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A stratified biphase structure can have many mechanical resonance modes due to the existence of 
several length scales in the system. The resonance effect is greatly enhanced if there are periodic 
synchronized multiple driving sources in the structure. For example, a single beam or a linear array 
composite transducers used in medical ultrasonic imaging. Such resonance behavior can be studied 
using an extended transfer matrix technique which we name: multisource T-matrix technique. Using 
this technique we have studied the effects of randomization in a 2-2 composite. It is found that for 
dispersing the pitch resonance the randomization of ceramic spa&g is more effective for low 
ceramic content, while randomization of ceramic width is more effective for high ceramic 
content. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Transfer matrix (T matrix) is one of the tools used in the 
study of wave propagation characteristics in stratified 
structures.‘-’ In all the previous studies using T matrix, the 
Floquet relation must bemused to derive the dispersion rela- 
tion. However, the Floquet relation is valid only for an infi- 
nite system, it is not appropriate to use it for a finite system. 
On the other hand, the transfer matrix technique can be used 
for systems of any size so long as the wave propagation has 
one-dimensional nature. With this consideration recently we 
have introduced a definition of a complex wave number i 
using the T matrix alone so that the dispersion relation can be 
derived for a finite system without the Floquet condition.” 
Using this new definition the development of band structures 
with the increase of the number of cells in the composite can 
be calculated directly. 

In a 2-2 composite transducer, the active components are 
often driven simultaneously. In other words, there are more 
than one wave sources in the structure. For such systems, the 
band structure study, which only deals with single-wave 
propagation, would not be as useful since new resonance 
feature will be produced by the interference of multiwave 
sources. There will be interference between the incident and 
reflected waves, and also among waves of different sources. 

Although of practical importance, theoretical studies on 
such multisource driven system have not been reported in the 
literature. It is the intention of this paper to extend the trans- 
fer matrix technique to address this problem. 

A typical single beam 2-2 composite transducer is shown 
in Fig. 1, where the piezoelectric ceramics are the active 
components of the transducer and the polymers are the pas- 
sive components. When an electric potential is applied to the 
transducer through the top and bottom electrodes, the ce- 
ramic components will either contract or expand to generate 
acoustic signals through piezoelectric coupling, whereas the 
polymer components will play the passive role of damping 
and acoustic coupling agent to a low acoustic impedance 
medium. 
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In reality, the resonance behavior of the system shown in 
Fig. 1 depends on both the position of the driving source and 
the number of the driving sources. For simplicity, we assume 
the system to be linear, so that the principle of superposition 
can be used. 

Following the spirit of the single-source transfer matrix 
technique, we introduce here an algorithm of multisource 
transfer matrix for the study of stratified structures. Quanti- 
tative calculations have been carried out for a 2-2 ceramic- 
polymer composite as shown in Fig. 1 with both periodic and 
random arrangements. We choose the shear wave as an ex- 
ample for this study, other waves can be studied in a similar 
fashion. 

II. TRANSFER MATRIX FOR MULTISOURCE DRIVEN 
2-2 COMPOSITES 

As shown in Fig. 1, when all the ceramic elements are 
being driven in the z direction with an alternating field, shear 
waves are being generated at all the ceramic-polymer inter- 
faces. It can be shown (Appendix) that for a linear system the 
wave functions in the nth cell can be written in the following 
from: 

t 
I alaw I 

cell -1 cell-n Cdl-N 

m ceramic B polymer 

FIG. 1. Structure of a 2-2 ceramic-polymer composite, where a and b are 
the ceramic width and polymer width, respectively, d=a+ 6 is the pitch. 
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&,=Anei(of-kpx)$ Bnei(wt+kpx) (in polymer), il4 

Il/rrc= Cnei(ot-kS) + Dne’(“‘+k3J’) + Eeibjf (in ceramic), 
(lb) 

where k, and k, are the wave numbers of the polymer and 
ceramic, respectively. 

Basically, inside the polymer there is a forward wave 
and a backward wave with their amplitudes given by com- 
plex numbers (Appendix). While inside the ceramic, an ad- 
ditional position-independent vibration has to be included to 
specify the external drive. Among all the coefficients in Eqs. 
(la) and (lb), E is a real number, A,, B, , C,, and D, are all 

Similar to the case of single-wave propagation in com- 
posite, there are two boundary conditions at each interface, 
i.e., continuity and force equilibrium. Using Eqs. (la) and 
(lb), these two conditions can be explicitly written at the nth 
P-C (from polymer to ceramic) interface, i.e., at’x = x,Pc , 

A,e-ikpx~.+Bneikpx~=C 
n 

e -ik,x~.+D 
II 

eikcxLc+E 
9 (2a) 

Z,( -Ane-ikpx~-t B,e n ik n f?) 

=z,( - C,e -ik+gC+ DneikxF)p CW 

complex numbers. or 

where Z, and Z, are the acoustic impedance of the po1yme.J and ceramic, respectively. 
Similarly, we can obtain another relationship at x = xy, the nth C-P (from ceramic to polymer) interface, 

A n-l-1 1 0 i (Z,fZ,)ei(kp-ke)x~ (z’-Z,)e~(kp+ke)x~P 
=- 

B nC1 2z~ (zp-Z,)e-i(kp+k)~~p (zp+Zc)e-i(kp-kc)x~P 

=Pi~:~il[ ;I) +; [ ;;;;;;p). 

(3a) 

CW 

Therefore, the recurrence relation between the vibration am- 
plitudes of the forward and backward waves in the nth and 
(n + 1)th polymer elements is given by 

(4) 

It is interesting to see from Eq. (4) that the recurrence 
relation has similar features as the one for a single-source 
situation, in fact, the first term on the rhs of Eq. (4) is just the 
single-source transfer matrix. There are two additional terms 
proportional to the driving magnitude E, which will vanish 
upon the elimination of these internal vibration sources. 

Once the vibration in the first cell is known, the ampli- 
tude in the nth cell can be calculated repeatedly using Eq. 
(4): 
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(2n-m) matrix 

-mi:‘ll( ;;:;;;J  +( ‘:s) , 
where 

E i.Qx f;F-,,, X” 
E PC 

2” 
-%%,-, 

i 

E . 
- e’kPxL 
2 

E 
xe 

-ikpx~~-,,, 

if 2n-m is odd 

if 2n-m is even. 

The vibration pattern for the ceramic elements can be 
calculated using Eq. (3a). 

III. GLOBAL COORDINATES VERSUS LOCAL 
COORDINATES 

Equation (5) could be simplified by using local coordi- 
nates if the structure is periodic. The idea is based on the fact 
that each wave function I&(X) is valid only in a spatial 
interval of (n-l)d<x<nd--a, where a is the width of 
ceramic and d = a + b is the period with b being the width of 
the polymer. 

Let us introduce a local coordinate 

y=x-(n- 1)d G-4 
for the forwarding wave and 

y’=x-(nd-a) O ’b) 

for the backward wave so that each wave function is consid- 
ered to be generated at the nearest interface of the position of 
interest X, then the transfer matrix Eq. (5) can be greatly 
simplified. 

Using these local coordinates, we can rewrite the wave 
functions Eqs. (la) and (lb) in the following form: 

~np=~nei{ot-kpCx-(n- I)14 

+j ,i{~t+kpC~-W--a)ll n (in polymer), (84 
ti =i7n,i{ot-k,[x-(nd-a)]}+~~=~[~t+kc(x-nd)] 

nc 

+ Eeiot (in ceramic), (W 
where 

(5) 

(6) 

jj =B =ikp(nd-a) 
n n 3 @b) 

(9c) 

compared with Eqs. (la) and (lb). 
The physical meaning of Eqs. (8a) and (8b) is very clear. 

Each polymer-ceramic interface now becomes the origin of 
the acoustic source whose strength is the superposition of all 
the waves propagating inside the structure. Again, we must 
note that the coefficients are all complex numbers except E. 
It can be shown that the recurrence relation becomes much 
simpler using the local coordinate representation: 

00) 
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,-VJ[4z,z, cos(k,a)-2i(Zz+Zi)sin(k,a)] -2i(Z,2-Zijsin(k,aj 

2i(Zz-Zi)sin(k,aj eik~b[2i(Z~+Z~)sin(k,a)+4ZCZ, cos(k,a)l i ’ 

[VI=; i 
1 -cos(k,ajfi $ sin(k,a) 

P 

\ [ 
.zikPb 1 - cos(k,a)- i 2 sin(k,a) 

P I 1. 
Note that both [Tl and [VI are independent of n. One now 
only needs to perform the T-matrix calculation once. The 
vibration in the nth cell can be easily derived if vibration in 
the first cell is known. For instance, the polymer vibration 
recurrence relation now becomes 

[;I;;) =Irl”(; j +[[T]“-‘+[T]“-2+*.*+[T] 

+[~lICVl=[Tln ;; i i + [CZI - [Tl[[~l 

-PI]-‘[VI, (13) 

where [I] is the unit matrix and the exponent - 1 represents 
the matrix inversion. The above recurrence relation can be 
further simplified to become 

(14) 

(15) 

Equation (14) is much simpler for numerical calculations 
compared to Eq. (5) which involves explicitly the coordi- 
nates of all the cells. 

IV. DAMPING EFFECTS 

In a ceramic-polymer composite transducer, high damp- 
ing in the polymer is desirable for reducing the ringing down 
to increase the resolution and the bandwidth of the trans- 
ducer. We can study this situation by introducing complex 
wave numbers and acoustic impedance when the multisource 
T-matrix technique described in Sets. II and III is used. 

Let CY,, and q represent the damping constants of the 
polymer and ceramic, respectively, the damped waves may 
be written in the following form: 

Gnp=Ane -apxei(ot-k,,x) 

-l-B .cV&(~~+~P~) 

+,,,= C,,,‘f 

(in polymer), (16) 
a;xei(ot-k~x)I_Dnea,x,i(ot+k~) 

+ Eeiot (in ceramic). 

If we introduce two complex wave numbers 

t$,=kp-iap, 

(17) 

(18) 

(11) 

w 

I 

~c=kc-iac, (19) 

Eqs. (15) and (16) will have the same format as that of Eqs. 
(1 a) and (1 bj. In addition, we can generalize the definition of 
the acoustic impedance to include an imaginary part, 

kpp ~gm-- ffp VP 
w =ZP-i - w ’ 

k, vc 
&.-.- 

CY,VC 

cd 
=Z,-i - 

w . 

(20) 

01) 

All the derivations in Sets. II and III can be duplicated for 
the damped system with these complex wave numbers, &, 
and k”, , and the complex impedance, ZP and Z, . The results 
are the same except replacing the real, kP , k, , ZP , and Z, by 
their complex counterpart. The resonance magnitude will be 
greatly reduced as we will see from the calculations below. 

V. RESULTS AND DISCUSSIONS 

In a composite transducer, the polymer phase can be 
chosen to be lossy in order to reduce the level of spurious 
resonance from the shear waves, while the damping in ce- 
ramic is relatively small and have little flexibility for adjust- 
ment. For simplicity damping is introduced only in the poly- 
mer (cr+=O) in the calculations. The damping factor in our 
calculation is assumed to be a linear function of frequency 

aP=ao(5.41 X 10-5f-20.4~9)lm, G9 
where f is the frequency in Hertz and cr, is an adjustable 
factor. The coefficients were so chosen that when ae=5, the 
rhs of Eq. (22) divided by the conversion factor ln 10=2.3 
will give the ~yr, value in dB. 

Most of the composite transducers operate in the thick- 
ness mode, i.e., resonance in the z direction shown in Fig. 1. 
Because the pitch scale (the period) d is usually made very 
small in conventional transducer design in order to make the 
pitch resonance will be at a much higher frequency than the 
thickness mode. The transducer will not function well when 
the spurious transverse modes occur. 

In order to study the relevant shear modes in a multi- 
source system, we define an average amplitude of the ce- 
ramic components M as a measure to characterize those rel- 
evant shear modes, 

M=;t / 
n 1 ceramicl *cldx, (23) 
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FIG. 2. Frequency dependence of the average ceramic vibration amplitude 
for shear wave propagation in a multisource driven system. Polymer damp- 
ing is chosen at ~yo=2. 

where the integration is on the ceramic element only to ac- 
count for the piezoelectric effect. N is the total number of the 
cells in the composite. 

To be more general, M is normalized by the magnitude 
of the applied drive jE[ , and the frequency is normalized by 
the half waveIength shear wave resonance frequency of the 
polymer element, 

rvP 
tXg=-, 

h 

where vP is the shear acoustic velocity of the polymer. 
Figure 2 shows the frequency dependence of M for a 50 

cell 2-2 composite with the polymer width b =0.352 mm and 
the ceramic width a =0.2732 mm (44% ceramic by volume). 
The physical properties of ceramic and polymer used for the 
calculations are given in Table I. Figure 2 shows three peaks 
of M, corresponding to the pitch resonance, its thiid har- 
monic, and a higher shear resonance. Other peaks at much 
lower frequencies related to the overall size of the composite 
structure have much smaller magnitude and therefore ig- 
nored here. 

The most pronounced low-frequency peak is the one 
near wo, or o/we-1, corresponding to the pitch resonance, 
we call it the main peak. In transducer design, this main peak 
is the most interesting one which determines the frequency 
limit for the composite transducer. In what follows we will 
devote most of the effort to study this main peak. 

In order to see the physical meaning of those peaks in 
Fig. 2, we have calculated the space profile and phase varia- 
tion inside the composite at these corresponding peak fre- 

TABLE I. Material properties for the ceramic and polymer constituents of 
the 2-2 composite. 

Ceramic: c&=2.4 (10” N/m’), p,=7800. 
Polymer: &=I.59 (Id” N/m*), p,=l160. 
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FIG. 3. Space prolile of the vibration amplitude and phase for a 50 cell 
composite at the main peak frequency of o= 1.056%. 

quencies. Figure 3 is the space profile of a 50-cell composite 
at the main peak frequency of 1.056~~. We can see clearly 
that the pattern corresponds to the full wavelength pitch reso- 
nance with the ceramic and polymer elements vibrating 180” 
out of phase. It is important to note that this is the first 
excited mode in this structure due to the symmetry of the 
driving force applied to the composite, whereas in the single 
drive analysis, other nonpiezoelectric active modes will also 
appear.” The second important point that should be noted in 
Fig. 3 is the strong edge effects, which are unavoidable in a 
finite system. The edge effects can be seen more clearly in 
Fig. 4 which displays the space profile and the phase va.ria- 
tion of several composites made of 6, 10, and 50 dells. Both 
the magnitude and the phase are affected by the composite 
size. As a consequence, the main peak of the average mag- 
nitude also shows some degree of size dependence, both the 
magnitude and the peak frequency are smaller for compos- 
ites with lesser cells, but these values saturate after 
N>lOO.” 

The amplitude of the main peak is affected strongly by 
the damping in the polymer phase as shown in Fig. 5. The 
peak value M,, changes drastically with the increase of the 
damping coefficient CY~ defined in E?q. (22). This suggests that 
lossy polymer can play an important role in reducing the 
effects of the pitch resonance. 

VI. EFFECTS OF RANDOMIZATION 

Considering the fact that the main peak is from the pitch 
resonance due to the periodic nature, it should be reduced or 
eliminated if the periodicity is destroyed.‘2-15 There are two 
kinds of fabrication processes in making a composite, one is 
placing ceramic elements of the same size with certain spac- 
ing in between and then’ filling in the gaps with polymer 
resin; the other is to dice a solid ceramic to create the kerfs 
and then filling in those kerfs with polymer. The former has 
a fixed ceramic dimension, or constant a, while the latter has 
a constant polymer width b (saw blade thickness). Therefore, 
randomizing a would be easier for the latter fabrication pro- 
cess and randomizing b would be easier for the former fab- 
rication process. Using the multisource T-matrix techniques 
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FIG. 4. Comparison of the vibration amplitude and phase for composites 
consisting 6, 10, and 50 cells. Only the first 10 cells were plotted for the 50 
cell composite. 

described in Sec. II, we have studied the effects of random- 
ization for the multisource driven system in both cases of a 
random and b random. 

Figure 6 shows the effects of randomizing ceramic spac- 
ing b. It is expected that the randomization of b will have a 
strong effect because the main resonance peak shown in Fig. 
2 appears to be close to the polymer half-wavelength reso- 
nance frequency. 

The randomized ceramic spacing b, is chosen according 
to the following formula: 

b,=( 1 -X)bo+XC,ri, C’,=% 
Zi ri’ (25) 

where b, is the arithmetic mean of the ceramic spacing (or 
polymer width), N is the total number of cells, ri (i 
= 1 , . . . ,N) is a set of random numbers between 0 and 1, and 
x is the percentage of randomization which is defined to be 
the variable percentage of bi . We have studied the cases of 
,y=5%, lo%, 20310, and 50%. 

As shown in Fig. 6, the resonance nature changes dra- 
matically with the introduction of randomness. The magni- 
tude of the main resonance peak is reduced by 40% with 
only 5% randomness. At the same time, there are more small 
bumps created in the vicinity of the original main peak. 
Theoretically speaking, more randomness in the structure is 

h 
Fs 
‘;; 15 
‘$ 
8 

0.8 0.9 1 1.1 1.2 1.3 1.4 

Frequency (o/we) 

FIG. 5. Effect of damping on the main resonance peak. a0 are chosen to be 
2, 5, and 8, respectively. 

better in terms of dispersing the main resonance peak, but the 
effect is the strongest within the first 20% randomness 

We also found that the influence of randomizing b on the 
main peak becomes much weaker for high ceramic volume 
percent composites for which the major contribution to the 
main low-frequency resonance will come from the ceramic. 
On the other hand, randomizing a has different effects as 
shown in Fig. 7, where the results were calculated for a com- 
posite with 45% ceramic. When the ceramic percentage is 
less than 60% ceramic volume content, the main low- 
frequency peak is reduced but still relatively strong even for 
50% randomness of a. Interestingly, the shape of the peak 
remains practically the same. However, when the ceramic 
percent is more than 70%,. the shape of the main peak will be 
destroyed through randomizing a. Figure 8 shows the calcu- 

8--’ 
G-7 
E 
.z 6 
f! 
g5 

0 

Randomness 

0.6 0.8 1 1.2 1.4 
Frequency (awO) 

FIG. 6. Effects of randomizing b for a composite with 45% ceramic volume 
‘content. The percentages of randomness are 546, lo%, 202, and 50%, re- 
spectively. The effectiveness decreases with the increase of ceramic content. 
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FIG. 7. Effects of randomizing a for a 45% ceramic composite. The per- 
centages of randomness are 5% IO%, 20%, and 50%, respectively. The 
influence on the low-frequency main peak is much smaller compared with 
randomizing b as shown in Fig.. 6. 

lated results for a composite contains 80% ceramic. We can 
see that the effect of randomizing a is much larger compared 
with the results shown in Fig. 7. 

VII. SUMMARY AND CONCLUSIONS 

We have derived the recurrence relation for the vibration 
amplitude among different cells in a multisource driven 
stratified structure using an extended multisource T-matrix 
technique. Ceramic-polymer composites with 2-2 connectiv- 
ity is a perfect example of such situation. The new criteria 
Eq. (23) introduced h ere can directly identify the relevant 
shear modes that affect the thickness mode operation. Analy- 
ses show that the lowest shear mode, corresponding to the 

0.65 
Frequek$(w/a,) 

0.75 

FIG. 8. Effects of randomizing n for a composite with 80% ceramic volume 
content. The percentages of randomness are 58, lo%, 202, and 50%, re- 
spectively. Note this peak does not appear for a low ceramic content com- 
posite, for which the lowest peak is near e+, as shown in Fig. 6. 

pitch resonance, is the most important mode which couples 
strongly to the thickness resonance in a periodic composite 
transducer. 

The pitch resonance can be destroyed by randomization. 
For moderate ceramic volume content (60% or less), the 
main peak is primarily linked to the spacing between the 
ceramics. In this case, we found that randomizing the spac- 
ing between ceramics, i.e., b is much more effective than 
randomizing a, the ceramic width. On the other hand, for 
very high percentage ceramic content (70% or more), the 
effect of randomizing a becomes more effective than ran- 
domizing b since the main low-frequency peak is tied more 
to the ceramic dimension. These results can provide useful 
guidelines for making random composite transducers. 
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APPENDIX 

Assuming there are m acoustic sources located at 
-al,-a,,...,-a, sending waves to forward direction, 
then the wave form at position x is the linear superposition of 
these waves: 

~[,)=Ale’[~‘-k(~+~~)~+A2,i[wt-k(~+~2)~+. . . 

+A 
m 

ei[Ot-k(X+U,)]=[Ale-ikU,+A,e-ikUl_+. . . 

+A,e-ika+ i(Wt-kX)=A&il’-kX) 
9 (Al) 

where 
A=A,e-ikal+A2e-ika2+...+~,e-ika, 

is a complex number. Therefore, both the forward and back- 
ward waves can be written as a simple wave form even for 
the multisource system except the amplitude is now a com- 
plex number. 

For the ceramic elements the wave function also should 
include the uniform driving of the external field. 
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