
A study of sharing definitions in thread-local heaps
(Position Paper)

Matthew Mole Richard Jones Tomas Kalibera
University of Kent

Abstract
With the advent of larger heaps, multi-core processors and
NUMA architectures, garbage collection scalability is ev-
ermore important. Shared memory is an important bottle-
neck and stress on shared memory can be reduced by using
Thread-local heaps. Thread-local heaps provide a promising
solution to this challenge, distinguishing between local ob-
jects that do not escape their allocating thread and shared
objects that do. This allows a new type of collection that
requires a single thread’s co-operation and affords more in-
telligent object placement in the heap. We examine options
for their design and suggest a new design.

1. Introduction
Multi-core processors are pervasive and microprocessor de-
signers continue to increase the number of cores. Memory
bandwidth has not been able to keep up with advances in
multi-core technology, and so becomes the limiting factor in
performance [10]. With such ‘memory wall’ issues, scala-
bility of application and garbage collection is more of a con-
cern. Reducing cache-coherency traffic, and fetches/writes
to main memory from cache, where possible, eases the bur-
den of the memory wall.

One way of reducing cache-coherency traffic is to reduce
the repeated trading of cache lines between cores. If two
objects used by two different cores reside on the same cache
line, each core will continue to fight over rights to write to
the cache line. This is one of the causes of false sharing.

Some memory traffic is taken up with cache lines contain-
ing dead objects being flushed back to main memory (known
as the ‘allocation wall’) [10]. High frequency garbage col-
lection in the cache detects dead objects and reclaims and
reuses memory before dead objects are written back to main
memory.

If we allow application threads to perform some garbage
collection work, there is a chance that objects that require
processing will already reside in cache, saving a main mem-
ory fetch operation. It is believed that whilst currently neg-
ligible, the benefits become more pronounced with high fre-
quency GCs.

Other garbage collectors attempt to address scalability
by allowing multiple garbage collector threads to share the
GC workload (a parallel collector). Many such collectors
require all application threads to pause so that they do not
change the heap whilst collection is in progress, or create
new objects that the collector might not know about. Without
this protection, objects could be incorrectly deemed not live
and thus reclaimed. This pause is known as ‘stopping the
world’.

As collection is divided in many phases, such as deter-
mining the set of live objects and reclaiming memory, a
‘stop-the-world parallel’ collector requires many barriers to
ensure that all collector threads progress through phases to-
gether. Thread scheduling must be considered carefully - it
is possible that the operating system can deschedule collec-
tor threads delaying the descheduled thread from reaching
the synchronisation barrier. Thread local heaps will suffer
fewer ‘Stop-the-world’ scheduling delays with the introduc-
tion of single thread collections and the reduction of ‘Stop-
the-world’ collections.

There are many designs of thread-local heaps, each ad-
dressing issues identified above [1, 3, 4, 6, 7, 9]. Such
designs typically provide each thread with its own pri-
vate heaplet alongside a global heaplet, shared amongst all
threads. This design allows for smaller ‘minor’ collections,
where a single thread is able to collect its local heaplet with-
out interfering with (and interference from) other threads.

The designs differ in how they classify objects and this
has an impact on how issues are addressed. For example,
Domani et al.’s design does not address the false sharing
issue [5]. We compare designs and how they propose to solve
problems mentioned earlier.

2. Thread-local heap partitioning
Managed run-times remove the burden of memory manage-
ment from the programmer. Tracing garbage collectors pre-
serve objects that are reachable from a set of roots, and re-
claim all others. An object A is said to be reachable if it is
possible to follow a chain of references, starting from the
program roots (e.g registers, stacks and static fields), to A.
Such objects are called live objects. Liveness of every object

1 2012/5/17



can be determined by tracing — starting from the program
roots and visiting every outgoing reference of every unvis-
ited object until all reachable objects are visited. Objects that
have not been visited can be safely reclaimed.

A thread-local heap is the physical or logical partition-
ing of the heap into many per-thread local heaplets and (of-
ten) a single shared heaplet. Objects are usually allocated
into thread-local heaplets. Some designs may allocate di-
rectly into the shared heaplet. An object is logically local, if
currently used by a single thread. It is possible for shared ob-
jects to be considered logically local. Once an object is deter-
mined to be shared, it is always considered shared, even if it
becomes logically local. Each thread has a monopoly on the
thread-local heaplet assigned to it. With the heap partitioned
this way, we achieve the segregation of objects belonging to
different threads, with the exception of the shared heaplet,
which holds objects shared between multiple threads.

To preserve each thread’s monopoly over its assigned
heaplet, two invariants must be preserved:

1. A reference from an object in the shared heaplet to any
thread-local heaplet (shared-to-local reference) is disal-
lowed.

2. A reference from an object in a thread-local heaplet to a
different thread-local heaplet is disallowed.

Figure 1 shows the partitioning of the heap with the three
permitted types of reference: between objects in a local
heaplet, between objects within the shared heaplet and from
a local heaplet to the shared heaplet.

We consider two types of garbage collection: minor and
major. A minor collection is the collection of objects in a
single thread-local heaplet. It requires the co-operation of a
single thread (ignoring finalisation) , as only that thread will
be able to access objects in the local heaplet. Whilst a minor
collection is taking place, other threads can continue execu-
tion safely or perform their own minor collection. A major
collection involves collection of all thread-local heaplets and
the shared heaplet(s). The efficiency of thread-local heaps re-
lies on the assumption that most objects are used by a single
thread. If more objects are shared, these major GCs will be
more frequent and the benefits of thread-local heaps are lost.

3. Sharing Definitions
With the heap structure outlined, we must determine where
objects are to be allocated. Object location policy is depen-
dant on programming language used and whether static or
dynamic analysis is available.

When an object is used by multiple threads it must be
treated as shared, however it is always safe (and sometimes
desirable) to regard other objects as shared.

There are many definitions of shared objects, ranging in
precision and cost of preserving the invariants. We present
three such definitions starting with the least precise first. For

Shared Heap

T1 T2 T3

Figure 1: Thread-local heap partition with three threads.
Arrows denote the three types of permitted reference.

maximum benefit of locality and scalability, we wish to keep
as many objects in thread-local heaplets as possible.

Sharing by potential reachability. A shared object is any
object that could ever potentially be reached by multiple
threads. This sharing definition is imprecise — we can deter-
mine the consequences of following each execution branch,
but cannot predict the branch taken during execution nor
necessarily the dynamic type of objects. The major disad-
vantage of this definition is that if there is a single execution
branch that causes an object to become shared then the ob-
ject is deemed shared across all execution branches.

Steensgaard demonstrated this “sharing by potential reach-
ability” in Java, performing escape analysis statically on
program source-code [9]. Steensgaard’s analysis is a simple
extension of Ruf’s flow-insensitive escape analysis [8].

At the end of the analysis, objects are deemed definitely
local or potentially shared. Allocation is specialised to allow
allocation of thread-local objects, and objects deemed at risk
of being shared, differently.

Jones et al. [6] refined a Steensgaard analysis with sup-
port for partial program analysis and dynamic class loading.
With dynamic class loading, classes can be loaded at run-
time, meaning when a method invocation takes place on a
target object, it could be impossible to know the type of the
target object and which method would actually be invoked.
Without knowing what the invoked method does to objects,
we cannot say whether the method causes passed parame-
ters to escape. In other analyses, the worst case is assumed
— and parameters are deemed shared. Jones et al. instead
opt for the best case: assume the parameters remain local,
but be prepared for the possibility of them becoming shared.
A new thread-local region is created per thread to house ob-
jects, where the type is ambiguous, known as ‘optimistically
local’ objects. When a new class is loaded, it is checked to
see if it causes any optimistically local objects to become
shared. Jones et al. also has the advantage of not requiring
‘stop-the-world’ pauses.

2 2012/5/17



an
tlr

6

av
ro

ra
9

bl
oa

t6

ec
lip

se
6

fo
p6

hs
ql

db
6

jy
th

on
6

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

xa
la

n6

xa
la

n9

% Shared−Used (Number)
% Shared−Reachable (Number)
% Shared−Used in (Size)
% Shared−Reachable (Size)

Percentage of Shared Objects of All Allocated

O
bj

ec
ts

 U
se

d 
an

d 
R

ea
ch

ab
le

 b
y 

M
ul

tip
le

 T
hr

ea
ds

 [%
]

0

10

20

30

40

50

60

Figure 2: Percentage of all objects ever used by (shared-used) or reachable from multiple threads (shared-reachable).

an
tlr

6

av
ro

ra
9

bl
oa

t6

ec
lip

se
6

fo
p6

hs
ql

db
6

jy
th

on
6

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

xa
la

n6

xa
la

n9

% Shared−Used Reads
% Shared−Reachable Reads
% Shared−Used Writes
% Shared−Reachable Writes

Percentage of Shared Reads and Shared Writes

A
cc

es
se

s 
to

 S
ha

re
d 

O
bj

ec
ts

 [%
]

0

5

10

15

20

25

30

Figure 3: Percentage of reads from and writes to objects that were ever used by multiple threads (shared-used) or objects that
were ever potentially reachable from multiple threads (shared-reachable).

Sharing by actual reachability. A more precise definition
of sharing is to treat only objects actually reachable from
shared objects as shared. Whenever an object reference write
causes an object to be reachable by multiple threads, its tran-
sitive closure is also treated as shared. This has the advantage
of being easy to implement. Figure 4 shows a conceptual
thread-local heap, with two threads. Thread 1 causes an ob-
ject to escape by assigning it to a static field. Thread 2 has
now read that reference and created its own reference to that
object. Owing to these multiple references, all objects reach-
able from the escaped object are now shared.

Domani et al. [5] is such an design for Java. All objects
are allocated local with the exception of special types of
objects that are always shared1.

Dynamic analysis is used to detect when objects become
shared. A write barrier (a mechanism to intercept writes and
perform an action before the write actually takes place) is
used to detect shared-to-local stores. If one is detected, all
objects reachable from that target object are treated as shared
throughout the remaining duration of execution. Thus, dy-
namic analysis differs from static analysis, by imposing an
overhead on program execution, taking actions if certain ex-
ecution branches are taken. This allows ‘sharing by actual

1 Threads, for example, are considered shared and any values passed to a
thread on creation should also be considered shared.

3 2012/5/17



reachability’ to be more precise than ‘sharing by potential
reachability’. Domani et al. discovered that the write barrier
has only a small impact on performance — a 2% overhead.
Whilst a check must be performed for every reference write,
every object is only deemed to be shared at most once.

Rather than local and shared objects being separated in
distinct spaces, objects are allowed to intermingle in the
heap, with shared status recorded in a bitmap. Shared objects
are not moved into a shared heaplet but can be safely ig-
nored (and not reclaimed) during a local collection. A sepa-
rate compaction mechanism is required to remove long-lived
shared objects from local heaplets and move them to a shared
heaplet.

Anderson design is another that uses ‘sharing by actual
reachability’ [1]. When an object escapes, we effectively
treat the whole of the thread-local heaplet that object be-
longed to as reachable from shared objects. This has the de-
sirable effect of keeping the thread-local heaplet small, but
has the undesirable effect of increasing the amount of work
each minor collection performs. Anderson’s design goal is to
address the allocation wall problem by keeping thread-local
heaplets in cache. Very frequent garbage collection can be
performed in the cache, and memory reclaimed for new ob-
jects without needing to flush dead objects to main memory
only for memory to be reused for newly allocated objects.
This design relies on the assumption that most young ob-
jects die shortly after allocation and that invalidating shared-
to-local writes are infrequent.

Sharing by actual usage. ‘Sharing by actual usage’ deems
objects actually used by multiple threads as shared. An ob-
ject may be reachable from a shared object, but will only be
considered shared itself if it also is used by multiple threads.
This results in the most objects remaining local out of all
definitions given here.

Marlow et al. [7] uses this definition of sharing for their
thread-local design for Haskell. Haskell has immutable ob-
jects, mutable thunks (unevaluated code) and other rarely
occurring mutable objects. Marlow et al. allows shared-to-
local references. A write barrier is used to track and remem-
ber these references and they are treated as roots for minor
collections. A read barrier is also required to detect exactly
when a different thread from the allocating thread attempts
to dereference a shared-to-local pointer. When this happens
the thread performing the read asks the allocating thread to
promote the target object and blocks until this is done. How-
ever, Marlow treats mutable non-thunk objects differently —
they cannot move and the transitive closure of an object must
be marked shared if a shared-to-local reference write occurs.

Marlow found that his design does not suffer from the
allocation wall problem [7].

Different language-based assumptions mean the Marlow
collector may not be directly applicable to Java — mutable
objects are prevalent. Also, conditional read barriers are
expensive [2] and Marlow exploits the fact they are already

in place in the Glasgow Haskell Compiler2. They are usually
not present in Java.

4. Evaluating sharing by actual reachability
We measured the difference in the number and volume of
objects ‘shared by actual reachability’ and ‘shared by ac-
tual usage’. Our goal was to determine whether there was
a significant difference in the number of objects considered
shared with these two sharing definitions. We modified Jikes
RVM3, a meta-circular Java Virtual Machine, to determine
the set of objects actually used by multiple threads and to ap-
proximate ‘sharing by reachability’. We instrumented every
reference read (from heap and statics), locking, comparison
and write (to heap and statics) to record the set of threads that
actually used objects. We instrumented garbage collection,
frequently running mock traces for every thread, to record
the set of objects that were reachable from each thread. At
the end of program execution, we can determine which ob-
jects were ‘shared by actual reachability’ and ‘shared by ac-
tual usage’.

It was found that:

• ‘Shared by actual reachability’ is a gross over-estimate of
the actual sharing taking place (Figure 2).

• Shared objects tended to be larger and live longer than
local objects.

• Objects found to be ‘Shared by actual reachability’
tended to be reachable from a static field.

• Shared objects were ‘hotter’: read and written to more
frequently than local objects (Figure 3).

5. Proposed thread-local heaps in Java
Based on measurements above, we propose a thread-local
heap design exploiting ‘Sharing by actual usage’ for Java. If
so few objects are actually used by multiple threads (Figure
2), then sharing-by-reachability’s promoting the whole tran-
sitive closure is promoting objects unnecessarily. We chose
not to use ‘sharing by potential reachability’ because it is
imprecise. As promotion to the shared heaplet is not with-
out cost, we wish to eliminate this effect. When objects are
promoted to the shared heaplet, their reclamation is delayed,
as major collections are less frequent than minor collections.
Our design will support adaptive tuning of the overhead of
instrumentation in a scalable way - either promoting a single
object at a time, or a set of objects.

A ‘sharing by actual usage’ thread-local heap design re-
quires a mechanism for detecting an escaping object and an-
other mechanism to detect when an escaped object actually
has been used by multiple threads.

A write barrier will be used to detect objects escaping —
just as with sharing-by-actual-reachability. Only the thread

2 http://www.haskell.org/ghc/
3 http://www.jikesrvm.org/

4 2012/5/17



Figure 4: Objects determined as shared (filled) versus ob-
jects determined as local (white) according to ‘Sharing by
actual usage’ and ‘Sharing by actual reachability’. In both
examples, T1 escaped object K and T2 wrote a reference to
K.

(a) Sharing by actual usage

T1 T2

K

(b) Sharing by actual reachability

T1 T2

K

that allocated an object can cause it to escape. When the
write barrier detects a shared-to-local reference is being cre-
ated, we promote the target object. This now invalidates one
of the thread-local invariants: shared-to-local references now
exist. Rather than correct this straight away, we wager that
these references will not be followed by multiple threads. If
our gamble does not pay off, and multiple threads do fol-
low the references, we need to recover and promote target
objects to the shared space.

We propose memory protection to trap dereferences of
these shared-to-local references. Although memory protec-
tion is very expensive, the numbers of objects actually used
by multiple threads is low: the hope is that memory protec-
tion page faults will rarely be triggered, and therefore the
total cost imposed on the program should be low. The cost
can be tuned by being imprecise and promoting more objects
at once - a subset of what ‘sharing by reachability’ does. By
promoting more objects at once, we potentially reduce the
total number of page faults at the cost of promoting some
logically local objects.

When an escaping write occurs, we read protect the page
where the source object resides. If another thread tries to vi-
olate the memory protection by reading the page, the object
is assumed to be actually used by more than one thread and
promoted to the shared heap. All targets of shared-to-local

shared heap

local heap

S

P

Q R

Figure 5: The conceptual view of the heap once a shared-
to-local write (S.f → P ) has occurred. Object P remains
local until another thread attempts to dereference S.f and
triggers a page fault. P would then be promoted and memory
protection set for P.

references originating from that page will need to be pro-
moted. We then need to set memory protection on the page
of any newly promoted objects with references to the local
heap, as we have created more shared-to-local references.

Figure 5 shows an example scenario. The allocating
thread has caused object P to escape. Memory protection
is set in case another thread tries to dereference S. If a page
fault is triggered, P would be promoted to the shared heap,
the memory protection on S removed and memory protec-
tion set on P .

6. Conclusion
We have given an overview of thread-local heaps and how
they aim to achieve better scalability. Scalability is becom-
ing more of a consideration with multi-core processors.
Thread-local heaps and thread-local collection aims at im-
proving scalability where the shared memory is the bot-
tleneck. Thread-local objects are segregated from shared
objects, with key invariants to ensure that segments of the
heap remain unique to the threads they were assigned to,
and ways to protect against violations of these invariants.
We have discussed the variety in thread-local heap designs,
specifically on determining what remains local and what is
treated shared. We believe that to enhance thread-local heap
effectiveness, as many objects as possible need to be kept

5 2012/5/17



in thread-local heaplets. We propose a thread-local design
for Java — using ‘Shared by actual usage’ as a definition
for determining which objects are promoted to the shared
heaplet. We are not aware that this has been done before for
Java and believe that memory protection is a unique solu-
tion to identifying objects that are actually used by multiple
threads.

References
[1] Anderson, T.A.: Optimizations in a private nursery-based

garbage collector. In: Proceedings of the Ninth International
Symposium on Memory Management. pp. 21–30. ACM,
Toronto, Canada (Jun 2010)

[2] Blackburn, S., Hosking, T.: Barriers: Friend or foe? In: Pro-
ceedings of the Fourth International Symposium on Memory
Management. pp. 143–151. ACM Press, Vancouver, Canada
(Oct 2004)

[3] Doligez, D., Gonthier, G.: Portable, unobtrusive garbage col-
lection for multiprocessor systems. In: Conference Record of
the Twenty-First Annual ACM Symposium on Principles of
Programming Languages. pp. 70–83. ACM Press, Portland,
OR, USA (Jan 1994)

[4] Doligez, D., Leroy, X.: A concurrent generational garbage
collector for a multi-threaded implementation of ML. In: Con-
ference Record of the Twentieth Annual ACM Symposium
on Principles of Programming Languages. pp. 113–123. ACM
Press, Charleston, SC, USA (Jan 1993)

[5] Domani, T., Kolodner, E., Lewis, E., Petrank, E., Sheinwald,
D.: Thread-local heaps for Java. In: Proceedings of the Third
International Symposium on Memory Management. pp. 76–
87. ACM Press, Berlin, Germany (Jun 2002)

[6] Jones, R., King, A.: A fast analysis for thread-local garbage
collection with dynamic class loading. In: 5th IEEE Inter-
national Workshop on Source Code Analysis and Manipula-
tion. pp. 129–138. IEEE Computer Society, Budapest, Hun-
gary (Sep 2005)

[7] Marlow, S., Peyton Jones, S.L.: Multicore garbage collection
with local heaps. In: Proceedings of the Tenth International
Symposium on Memory Management. pp. 21–32. ACM, San
Jose, CA, USA (Jun 2011)

[8] Ruf, E.: Effective synchronization removal for Java. In: Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 208–218. ACM
Press, Vancouver, Canada (Jun 2000)

[9] Steensgaard, B.: Thread-specific heaps for multi-threaded
programs. In: Proceedings of the Second International Sym-
posium on Memory Management. pp. 18–24. ACM Press,
Minneapolis, MN, USA (Oct 2000)

[10] Zhao, Y., Shi, J., Zheng, K., Wang, H., Lin, H., Shao, L.: Allo-
cation wall: a limiting factor of java applications on emerging
multi-core platforms. In: Proceedings of the Twenty Fourth
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. pp. 361–376.
ACM Press, New York, NY, USA (Oct 2009)

6 2012/5/17


