. Results of these simulations are summarized in 
Tables 8-10. , 
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CLOSING REMARKS 

The paper describes an approach in which neural networks 
are trained to relate strain measurements taken during opera- 
tion to damage in composite beams. For the network to be 
most effective in identifying the extent and location of dam- 
age under prescribed loading using a minimum number of 
sensors, the latter were required to be optimally located on 
the structure. The optimal placement problem requires func- 
tion information corresponding to a varying analysis model, 
and a neural network based approximation to this analysis 
was used with success in the present work. A CP network 
and a hybrid CP-BP network were explored as alternatives 
for generating function approximations. The pattern comple- 
tion capability of the CP network is of significance in this 
class of problems, and can also be used to enhance the qual- 
ity of function approximations available from the BP net- 
work (hybrid network). The approach can be extended to 
include an integrated design of instrumented composite 
structures, where the base structure is simultaneously 
designed to enhance the performance of damage detection 
and mitigation strategies. 
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