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ABSTRACT
We present algorithms for fast quantile and frequency estimation in
large data streams using graphics processors (GPUs). We exploit
the high computation power and memory bandwidth of graphics
processors and present a new sorting algorithm that performs ras-
terization operations on the GPUs. We use sorting as the main
computational component for histogram approximation and con-
struction of ε-approximate quantile and frequency summaries. Our
algorithms for numerical statistics computation on data streams are
deterministic, applicable to fixed or variable-sized sliding windows
and use a limited memory footprint. We use GPU as a co-processor
and minimize the data transmission between the CPU and GPU
by taking into account the low bus bandwidth. We implemented
our algorithms on a PC with a NVIDIA GeForce FX 6800 Ultra
GPU and a 3.4 GHz Pentium IV CPU and applied them to large
data streams consisting of more than 100 million values. We also
compared the performance of our GPU-based algorithms with op-
timized implementations of prior CPU-based algorithms. Overall,
our results demonstrate that the graphics processors available on
a commodity computer system are efficient stream-processor and
useful co-processors for mining data streams.
Keywords: data streams, graphics processors, quantiles, frequen-
cies, sorting, memory bandwidth, sliding windows

1. INTRODUCTION
Many real-world applications such as high-speed networking, fi-

nance logs, sensor networks, and web tracking generate massive
volumes of data. This data is collected from different sources and
is modeled as an unbounded data sequence arriving at a port on a
system. Typically, the size of a data stream is so large that it may
not be possible to store the entire stream in main memory for online
processing. Due to the data stream’s continuous nature, the under-
lying application performs continuous queries on the data stream
as opposed to traditional one-timed queries.

The problem of computing over data streams has received in-
terest in many areas including databases, computer networking,
computational geometry and theory of algorithms [41]. Some of
the fundamental mathematical problems in data streaming include
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computing the number of distinct items, quantiles and frequencies
[6, 23, 26, 28, 34, 35, 40]. The quantile and frequency estima-
tion algorithms have also been used as subroutines to solve more
complex problems related to histogram maintenance and dynamic
geometric computations [25].

In data streaming applications, each data element is accessed
at its arriving time and then needs to be processed in real time.
Furthermore, a data processing algorithm needs to use the small
size memory footprint as possible. It can be challenging to sat-
isfy these constraints, especially when there are irregularities and
bursts in data arrival rates. As a result, the underlying data stream
management system (DSMS) [5, 41] can become resource limited.
This problem arises due to insufficient time for the underlying CPU
to process each stream element or insufficient memory to process
the queries. In such cases, some DSMSs resort to load-shedding
[5], i.e. dropping excess data items. The other option is to allow
spilling of data items to the disks and use appropriate memory hi-
erarchies to speed up the overall system performance [39]. Ideally,
we would like to develop new hardware-accelerated solutions that
can offer improved processing power and memory bandwidth to
keep up with the update rate.

1.1 GPUs for Data Streaming
In this paper, we exploit the inherent parallelism and high mem-

ory bandwidth of graphics processing units (GPUs) for quantile and
frequency computations on data streams. GPUs have been tradi-
tionally designed for fast rendering of geometric primitives for vi-
sual simulation and computer gaming; they are now a part of every
PC, game console, and laptop. Recently, GPUs are also being de-
signed for handheld devices and mobile phones.

Modern GPUs feature programmable vertex and fragment pro-
cessors. These GPUs can be thought of as a particular kind of
stream processors: operating on data streams consisting of an or-
dered sequence of attributed primitives including vertices or frag-
ments. As compared to conventional CPUs, GPUs consist of high-
bandwidth memories and more floating-point hardware units. For
example, a current top of the line GPU, NVIDIA 6800 Ultra, has
a peak performance of 45 GFLOPS and memory bandwidth of 36
GB/sec, as compared to 12 GFLOPS and 6 GB/sec, respectively,
for a 3 GHz, Pentium IV CPU. Furthermore, the GPUs perfor-
mance has been growing at a rate of 2.5−3.0 times a year, which is
faster than the Moore’s Law for CPUs [37]. Given the programma-
bility and computational capabilities of GPUs, many GPU-based
algorithms have been designed for scientific and geometric compu-
tations, global illumination, and database operations [37, 32].

1.2 Main Results
We present algorithms for the fast processing of quantiles and
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frequencies in large data streams using GPUs. Our approach is
based on recent algorithms for quantile estimation [22] and fre-
quency estimation [34] and is also applicable to hierarchical heavy
hitter and correlated sum aggregate queries. We present a novel
algorithm for sorting on GPUs. Our sorting algorithm is based
on periodic balanced sorting network and utilizes the high com-
putation power and memory bandwidth of GPUs. The underlying
operations of comparisons and comparator mapping are performed
using the color blending and texture mapping capabilities of GPUs.
We use sorting as the main computational component for histogram
approximation and construction of ε-approximate quantile and fre-
quency summaries. Our overall algorithms for numerical statis-
tics on data streams are deterministic and applicable to fixed or
variable-sized sliding windows. We use a limited memory footprint
and the overall space complexity is comparable to prior CPU-based
algorithms.

We use the GPU as a co-processor for sorting computations and
histogram approximation. We take into account low bus bandwidth
between the CPU and GPU and minimize the data transmission be-
tween them. We have implemented our algorithms on a PC with
3.4 GHz Pentium IV processor with NVIDIA GeForce 6800 FX
Ultra GPU and applied them to data streams consisting of more
than 100 million values. In practice, our novel GPU-based sorting
algorithm is nearly one order of magnitude faster as compared to
prior GPU-based sorting algorithms. Moreover, the performance of
our algorithm is comparable to one of the fastest implementations
of Quicksort on a Pentium IV CPU. We also highlight the perfor-
mance of our algorithm on frequency and quantile estimation over
fixed and sliding windows.

Overall, we show that our GPU-based algorithms offer an ex-
cellent alternative for quantile and frequency estimation in data
streams. Our algorithms are able to exploit the memory bandwidth
and inherent parallelism of GPUs for fast computation. As a result,
the graphics processors available on commodity computer systems
are effective co-processors for mining data streams.

1.3 Organization
The rest of this paper is organized in the following manner. We

give a brief overview of prior work on numerical statistics on data
streams, GPU-based computations and sorting in Section 2. Sec-
tion 3 gives a brief overview of quantile and frequency estimation,
performance bottlenecks in CPU-based algorithms and some archi-
tectural features of GPUs. We present our novel GPU-based sort-
ing algorithm in Section 4 and highlight some of its features. We
describe our implementation in Section 5 and compare the perfor-
mance of our algorithms with prior CPU-based algorithms. We
analyze the performance of our algorithms and highlight some of
their limitations in Section 6.

2. RELATED WORK
We give a brief summary of related work in computing numerical

statistics on data streams, and the use of GPUs for general purpose
computation and sorting.

2.1 Quantiles and Frequencies
Most of the research in streaming algorithms has focused on

computing numerical statistics like median, quantiles, number of
distinct elements, and frequencies. In this section, we give a brief
overview of algorithms for approximate quantile and frequency com-
putations on data streams.

Many algorithms have been proposed for quantile estimation in
data streams. Given a sequence of N elements, an ε-approximate
algorithm answers quantile queries about the sequence to within a
precision of ε N. These can be classified into deterministic algo-

rithms [23, 33, 35] and probabilistic algorithms [11, 36]. Some of
the recent work has been on improving the space requirements of
the deterministic algorithms [6, 46].

The problem of finding frequent items over data streams has been
an active area of research in data streaming. At a broad level, differ-
ent algorithms can be classified into sample-based approaches and
hash-based approaches. The sample-based approaches keep track
of counters [14, 28, 34]. One of the earliest sample-based determin-
istic algorithms for approximate frequency counts was presented by
Misra and Gries [38]. Recently, Demaine et al. [14] and Karp et
al. [28] re-discovered the same algorithm and reduced its worst
case processing time to O(1). Manku and Motwani [34] presented
a new deterministic and one-pass algorithm that uses out-of-core
summary structure. Jin and Agrawal [27] improved the memory
requirements and described an in-core algorithm .

The hash-based approaches for frequency counts [10, 12, 18, 26]
use a hash table and each item in the stream owns a respective list
of counters the table. These algorithms can also handle delete op-
erations.

2.2 Streaming Computations on the GPUs
Many researchers have advocated the use of GPUs as a stream

processor [9, 17, 37, 45] for compute-intensive applications. Al-
though GPUs are primarily designed for real-time rendering, the
programmable vertex and fragment processors in the GPUs fea-
ture instruction sets are general enough. In particular, GPUs have
been used for scientific computations including matrix multiplica-
tion, sparse linear systems, FFT computation, fluid dynamics and
their applications to physical simulation [37], geometric computa-
tions and optimization [1, 37, 19], global illumination [42], etc.
Database Computations on GPUs: Recently, there has been in-
terest in using GPUs to speedup database computations [7, 20,
43]. Sun et al. [43] used the rendering and search capabilities
of GPUs for spatial selection and join operations on real world
datasets. Bandi et al [7] integrated GPU-based algorithms for spa-
tial database operations into Oracle 9I DBMS. Furthermore, they
demonstrated significant improvement in the performance of spa-
tial operations. Govindaraju et al. [20] presented novel algorithms
for predicates, boolean combinations and aggregates on commodity
GPUs and obtained considerable speedups over CPU-based imple-
mentations. These algorithms take into account some of the limita-
tions of the current programming model of the GPUs and were ap-
plied to perform multi-attribute comparisons, semi-linear queries,
range queries and kth largest numbers. Muthukrishnan [41] has ad-
vocated the use of GPUs for data streaming algorithms, though we
are not aware of any GPU-based algorithms for numerical statistics
on data streams.

2.3 Sorting
Sorting is a key operation used by the current algorithms for

quantile and frequency computations. Sorting is a well studied
problem in the theory of algorithms [30], and optimized imple-
mentations of some algorithms such as Quicksort are widely avail-
able. Many fast algorithms have also been designed for transaction
processing and disk to disk sorting in the database literature [2].
However, the performance of sorting algorithms on conventional
CPUs is governed by cache misses [31] and instruction dependen-
cies [47].

In terms of using GPUs for sorting, Purcell et al. [42] described
an implementation of bitonic merge sort on the GPUs. The algo-
rithm is implemented as a fragment program and each stage of the
sorting algorithm is performed as one rendering pass. Kipfer et
al. [29] presented an improved bitonic sort routine that achieves
a performance gain by minimizing the number of instructions in a

612



fragment program and the number of texture operations. However,
these algorithms do not make full use of the rasterization capabili-
ties and computational power of the current GPUs. Govindaraju et
al. [19] have described an algorithm to sort 3D geometric primi-
tives using GPUs.

3. BACKGROUND AND OVERVIEW
In this section, we give an overview of numerical statistics com-

putation on data streams. We identify the main bottlenecks in CPU-
based implementations of these algorithms. We also give an overview
of the architectural features of current GPUs.

3.1 Terminology
A data stream is a continuous sequence of data values that arrive

in time. Our goal is to design fast and deterministic algorithms to
estimate quantiles and frequencies over a large data stream. For-
mally, we define approximate quantiles and frequencies as follows:

1. Quantiles: A quantile defines the position or the rank of
an element in a sorted sequence of incoming elements. In
a stream with N values, a φ-quantile is defined as an ele-
ment with rank dφNe and an ε-approximate quantile is any
element whose rank is between d(φ− ε)Ne and d(φ+ ε)Ne
[6].

2. Frequencies: The frequency of an element denotes its num-
ber of occurrences in a stream. The estimated frequency f̃ of
an element is ε-approximate if f̃ is smaller than the true fre-
quency f of the element by at most εN , i.e. f̃ ≥ (f − εN).

In this paper, we mainly focus on the following queries that arise in
data streaming:

• Quantile-Based: Given a stream of length N and a support
s, where s ∈ [0, 1], compute the ε-approximate s-quantile
using a limited memory footprint.

• Frequency-Based: Given a stream of length N and a sup-
port s, compute the ε-approximate frequencies of all ele-
ments whose exact frequency is above a threshold sN using
a limited memory footprint.

We refer to these queries as ε-approximate queries. These queries
are performed on the data stream in two possible manners:

1. Entire past history: Apply the query over all the elements
in the past history of the stream [12, 22, 23, 27, 28, 34].

2. Sliding windows: Apply the query on a sliding window of
recent data from the streams [5, 6, 13, 46]. These windows
could be fixed or variable-sized width.

Most of the algorithms used to perform these queries use an ε-
approximate summary data structure for efficient computation. In
this paper, we present novel GPU-based features to accelerate these
queries over data streams.

3.2 ε-Approximate Summary Computation
In this section, we give a brief overview of the basic operations

involved in the construction of an ε-approximate summary data
structure. We also analyze their performance and identify some
of the bottlenecks.

The underlying algorithms use a limited memory footprint and
are used to perform an ε-approximate query. The summary data
structure is usually maintained as a sorted sequence of tuples [6,

22, 28, 34]. Each tuple has a fixed size and holds the value of an
element within the stream. The tuple may also consist of additional
fields such as the frequency of the element or the minimum and the
maximum rank of the element. The sorted order is computed based
on the element values. Sorting improves the performance as new
elements from the stream can be inserted efficiently by performing
a binary search.

Many other algorithms for mining data streams also compute an
approximation of the histogram and use the histograms to compute
the numerical statistics. Histograms are widely used to track the
distribution of the data in a database and they have been extensively
studied in the database literature [24]. More recently, algorithms
have been proposed to compute and maintain dynamic histogram
structures in a continuous data stream [44]. Given a multi-attribute
data and a limited memory footprint, these algorithms construct the
“best” histogram that minimizes some error metric.

The insertion of elements into the summary data structure is per-
formed in one of following ways:

• Single element-based: An element is inserted into the sum-
mary structure as it arrives [13, 14, 23, 27, 28].

• Window-based: A subset of the elements of a window are
computed and inserted into the summary structure [6, 22,
34].

The window-based algorithms usually perform better in practice
as fewer number of elements are inserted into the summary data
structure. Moreover, the performance of window-based algorithms
can be further improved by maintaining these subsets of elements
in a sorted order. However, window-based algorithms may have a
slightly higher memory requirement as compared to single element-
based algorithms. In the rest of this paper, we mainly focus on
improving the performance of recent window-based determinis-
tic algorithms for frequency estimation [34] and quantile estima-
tion [22]. These algorithms for frequency and quantile estimation
are also used for other numerical statistics computations over data
streams [6, 12].

At a broad level, the window-based algorithms compute the ε-
approximate summary by performing three main operations: his-
togram computation, merge operation and compress operation.

1. Histogram computation: For each window, the elements
are ordered by sorting them and a histogram is computed. A
histogram data structure holds each element value in the win-
dow and its frequency [44]. A subset of the histogram ele-
ments are computed and used for subsequent operations. The
frequency computation algorithms use the entire histogram
along with the frequencies of the elements [12, 34] for sub-
sequent operations. On the other hand, the quantile compu-
tation algorithms compute a subset of histogram elements by
sampling the sorted sequence at the rate of at least εW for
a window of size W , and maintain the minimum and maxi-
mum ranks of the elements.

2. Merge operation: The merge operation inserts a subset of
elements of the window into the ε-approximate summary data
structure. The performance of merge operation is dependent
upon the number of memory allocations performed, and can
be quite significant for naive implementations. Many tech-
niques are known for improving the performance of merge
operations.

3. Compress operation: The compress operation deletes few
of the elements in the ε-approximate summary data struc-
ture and reduces its size. Given an ε, the compress operation

613



is used in frequency and quantile computations to provide a
worst-case upper bound on the memory requirements.

Among these three operations, the sorting operation used for his-
togram computation is the most expensive operation. In our imple-
mentation of numerical statistic algorithms, sorting can take 70 −
95% of the total time with a 3.4 GHz Pentium IV processor. The
performance of sorting algorithms on conventional CPUs is gov-
erned by the following reasons:

• Cache misses: The performance of a sorting algorithm is
largely dependent on the cache efficiency, since main mem-
ory accesses can be slow. For example, the cache access
times for L1 and L2 caches, and main memory are of the or-
der of 1-2 clock cyles, 10 clock cycles and 100 clock cycles,
respectively. Therefore, accesses to the main memory due
to incoherent data reads and writes can often lead to a loss
in performance. This is indicated by an analytical and em-
pirical study conducted by LaMarca and Ladner [31]. They
observed that the quicksort algorithm incurs one cache miss
per block when the input sequence fits within the cache. For
larger sequences quicksort incurs a substantially higher num-
ber of misses. Moreover, cache sizes are typically small on
PCs (in the order of a few hundreds of kilobytes). For exam-
ple, the 3.4 GHz Intel Pentium IV processor has a L1 cache
of size 128 KB and a L2 cache size of 1 MB.

• Instruction dependencies: Due to the presence of condi-
tional branches in sorting algorithms, branch mis-predictions
can lead to stalls and can be quite expensive on current CPUs.
For example, a Pentium IV processor has a minimum penalty
of 17 clock cycles per branch mis-prediction and the stall can
significantly lower the performance of common database op-
erations [47].

3.3 GPUs and Data Streaming
In this section, we give an overview of the architectural features

of GPUs. In particular, we highlight some capabilities of GPUs that
are very useful for sorting.

GPUs are well-optimized to render a stream of geometric primi-
tives onto a rectangular array of pixels. Each primitive is rasterized
to generate fragments for the pixels covered by the primitive and
each fragment is associated with a color, texture co-ordinates, and
a depth value [15]. An array of SIMD fragment processors perform
user-specified instructions and tests on these fragments, and write
the results to the pixels in a frame buffer or a texture. The frame
buffer and the textures are used to store the 2D color values in the
video memory.

In order to use GPUs for general purpose applications, the under-
lying computations are performed by rendering full-screen quadri-
laterals (quads). In these applications, the throughput of a GPU
depends on two main factors:

1. Parallelism: The computation time depends on the number of
fragment processing units used to perform the computation. The
computing time is also a function of the number of parallel vec-
tor operations performed using the vector processing units of each
fragment processor. Current GPUs consist of a large number of
fragment processors, each with four vector processors. For exam-
ple, the NVIDIA GeForce FX 6800 Ultra can perform 64 oper-
ations in one GPU computational clock cycle and yields a peak
performance of 45 GFLOPs per second.

2. Memory access time: A lack of balance between the compu-
tation time and the memory access time on any processor leads to
stalls in the computation. In order to avoid these stalls, the memory

Figure 1: Architecture of a commodity GPU: NVIDIA GeForce 6800
FX: It has six programmable vertex processors and 16 programmable
fragment processors. Furthermore, the fragment processors have a high
memory bandwidth interface to the video memory. We exploit the par-
allelism and memory bandwidth for sorting and computing numerical
statistics on data streams.

clock of a GPU is typically designed to be many times faster than
the computational clock (or core clock) of the GPU. For e.g., an
NVIDIA GeForce FX 6800 GPU has a core clock of 400 MHz and
a memory clock of 1.2 GHz. In contrast, the main memory clocks
on a PC are typically slower than the CPU processor speeds, lead-
ing to a high penalty for cache misses on the CPUs. As an example,
a high-end Pentium IV has a clock speed of 3.4 GHz and current
high-end double data rate (DDR) II main memories have memory
speeds of 533 MHz. Moreover, the memory interface between the
GPU and the video memory on the graphics card is rather wide (in
terms of number of bits). This allows each pixel processor to access
the data from the video memory in parallel. For example, NVIDIA
GeForce FX 6800 Ultra has a 256 bit memory interface to its video
memory and can access 88 bytes of data in one GPU computational
clock cycle, thus effectively yielding a peak memory bandwidth of
35.2 GB per second. On the other hand, current PCs support DDR
II main memories with a relatively much lower peak bandwidth of
6 GB per second. A conceptual representation of the video memory
on this GPU is shown in Fig. 1. Conceptually, the video memory in
the GPU is similar to a significantly large L1 or L2 cache in terms
of memory bandwidth and with some restrictions on data access.

4. SORTING ON GPUS
In this section, we present a novel GPU-based sorting algorithm.

We exploit the computational power and high memory bandwidth
of GPUs to sort a stream of data values quickly. The GPUs are
well-optimized for rasterization and allow most rendering applica-
tions to achieve close to the peak memory performance. In order to
obtain high computational performance on GPUs, we use a sorting
network based algorithm and each stage is performed using ras-
terization. In the rest of this section, we give an overview of our
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data representation and the underlying GPU operations. After that
we present our sorting algorithm and compare its performance with
prior sorting algorithms.

Most sorting algorithms require the ability to write to arbitrary
locations. The GPUs do not allow a fragment processor to write at
any arbitrary memory location, i.e. the “scatter” operation is not
supported. The main reason for this limitation is that GPUs avoid
possible write-after-a-read hazard between multiple fragment pro-
cessors that may be accessing the same memory location. At the
same time, this limitation makes it hard to implement popular sort-
ing algorithms such as Quicksort on GPUs.

4.1 Data Representation and Transmission
We first provide a brief overview of the data representation used

by our algorithm on GPUs. Data is stored on a GPU in the form of
textures. A texture is a 2D array of data values and contains multi-
ple channels. Current GPUs support four channels in each texture
value: red, green, blue and alpha (RGBA). A texture of width W
and height H can store W ∗ H color values in each channel of the
texture. These data values can be represented as integers or floating
point values with 32 bit precision.

Data is usually sent from the CPU to the GPU in the form of tex-
tures. The transfer is performed over a data bus that connects the
GPU to the CPU and the communication cost is dependent upon
bus bandwidth. On current PCs, an AGP 8X or a PCI-E bus is used
to perform the communication. The data bus can achieve a theo-
retical peak bandwidth rate of 2 − 4 GBps. In practice, the data
transfer rates are much lower (∼ 800MBps) and there can be a
significant overhead in the computation time due to the slow data
transfer. Our goal is to utilize the high memory bandwidth of GPUs
to perform computations on the data streams. In order to overcome
these limitations, we stream the data once to the GPU, perform
the computation, and readback the data back to the CPU and avoid
multiple data transfers whenever possible. Given a window of el-
ements in a data stream, we pack the data values into a 2D texture
and transfer it to the GPU. Current GPUs can represent data values
in 32-bit IEEE single precision floating point representation. In or-
der to utilize the parallelism offered by the four vector processing
units in each fragment processor, we buffer four windows of data
values and represent each of the windows in a color component of
the 2D texture. Each window of data value is sorted in parallel and
we merge the four sorted lists back on the CPU. The 2D texture
is initially transferred to the GPU, and copied into a frame buffer.
Sorting operations are performed on the four color components of
the texture simultaneously, and the sorted data is stored in the frame
buffer or a rendered texture. Finally, the sorted texture is readback
to the CPU.

4.2 Texture Mapping and Blending
Our algorithms for sorting and numerical statistics make use of

two main features of GPUs. These are texture mapping hardware
and color blending. We perform comparison operations and com-
parator mapping using these capabilities.

4.2.1 Texture Mapping
Graphics processors have specialized texture mapping hardware

that is designed to assign the color of the fragments of a primi-
tive. The fragment color is assigned by performing a 2D look-up
based on the fragment’s texture co-ordinate in a 2D image (known
as a texture). We present a brief overview of these computations
and illustrate them with a simple example. Each vertex of the 2D
primitive/quad is assigned a texture co-ordinate, and the texture co-
ordinate of a fragment of the quad is computed using bi-linear in-
terpolation of the texture co-ordinates of the vertices.

Routine 4.1 shows a simple example to copy a list of numbers

into a frame buffer. Given a list of numbers of size n, the numbers
are represented in a 2D array of width W = b2

logn
2 c and height

H = d2
logn

2 e and stored as a 2D texture on the GPU. To copy
the numbers into the frame buffer, we enable texturing on the GPU
and set the 2D texture as the current active texture. Next we draw a
quad with the vertices and the texture co-ordinates set to the corners
of the quad i.e., each vertex is set to the same position and texture
co-ordinates and correspond to the values (0, 0), (W, 0), (W, H)
and (H, 0). The color values in the frame buffer now correspond
to the values in the texture.

Copy( tex, W, H)
1 Enable Texturing and set tex as active texture
/* Set the Texture Co-ordinates t[4], Vertex Co-ordinates v[4]*/
2 v[0] = (0,0), t[0]= (0,0)
3 v[1] = (W,0), t[1]= (W,0)
4 v[2] = (W,H), t[2]= (W,H)
5 v[3] = (0,H), t[3]= (0,H)
6 DrawQuad(v,t)

ROUTINE 4.1: The routine Copy is used to copy a set of input values
stored in a 2D texture tex into the frame buffer.

The performance of texture mapping is enhanced on GPUs by using
fast texture caches to save the memory bandwidth.

4.2.2 Blending
Blending operations are a set of user-specified instructions in the

fragment processors that are designed to manipulate the color com-
ponent of the fragments. When we enable blending, each frag-
ment processor executes blending instructions in parallel on differ-
ent fragments. The input to a blending operation is the fragment
color and the corresponding color values of the pixel that is stored
in the frame buffer. GPUs support a wide variety of blending opera-
tions, including conditional assignments to the fragment color. The
conditional assignment is a vector operation and can perform com-
parisons between the four color components (i.e. RGBA) of the
two inputs at each fragment simultaneously. The conditional as-
signment stores either the minimum or the maximum of these color
components in the frame buffer or a texture. Each conditional as-
signment operation is highly optimized for performing these vector
operations on GPUs.

Routine 4.2 shows an example of using a conditional assignment
on a list of numbers. Given an array of n numbers (n is even), we
compute the minimum of the i-th number and (n − i)-th number,
i < n

2
, and store the minimum in the location of the i-th num-

ber. On a GPU, we represent these numbers as a portion of the
2D texture with texture co-ordinates (0, s), (W, s), (W, s + H),
(0, s + H). First, a copy operation is performed to copy the tex-
ture into the frame buffer. To perform the conditional assignment,
we enable blending and set the blending function to store the min-
imum. We draw a quad filling the first half of the 2D texture, and
the texture co-ordinates are set to the reverse of the second half of
the texture. That is, each vertex of the quad is assigned the position
(0, s), (W, s), (W, s+ H

2
), (0, s+ H

2
) and the texture co-ordinates

are set to (W, s + H), (0, s + H), (0, s + H
2

), (W, s + H
2

). The
minimum color values are stored in the appropriate locations in the
frame buffer. We use this routine within our GPU-based sorting
algorithm.

4.3 Sorting Networks on GPUs
We use techniques based on sorting networks. Sorting networks

are a class of sorting algorithms that map well to mesh-based ar-
chitectures [8, 16]. A sorting network is comprised of a set of two-
input and two-output comparators. They take as input an unordered
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ComputeMin( tex,s, W, H)
1 Enable Texturing and set tex as active texture
2 Enable Blending and set blend function to compute the minimum
/* Set the Texture Co-ordinates t[4], Vertex Co-ordinates v[4]*/
3 v[0] = (0, s), t[0]= (W, s+H)
4 v[1] = (W, s), t[1]= (0, s+H)
5 v[2] = (W, s + H

2
), t[2]= (0, s+ H

2
)

6 v[3] = (0, s + H
2

), t[3]= (W, s+ H
2

)
7 DrawQuad(v, t)

ROUTINE 4.2: The routine ComputeMin is used to compute the min-
imum of the value at the i-th location, i < W∗H

2
and the value at the

(W ∗H − i)-th location of a texture. Initially, the texture values are copied
into the frame buffer using the routine Copy. The texture is set as the active
texture (line 1), and the blend function is set to compute the minimum (line
2). A quad with half the height of the texture is drawn with appropriate tex-
ture co-ordinates (lines 3 - 7) and the minimum is stored at the i-th location
of the frame buffer.

set of items on the input ports. The output on the output ports corre-
sponds to the smallest value on the first port and the second smallest
value on the second port, etc. The sorting time, i.e. the time needed
for the values to appear at the output ports, is a function of the num-
ber of stages of the network. A stage is a set of comparators that
are all active at the same time. The unordered set of items are input
to the first stage; the output of the ith stage becomes the input to
the (i + 1)th stage.

In a mesh-based architecture, processors are laid out on a rect-
angular mesh. The layout of the pixels on the screen is similar to a
rectangular mesh and hence, algorithms based on sorting networks
map well to GPUs. Sorting network algorithms proceed in multiple
stages and during each stage, a comparator mapping is created in
which every pixel on the screen is compared against exactly one
other pixel on the screen. For each pair of the mapped pixels, a de-
terministic order for storing the output value is defined. The mini-
mum is stored in one of the two pixels and the maximum is stored
in the other.

In order to implement these algorithms on GPUs, two fundamen-
tal operations are required:

• Comparisons: A basic requirement for most sorting algo-
rithms is the ability to compare values. On graphics pro-
cessors, we use the blending operations to perform compar-
isons efficiently. More specifically, we perform conditional
assignments on the pixels and store either the minimum or
the maximum for each comparison in the sorting network.

• Mapping: In each stage of a sorting network, a comparator
mapping is used. On GPUs, the comparator mapping is per-
formed using the texture mapping functionality of the GPU.

Using these two functionalities, we can design optimal sorting
networks such as bitonic sort [8] and periodic balanced sort [16]
efficiently using any traditional GPU. In each stage, the compara-
tors in the sorting network are defined using appropriate texture
co-ordinates. For each pixel, we use the texture mapping function-
ality to obtain the fragment color that needs to be compared against.
We use the blending operation to compare the pixel color against
the fragment color. We update the portions of the screen where
the minimum values are to be stored by setting the blend function
to output the minimum. Then quads with appropriately assigned
texture co-ordinates are drawn on these portions of the screen. We
perform the maximum computation in a similar manner.

4.4 Periodic Balanced Sorting Network
Our sorting algorithm is based on the periodic balanced sorting

network (PBSN) [16]. We sort the input in at most O(log2n) steps.

Figure 2: Sortstep computation in PBSN sorting algorithm: We
use two cases based on the block size to optimize each step in our
GPU-based PBSN algorithm. The routines ComputeRowMin() and
ComputeMin() are used to compare each value in the first half of a
block with its corresponding value in the second half of the block, and
stores the minimum. Similarly, the routines ComputeRowMax() and
ComputeMax() are used to store the maximum values. If the block size
is less than the width of the texture (as shown in the left), we compute the
minimum values by rendering a quad of height H and block size width
W (shown in grey color). Similarly, the maximum values are computed
by rendering orange-colored blocks. If the block size is greater than the
width of the texture (shown in the right), we compute the minimum val-
ues using the routine ComputeMin() on the grey-colored quads. The
pseudo-code for our algorithm is given in Routine 4.4.

The output of one step is used as an input to the subsequent step. In
each step, the algorithm decomposes the input into blocks of equal
sizes, and performs the same set of comparison operations on each
block. If the block size is B, a data value at the i-th location in the
block is compared against an element at (B − i)-th location in the
block. If i ≥ B

2
, the maximum of two elements being compared is

placed at the i-th location, and if i < B
2

, the minimum is placed at
the i-th location.

The overall algorithm proceeds in log n stages, and during each
stage log n steps are performed. At the beginning of each stage,
the block size is initially set to n and a step of the algorithm is
performed. At the end of each step, the block size is halved. At the
end of log n stages, the input is sorted [16]. The case where n is
a non-power of 2 is trivially handled by rounding n to the nearest
power of 2 that is greater than n.

We map the PBSN algorithm to the GPU by using the blending
and texture mapping functionalities of GPUs. The pseudo-code for
our GPU-based algorithm is shown in Routine 4.3. Given an in-
put sequence of length n, our algorithm stores the data values in
a color component of a 2-D texture tex, and transfers tex to the
GPU (line 1). The width and height of the texture are computed
based on the value of 2

logn
2 (line 2), though a more optimized im-

plementation with tighter values is possible. Next we copy the data
values into the frame buffer (line 3). At this stage, we use the blend-
ing operations to perform comparator operations in each stage of
the algorithm. During each stage, we perform log n steps (line 5).
Moreover as we proceed through different steps in a given stage,
we vary the block size from n to 2 (line 6). The block size remains
fixed while performing a single step. Based on the block size, we
partition the input (implicitly) into several blocks and a Sortstep()
routine is called on all the blocks in the input (line 7). The output
of the Sortstep() routine is copied back to the input texture and used
in the next step of the iteration (line 8). At the end of all the stages,
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the data is readback to the CPU (line 11).
We improve the performance of our algorithm by optimizing the

performance of the Sortstep routine. The pseudo-code for our Sort-
step routine is shown in Routine 4.4. We have used two cases based
on the block size and the width of the texture to optimize this rou-
tine. More details on these cases are shown in Fig. 2.

We further improve the performance of our algorithm by using
the vector operations supported using the blending functionality of
GPUs. Given an input sequence of length n, we store the data
values in each of the four color components of the 2-D texture, and
sort the four channels in parallel. The sorted sequences of length
n
4

are readback by the CPU and a merge operation is performed in
software. The merge routine performs O(n) comparisons and is
very efficient.

PBSN(n)
1 Compute and transfer a 2-D texture tex of size n to the GPU.

2 W = width(tex) = 2b
logn

2
c, H = height(tex) = 2d

logn
2

e

3 Copy(tex, W, H)
4 for i=1 to logn /* for each stage*/
5 for j=logn to 1
6 Block size B = 2j

7 SortStep(tex, W, H, B);
8 Copy from frame buffer to tex

9 end for
10 end for
11 Readback sorted data to the CPU
ROUTINE 4.3: Periodic Balanced Sorting Network Algorithm: This
routine is used to sort an input sequence of length n. The input sequence is
copied into a 2D-texture with width and height set to a power-of-2 that is
closest to

√
n (line 2). The texture is then copied into the frame buffer using

the routine Copy(). Next, we perform log n stages on the input sequence
and during each stage, perform log n steps with block sizes varying from n
to 2 (line 6). Each step is performed using the routine SortStep() (line 8). At
the end of each step, the data from the frame buffer is copied back into the
input texture (line 8), and is used as input for the next step. At the end of all
the stages, the sorted data is read back to the CPU (line 11). To improve the
performance, we store the input sequence into each of the color channels of
the texture and sort these sequences of length n

4
in parallel. A CPU-based

merge routine is applied to combine the four sorted sequences.

4.5 Analysis and Comparison
In this section, we analyze the performance of our algorithm and

compare its performance with prior GPU-based and CPU-based
sorting algorithms. Our algorithm performs 4 × ( n

4
)log2(n

4
) com-

parisons on GPUs to sort four sequences of length n/4, and the
merge operation performs n comparison operations on the CPU.
Overall, our algorithm performs a total of (n + nlog2(n

4
)) com-

parisons to sort a sequence of length n. We exploit the inherent
parallelism on GPUs and high-memory bandwidth to perform these
operations.

We have compared the performance of our algorithm against op-
timized CPU-based sorting algorithms and a GPU-based sorting
algorithm. We have benchmarked the performance of the algo-
rithms on a PC with 3.4 GHz Intel Pentium IV CPU and a NVIDIA
GeForce FX 6800 Ultra GPU. The performance of CPU-based al-
gorithms was measured using two widely used compilers - Intel
C++ compiler and Microsoft Visual C++ 6.0 compiler. We have
enabled −O2 and Qparallel flags to enable the SIMD optimiza-
tions. We used OpenGL to implement our GPU-based algorithms
and optimized them using double buffered 16-bit offscreen buffers.

Fig. 3 highlights the performance of our algorithm (i.e. “our
GPU algorithm”) against Quicksort algorithm on the CPU and bitonic
sort algorithm on the GPU [42]. For the Quicksort implementa-
tion, we have used the standard qsort routine available in stdlib.h.

SortStep(tex, width, height, blocksize)
1 if blocksize ≤ width

2 numrowblocks = width
blocksize

3 for i= 0 to (numrowblocks-1) /* for each row block*/
4 offset = i*blocksize
5 ComputeRowMin(tex, offset, blocksize, height)
6 ComputeRowMax(tex, offset, blocksize, height)
7 else
8 numblocks = width∗height

blocksize
, block height = blocksize

width

9 for i= 0 to (numblocks-1) /* for each block*/
10 offset = i *block height
11 ComputeMin(tex, offset, width, block height)
12 ComputeMax(tex, offset, width, block height)
13 end for
14 end if
ROUTINE 4.4: This routine represents one step in our GPU-based sort-
ing network algorithm. During each step, an element in the block at a
position k is compared against an element in the same block at position
blocksize − k. If k < blocksize

2
, the minimum is stored in the element’s

location. This operation is performed on all the elements in the first half
of a block and these elements correspond to the fragments in a quad of
half the block size (indicated using orange and grey colors in Fig. 2).
We use the routines ComputeMin() and ComputeRowMin() (lines
5 and 11) to perform the operation. These routines set the blend function
to compute the minimum and render half-block sized quads with appro-
priate texture co-ordinates. For more details, refer to Routine 4.2. Simi-
larly, if k > blocksize

2
, the maximum is stored and we use the routines

ComputeMax() and ComputeRowMax() on these elements (lines 6
and 12). Each routine is performed on every block (lines 3 and 9). We
take advantage of the data layout in the texture and compute the minimum
and maximum values efficiently on blocks with blocksize < width of
the texture. If the blocksize < width, then ComputeRowMin() and
ComputeRowMax() routines render only a few quads as shown in Fig.
2. Each quad has width blocksize

2
and height H .

For the bitonic sort implementation on the GPU, we have hand-
optimized the source code provided by the original author as part
of GPUGems1, a collection of many different GPU programming
tools.

The implementation of Quicksort in the Intel compiler has been
optimized using Hyper-Threading technology. More details on the
implementation of Quicksort are given here2. In particular, Quick-
sort can map well to a Hyper-Threading technology machine. The
timings are from a parallelized implementation of Quicksort on the
CPU and it balances the algorithm for the threaded scenario. This
particular implementation also includes many other optimizations.

In our benchmarks, we have measured the performance of these
algorithms on a random database with varying sizes of up to 8 mil-
lion elements. The timings for GPU-based algorithm also include
the time to transfer and readback the data along with the time to per-
form the sorting. The graph indicates that our GPU-based sorting
algorithm outperforms the earlier CPU-based and the GPU-based
implementations for reasonably large values of n. The graph also
indicates that the Quicksort routine in the Intel compiler is well
optimized and its performance is comparable to our GPU-based al-
gorithm.

Fig. 4 illustrates the runtime behavior of our GPU-based sorting
algorithm more explicitly. We have accounted for the data transfer
time and computed the time taken to perform sorting on GPUs. In
order to observe the O(lg2n) behavior, we used a input size of
8M as the base reference for n and estimated the time taken to
sort the remaining data sizes. The estimated points are highlighted

1http://developer.nvidia.com/object/all tools by date.html
2http://www.intel.com/cd/ids/developer/asmo-
na/eng/20372.htm?prn=Y
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Figure 3: This graph compares the performance of our novel GPU-
based sorting with an earlier GPU-based sorting algorithm [40] and
Quicksort running on CPUs. We highlight two CPU-based implemen-
tations, based on two different compilers. In particular, the Intel compiler
uses Hyper-Threading technology and optimizations to get very improved
performance over standard implementations of Quicksort.

in color yellow, and closely match the observed timings (within a
few milli-seconds of accuracy). Our observations also indicate that
the performance of our algorithm is around 3 times slower than
optimized CPU-based Quicksort for small values of n (n < 16K).
We attribute the slowdown to the constant overhead in the setup
costs for our routine, which can dominate the overall time if the
sorting time is low. Fig. 4 also shows that the data transfer times
are not significant in comparison to the time spent in performing
comparisons and sorting.

We have also analytically computed the number of clock cycles
required to perform the sort operation, and used it to estimate the
number of clock cycles required for each blending operation. We
observed that the GPU requires 6 − 7 clock cycles to perform one
blending operation. In comparison, the earlier GPU-based bitonic
sort algorithm [42] performs at least 53 instructions per pixel dur-
ing each stage of the algorithm. Each instruction requires at least
one clock cycle to execute and therefore, the GPU-based bitonic
sort implementation [42] requires at least 53 instructions to execute
a comparator stage. As our algorithm executes much fewer instruc-
tions, it is nearly an order of magnitude faster than prior GPU-based
bitonic sort implementations. The performance of our algorithm
is purely based on the performance of the underlying rasterization
hardware, and is improving at a rate faster than the Moore’s law
for CPUs. Moreover, the architectural designs of GPUs can be fur-
ther improved to perform faster blending. As a result, we expect
that the performance gap between our GPU-based sorting algo-
rithm and current CPU-based algorithms would increase on future
generations of GPUs and CPUs.

5. PERFORMANCE AND APPLICATION
We have used our GPU-based sorting algorithm for frequency

and quantile estimation in data streams. Specifically, we demon-
strate its application to frequency estimation [34] and quantile es-
timation [22]. In this section, we present details of our implemen-
tation and compare its performance against optimized CPU imple-
mentations of quantile and frequency estimation algorithms. Fi-
nally, we show how our algorithm can be used with sliding win-
dows. All the timings reported in this section were obtained on
a PC with a 3.4 GHZ Pentium IV CPU with NVIDIA GeForce
FX 6800 Ultra card, running Windows XP. We used the Intel com-

Figure 4: This graph shows the breakdown in our GPU-based sorting
algorithm between the comparison operations on the GPU and data trans-
fer time between the CPU and GPU. The sorting time is much higher than
data transfer time. As a result, the bandwidth between CPU and GPU is
not a bottleneck in our algorithm and implementation.

piler that provides an optimized implementation of Quicksort us-
ing Hyper-Threading Technology. The input data stream consists
of 100 million elements with 16-bit floating point precision.

5.1 Frequency Estimation
ε-approximate frequency queries can be efficiently performed

using histogram operations [27, 34]. Given a stream of data val-
ues, we use Manku and Motwani’s [34] algorithm to compute an
ε-approximate summary using limited space. The ε value is spec-
ified by the user. The ε-approximate summary data structure con-
tains a subset of the elements of the stream along with an estimate
of their frequency. Initially, the ε-approximate summary is set to
empty. For each incoming window of size 1

ε
, the algorithm com-

putes a histogram using at most 1
ε

space. After that a merge op-
eration is performed to insert or update the elements into the cur-
rent ε-approximate summary. For each element in the histogram
of the current window, the merge operation inserts the element and
its frequency into the summary if the element does not exist in the
summary. Otherwise, the frequency of the element is updated in
the summary. A compress operation is then performed on the sum-
mary. In the compress operation, elements with a frequency of
unity are deleted from the summary.

The resulting algorithm underestimates the frequencies of the el-
ements in the summary by at most εN . Given a support s, the
ε-approximate query returns all the elements in the ε-approximate
summary with a frequency count of (s− ε)N as the output. The al-
gorithm does not generate any false negatives and has a worst-case
space requirement of O( 1

ε
log(εN)).

The histogram operation is implemented space-efficiently using
sorting. It turns out that 80-90% of the overall running time is
spent in sorting. Fig. 6 shows the relative time spent in each of the
three operations for various ε-values on a random database of 100
million elements. Fig. 5 compares the performance of our GPU-
based algorithm against an optimized CPU-based implementation.
The graph indicates that the GPU-based algorithm performs com-
parably to the CPU-based implementation on most benchmarks.
Moreover, the performance of the GPU-based algorithm is better
for larger window sizes, and the GPU incurs overhead for small
window sizes.

5.2 Quantile Estimation
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Figure 5: Performance comparison for frequency computations: This
graph highlights the performance of our GPU-based algorithm against
a CPU-based implementation of a frequency estimation algorithm. We
have measured the performance on a random database of 100 million
elements and used different ε values. The graph indicates that our GPU-
based algorithm performs better than the optimized CPU implementation
for large sized windows. The GPU-time also includes the time spent in
the data transfer to and from the GPU. Moreover, the graph indicates that
the data transfer time remains constant and is significantly lower than the
time taken to sort the elements in the entire window.

Given a large data stream of size N , where N is known a pri-
ori, the goal of quantile estimation algorithms is to efficiently com-
pute ε-approximate quantiles using a limited memory footprint.
Our algorithms is based on the approach described by Greenwald
and Khanna [22]. In particular, Greenwald and Khanna proposed
an efficient quantile estimation algorithm for sensor networks and
compute an ε-approximate quantile summary while minimizing the
communication costs in a sensor network. The sensor network
is assumed as a tree with height h. Each node in the tree ini-
tially computes an ε

2
- approximate quantile summary by sorting

its set of observations S locally, and choosing the elements of rank
1, εS, ..., |S|. The summary structure also maintains the minimum
rank and maximum rank for each element. Each node communi-
cates its summary structure to its parent node. At the parent node,
a merge operation is performed on these summaries. The merge
operation sorts the union of these summaries and also updates the
ranks of the elements using simple rules. Finally, the node per-
forms a compress operation to compute a new summary structure
with B + 1 elements, B = h

ε
. The new summary structure is com-

puted by querying the current summary structure for elements of
rank 1, |S|

B
, 2|S|

B
, ..., |S|. The new summary structure is ( ε

2
+ i

2B
)-

approximate, where i is the height of the current node measured
from the leaf in the tree. The compress operation reduces the size
of the summary structure and is essential for space-efficient com-
putation.

We extend the sensor network model in [22] to a stream model
by maintaining the summary structure as an exponential histogram.
Exponential histograms have been widely used for other statistic
computations over sliding windows such as sums [13]. The ex-
ponential histogram consists of dlogne buckets and each bucket is
associated with a bucket id. Furthermore, each bucket stores a sum-
mary structure with an error based on its bucket id. If the bucket id
is b, the error is set to ε

2
+ εb

dlogne+1
. Initially, we set all the buck-

ets as empty. Next, we compute an ε
2

-approximate summary for
each new window of elements and assign it a bucket id of one and
add it to the exponential histogram. If there are two buckets with
same bucket id, we combine the two into one larger bucket and in-

Figure 6: Cost of summary operations: In this graph, we show the time
spent in performing each operation of our ε-approximate summary com-
putation algorithm for frequencies. The graph indicates that the majority
of the computational time is spenting in sorting the window values.

Figure 7: Performance comparison on quantile computations: This
graph highlights the performance of our GPU-based implementation
against a CPU-based implementation for quantile computations. The
benchmarks are performed on a random database of 100M elements with
varying ε values. We observe that the GPU performance is comparable to
a high-end Pentium IV CPU.

crement their bucket id by one. The combine operation involves
a merge and prune operation performed using an error parameter.
These operations are repeatedly performed on the exponential his-
togram till there are no two buckets with the same bucket id. Our
overall algorithm has the same memory bound as [22]. It turns out
that sorting takes a major fraction of running time (85-90%) in this
algorithm. Fig. 7 shows the performance comparison of our algo-
rithm using the qsort() and GPU-based sorting routines. The graph
highlights the relative performance of our GPU-based implemen-
tation with an optimized CPU-based implementation. We observe
that the performance of the GPU is comparable to the CPU in these
benchmarks. For low window sizes, the performance of the CPU-
based algorithm is better. This is mainly due to the fact that the
elements in the window fit within the L2 cache on the CPU.

5.3 Sliding Windows
We have applied our deterministic frequency and quantile esti-

mation algorithms for performing ε-approximate queries over slid-
ing windows. Given an incoming stream of elements, our goal is
to perform ε-approximate queries over the last N elements. The
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Figure 8: Performance of frequencies in sliding windows: This graph
highlights the performance of our GPU-based implementation against
a CPU-based implementation for frequency computations over a sliding
window of size 1 million. The benchmarks are performed on a random
database of 100M elements with varying ε values. We have used the algo-
rithm described by Arasu and Manku [6]. In this algorithm, the ε values
can be very large. This leads to a large number of small summary sizes for
blocks at the bottom levels. The GPU-based algorithm is useful when we
are computing large histogram sizes. The graph indicates that the perfor-
mance of a GPU-based algorithm is comparable to that of a conventional
CPU-based algorithm.

window size N may be fixed or varying. Our algorithms are based
on the recent work of Arasu and Manku [6]. Given an ε, our al-
gorithm computes a deterministic bounded window-sketch with a
limited memory footprint. The sketch maintains different levels,
and the number of levels is L = log 4

ε
. Furthermore, each level

l uses an error-parameter εl = ε
2(2L+2)

2L−l and computes an εl-
approximate summary structure. We have used our algorithms de-
scribed in Sections 5.1 and 5.2 to compute the εl-approximate sum-
mary.

Fig. 8 shows the performance of our implementation for estimat-
ing frequencies in a sliding window of 10 M elements. The algo-
rithm proposed by Arasu and Manku [6] can lead to large epsilon
values at the bottom (For e.g., ε0 = 1

L+1
at level 0 and for an input

epsilon of 4 ∗ 10−6, L ∼ 20 and ε0 = 0.05). It is inefficient to sort
such small sets of values due to large error values on GPUs. There-
fore, we have applied the GPU-based sorting algorithm only on the
higher levels and the CPU-based quicksort elsewhere. The timings
indicate a comparable performance using this implementation and
a pure CPU-based implementation.

5.4 Related Applications
Our GPU-based sorting algorithm is also applicable to several

other streaming algorithms. In such cases, we can use the GPU as
a co-processor for sorting and distribute the load between the CPU
and the GPU. The applications include:

• Hierarchical Heavy Hitters: Given a stream of size N , an
error-parameter ε and a support s, a hierarchical heavy hitter
(HHH) estimation query returns all the prefixes that occur in
more than (s − ε)N elements of the stream. The query is
useful for network failure analysis, denial-of-service attacks,
etc. We can use our algorithm described in Section 5.1 to
maintain an ε-approximate summary structure at each level
of the prefix tree. Cormode et al. [12] proposed an effi-
cient algorithm for the computation of HHHs by maintain-

Figure 9: Performance of quantile computation in sliding windows of
size 10 M elements

ing a trie-data structure. The trie-data structure maintains the
prefixes of the elements as well as upper and lower bounds on
the frequencies of elements with each prefix. The trie struc-
ture is very similar to the summary structure maintained by
Greenwald and Khanna for quantile computation [23]. We
use a slight variation of our algorithm presented in Section
5.2 to improve the performance of this algorithm.

• Correlated Sums: Correlated sum aggregate queries are a
class of queries formed by applying correlated queries on
pairs (x, y). They are of the form SUM(g(y) : x ≤ f(AGG(x)),
where AGG(x) is any basic aggregate query applied on input
elements of the stream and f(), g() are user-specified func-
tions. These class of queries arise in network management
and financial trading applications. Ananthakrishna et al. [4]
proposed a space-efficient correlated sum estimation queries
using two variations of the Greenwald and Khanna’s algo-
rithm for quantile estimation [23]. We can improve the per-
formance of these queries by using our quantile estimation
algorithm ( described in Section 5.2).

6. ANALYSIS AND LIMITATIONS
In this section, we analyze the performance of our GPU-based

sorting and numerical statistics computation algorithms. We iden-
tify different factors that govern the performance of our GPU-based
streaming algorithms. We also highlight some GPU architectural
features that can further improve the performance of our algorithms.
These include:

• Input data size: The performance of our algorithm is highly
dependent upon the size of the dataset used by the GPU-
based sorting algorithm. In particular, the algorithm has a
fixed amount of overhead in terms of the setup cost. This
overhead can be significant when we are dealing with rela-
tively small input data. Our timings indicate that the sort-
ing performance of NVIDIA GeForce FX 6800 Ultra GPU is
comparable or is slightly better than the optimized qsort rou-
tine on a 3.4 GHz Intel Pentium IV processor for data sizes
> 65K.

• Bus Bandwidth: The available bus bandwidth between the
GPU and the CPU governs the data transfer time. Our tim-
ings were collected on a machine with AGP-8x bus band-
width to transmit the data from the CPU to the GPU. Re-
cently, motherboards with PCI-E connectivity between the
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CPU and GPU are becoming available and this will improve
the bandwidth in both the directions. For large data sizes
(> 40KB), we have observed that the data transfer time is
not the dominating cost.

• Blending and Texture Mapping: The performance of the
GPU-based sorting routine is governed by the performance
of the underlying rasterization hardware. The performance
of blending and texture mapping hardware can be improved
by using better architectural design. For example, the texture
representations can be compressed to yield better memory
bandwidth to the frame buffer. Compression can improve
the performance of our GPU-based sorting algorithm as each
stage of the sorting algorithm reorders data elements to ob-
tain better bit-based coherence. This can increasing the com-
pression factor. Improvements in the texture caching perfor-
mance (e.g. through higher bandwidth) would also improve
the performance of our algorithm.

• Load Balancing: Our timings indicate that the current im-
plementation of our algorithm spends a significant amount
of time in GPU-based routines and the CPU remains idle
during this time. We can improve the performance of our
algorithms further by using the GPU in conjunction with
the CPU. A preliminary implementation shows that we can
obtain a speedup of two times using the CPU-based Quick-
sort routine in conjunction with our GPU-based sorting al-
gorithm. We believe such hybrid approaches that utilize the
CPU and the GPU simultaneously can offer significant speedups.

6.1 Limitations
Our current algorithm and implementation suffers from two main

limitations.

• Precision: The precision of our sorting algorithm is limited
to the precision of the underlying blending hardware on the
GPUs. On current GPUs, only 8-bit and 16-bit floating point
blending modes are supported. There has been considerable
interest in supporting higher precision for blending and other
special effects 3. We expect that the future generations of
GPUs will support higher precision blending operations.

• Limited Memory: GPUs support a limited amount of video
memory and on current GPUs it is limited to 512MB. This
limits the size of input data that our GPU-based algorithm
can work on. As a result, we can handle lists with up to 32
million values. A possible solution to overcome this prob-
lem is to maintain an exponential histogram on the CPU, as
described in Section 5.2. Databases in chunks of up to 32
million values can be streamed and sorted on the GPU, and a
merge operation can be repeatedly performed in parallel on
the CPU to sort the entire database efficiently.

7. CONCLUSIONS AND FUTURE WORK
We have presented novel GPU-based algorithms for numerical

statistics computation on data streams. Our algorithms exploit the
inherent parallelism and high memory bandwidth of GPUs for sort-
ing. We use periodic balanced sorting network and perform the
comparison and mapping operations by utilizing the blending and
texture mapping capabilities of the GPUs. In practice, our GPU-
based sorting algorithm is almost one order of magnitude faster
than prior GPU-based sorting algorithm and comparable to one of
the fastest CPU-based implementation of Quicksort. We have used
our algorithm for frequency and quantile estimation over fixed and
3http://www.nvidia.com/object/feature HPeffects.html

sliding windows. Overall, we show that GPU can be an effective
co-processor for mining data streams. As the computational and
rasterization performance of GPUs increases at a rate faster than
the Moore’s Law, our sorting and numerical statistics computation
algorithm can be applied to more complex data streams.

There are many avenues for future work. We expect that the fu-
ture GPUs will support higher precision for blending and we would
like to use our algorithm for different applications. We would like
to implement a sorting network based on bitonic sort and further
improve the performance by developing cache-efficient GPU sort-
ing algorithms [21]. The underlying sorting algorithm could also
be useful for many other applications, including other numerical
statistics and multidimensional histogram computation on continu-
ous streams [24]. Recently, a new computational model has been
proposed that augments the streaming model with a sorting primi-
tive [3]. Our GPU-based sorting algorithm can be used for an effi-
cient implementation of the algorithms based on this computational
model on commodity PCs and laptops.
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