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We are concerned with the stability problem for linear discrete-time switched systems with time delays. The problem is solved
by using multiple Lyapunov functions to develop constructive tools for the exponential stability analysis of the switched time-
delay system. Furthermore, the uncertainties of the switched systems are also taken into consideration. Sufficient delay-dependent
conditions are derived in terms of the average dwell time for the exponential stability based on linear matrix inequalities (LMIs).
Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.

1. Introduction

Switched systems represent dynamical systems described by
a collection of differential equations with both continuous-
time dynamics and discrete-time elements [1]. In recent
years, hybrid and switched dynamic systems have attracted
much attention because of their wide applications in control
of mechanical systems, electrical systems [2, 3], networked
systems [4–7], and many other fields. One of the important
topics in the study of switched systems is stability analysis,
and many results have been reported for linear switched
system. By exploiting average dwell time, Hespanha and
Morse derived some sufficient conditions for the uniform
exponential stability of the switched linear systems [8]. A
concise and timely survey on analysis and synthesis of
switched linear system is presented in [9]. In [10], the stability
of switched linear system is analyzed by using multiple
Lyapunov functions and Lyapunov-Metzler inequalities. Note
that these results can not be extended to switched time-
delay systems due to the infinite dimensionality of time-delay
systems.

Most existing results in switched systems are based on
finite dimensional systems free of time delays. However,
time-delay phenomena are very common in most practical

industrial control systems [11]. As a matter of fact, switched
time-delay systems have often appeared in the mathematical
models of networked systems, hereditary systems, Lotka-
Volterra systems, and so on. More importantly, the controller
design of time-delay systems sometimes requires switching
controller when one single controller cannot meet the design
requirements. Thus, it is of great importance to investigate
switched systems with time delays. To investigate the time-
delay problem for switched systems, some important research
efforts have been conducted. Sufficient conditions for expo-
nential stability and weighted 𝐿

2
-gain were developed for a

class of switched systems with time-varying delays [12]. In
[13], an average dwell time approach was used to analyze
switched linear systems with time-varying delays. Further-
more, the literatures [14, 15] extended the average dwell
time approach to switched singular time-delay systems. By
using a Lyapunov functional and LMI approach, various
delay-independent and delay-dependent stability results were
provided for linear switched time-delay system in [16].
In [17, 18], the piecewise Lyapunov-Razumikhin functions
were introduced for the stability analysis of the switched
time-delay systems. It should be noticed that most of the
aforementioned results do not consider the uncertainties of
switched linear systems.
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Due to the existence of model uncertainties in real
applications, it is very desirable to consider the impact of
uncertainties for the switched systems [19]. To the best of
our knowledge, such problems for the switched systems
with both uncertainties and time delay have rarely been
studied till present. In [20], some sufficient conditions for
the robust stabilization of a class of uncertain switched
time-delay systems were developed based on average dwell
time. Using a common Lyapunov function, several sufficient
delay-independent conditions for the robust stability of
the uncertain linear hybrid systems with time delay were
given in [21]. Nevertheless, it may be hard to construct a
common Lyapunov function for all the subsystems in most
of the application cases. In addition, the research for the
delay-dependent stability analysis is relatively a new topic.
Generally speaking, the delay-dependent stability analysis is
considered less conservative than the delay-independent case
[22].

Motivated by the challenges discussed above, this paper
considers generalized uncertain time-delay systems in a
discrete domain where some sufficient delay-dependent con-
ditions are derived by usingmultiple Lyapunov functions and
average dwell time to guarantee global exponential stability
of the closed loop systems. Compared with [21], stronger
stability results are provided, that is, the exponential stability
rather than the asymptotic stability.

The remainder of this paper is organized as follows. In
Section 2, the mathematical model of the uncertain switched
system with delay time is presented and some preliminaries
are given. In Section 3, the stability of uncertain switched
time-delay systems in the discrete-time domain is analyzed;
some sufficient conditions with the dwell time for switching
signal are given. In Section 4, some numerical examples are
provided to illustrate the effectiveness of the results. Finally,
some conclusions are drawn in Section 5.

The following notations will be used throughout this
paper. Let R = (−∞, +∞) and R+ = [0, +∞), let R𝑛 be
the 𝑛-dimensional Euclidean space, and 𝑍+ denotes the set
of all nonnegative integers and R𝑛×𝑚 is the space of 𝑛 × 𝑚
real matrices. 𝑃 ∈ R𝑛×𝑛 ≥ 0(𝑃 ∈ R𝑛×𝑛 ≤ 0) means
that matrix 𝑃 is symmetric and semipositive (seminegative)
definite. 𝑃 ∈ R𝑛×𝑛 > 0(𝑃 ∈ R𝑛×𝑛 < 0) means that matrix
𝑃 is symmetric and positive (negative) definite. 𝐼

𝑛
denotes

the 𝑛 × 𝑛 real identity matrix. 𝐴𝑇 denotes the transpose of
a square matrix 𝐴. 𝜆min(⋅) and 𝜆max(⋅) denote the minimum
and the maximum eigenvalue of the corresponding matrix,
respectively. For 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ R𝑛, the norm of

𝑥 is ‖𝑥‖ = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. For 𝐴 ∈ R𝑛×𝑚, the norm of 𝐴 is

‖𝐴‖ = √𝜆max(𝐴
𝑇𝐴).

2. Problem Definition and Preliminaries

In this section, we introduce an uncertain linear discrete-time
switched system with delays of the following general form:

𝑥 (𝑘 + 1) = [𝐴
𝜎(𝑘)

+ Δ𝐴
𝜎(𝑘)

(𝑘)] 𝑥 (𝑘)

+ [𝐵
𝜎(𝑘)

+ Δ𝐵
𝜎(𝑘)

(𝑘)] 𝑥 (𝑘 − ℎ)

(1)

and the initial condition

𝑥
𝑘0
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−ℎ, 0] , (2)

where ℎ ≥ 0, 𝑘 ∈ 𝑍+, the state 𝑥(𝑘) ∈ R𝑛. Let 𝑆 = {1, . . . , 𝑁},
the switching signal 𝜎(𝑘) = 𝑖 ∈ 𝑆, 𝑥

𝑘0
(𝜃) = 𝑥(𝑘

0
+ 𝜃) and

the set {𝑘
𝑞
} denotes switching sequence, which is assumed

to be a closed discrete subset of 𝑍+ with 𝑘
0
= 0 < 𝑘

1
<

𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑞
< ⋅ ⋅ ⋅ , and lim

𝑞→∞
𝑘
𝑞
= ∞. For any

𝜎(𝑘), 𝐴
𝜎(𝑘)

, 𝐵
𝜎(𝑘)

∈ R𝑛×𝑛 are given constant matrices, and
Δ𝐴
𝜎(𝑘)

(𝑘), Δ𝐵
𝜎(𝑘)

(𝑘) ∈ R𝑛×𝑛 are the parameter uncertainties
which satisfy the following assumptions:

Δ𝐴
𝑖
(𝑘) = 𝐸

𝑖
𝐹 (𝑘) 𝐹

𝑖
,

Δ𝐵
𝑖
(𝑘) = 𝐻

𝑖
𝐹 (𝑘) 𝐺

𝑖
,

(3)

where 𝐸
𝑖
, 𝐹
𝑖
,𝐻
𝑖
, and 𝐺

𝑖
are given constant matrices of appro-

priate dimensions. The uncertain matrix 𝐹(𝑘) is assumed to
satisfy the condition 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼.

Definition 1. The discrete-time uncertain linear switched
system with time delay (1) is robustly stable if there exist a
positive definite scalar function𝑉(𝑥(𝑘)) for all 𝑥(𝑘) ∈ R𝑛 and
a switching signal 𝜎(𝑘) ∈ 𝑆 such that

Δ𝑉 (𝑥 (𝑘)) = 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑥 (𝑘)) < 0. (4)

Definition 2. The induced norm of a matrix 𝐴 is denoted by

‖𝐴‖ = sup{‖𝐴𝑥‖
‖𝑥‖

: 𝑥 ∈ R
𝑛
, ‖𝑥‖ ̸= 0} , (5)

where ‖𝐴‖ and ‖𝑥‖ satisfy the inequality

‖𝐴𝑥‖ ≤ ‖𝐴‖ ‖𝑥‖ . (6)

Definition 3. A switching signal 𝜎 is said to have an average
dwell time 𝜏

𝑎
if there exist two positive numbers 𝑁

0
and 𝜏
𝑎

such that

𝑁(𝑘
0
, 𝑘) ≤ 𝑁

0
+
(𝑘 − 𝑘

0
)

𝜏
𝑎

, ∀𝑘 ≥ 𝑘
0
≥ 0, (7)

where 𝑁(𝑘
0
, 𝑘) is the number of switches in the interval

[𝑘
0
, 𝑘).

Definition 4 (see [11, 23]). The switched system (1)-(2) is said
to be exponentially stable if its solutions satisfy

‖𝑥 (𝑘)‖ ≤ 𝑐𝜆
−(𝑘−𝑘0) 𝜙

𝐿
, ∀𝑘 ≥ 𝑘

0
, (8)

for any initial conditions (𝑘
0
, 𝜙), where ‖𝜙‖

𝐿
=

sup
𝑘0−ℎ≤𝜃≤𝑘0

‖𝜙(𝜃)‖, 𝑐 > 0, and 𝜆 > 0 is the decay rate.

Lemma 5 (see [24]). Let𝑀, 𝑃, and 𝑄 be given matrices such
that 𝑄 > 0, 𝑄 = 𝑄

𝑇. Then, the linear matrix inequality (LMI)
(
𝑃 𝑀

𝑀
𝑇
−𝑄
) < 0 holds if and only if 𝑃 +𝑀𝑄

−1
𝑀
𝑇
< 0.
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Lemma 6 (see [25, 26]). Let 𝑃 > 0, 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼, and 𝑀,
𝑁 are constant matrices. If there exists 𝜀 > 0 such that 𝜀𝐼 −
𝑀
𝑇
𝑃𝑀 > 0, then

[𝐴 +𝑀𝐹 (𝑘)𝑁]
𝑇
𝑃 [𝐴 +𝑀𝐹 (𝑘)𝑁]

≤ 𝐴
𝑇
𝑅
−1
𝐴 + 𝜀𝑁

𝑇
𝑁,

(9)

where 𝑅 = 𝑃−1 − (1/𝜀)𝑀𝑀
𝑇.

Lemma 7 (see [27]). For a quadratic positive definite 𝑉(𝑥) =
𝑥
𝑇
𝑃𝑥, there exist 𝜆min(𝑃) and 𝜆max(𝑃) such that

𝜆min (𝑃) ‖𝑥‖
2
≤ 𝑥
𝑇
𝑃𝑥 ≤ 𝜆max (𝑃) ‖𝑥‖

2
. (10)

3. Stability Analysis

In this section, we analyze the stability for uncertain switched
time-delay systems, and some sufficient conditions are given.
Firstly, let us consider switched time-delay systems in
discrete-time domain instead.

3.1. Switched Systems with TimeDelay. Consider the discrete-
time switched system with state delays given by

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐵
𝜎(𝑘)

𝑥 (𝑘 − ℎ) (11)

and the initial condition

𝑥
𝑘0
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−ℎ, 0] . (12)

System (11)-(12) can be obtained from (1)-(2) as long as
Δ𝐴
𝜎(𝑘)

(𝑘) = 0 and Δ𝐵
𝜎(𝑘)

(𝑘) = 0. 𝜎(𝑘) is the switching signal,
for each 𝑘 ∈ 𝑍+; we get the following sets:

𝐴
𝜎(𝑘)

∈ {𝐴
1
, . . . , 𝐴

𝑁
} ,

𝐵
𝜎(𝑘)

∈ {𝐵
1
, . . . , 𝐵

𝑁
} .

(13)

Obviously, the switched linear system (11)-(12) has 𝑁
different subsystems, that is,

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑥 (𝑘 − ℎ) , (14)

and the initial condition

𝑥
𝑘0
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−ℎ, 0] , (15)

where ℎ > 0, 𝑖 ∈ 𝑆 = {1, . . . , 𝑁}, 𝑘 ∈ [𝑘
𝑞−1
, 𝑘
𝑞
), and 𝑞 ∈ 𝑍+.

Clearly, there exists 𝑗 ∈ 𝑆 such that 𝐴
𝑖
and 𝐵

𝑖
are constrained

to jump to 𝐴
𝑗
and 𝐵

𝑗
among their own sets, respectively,

where 𝑗 ̸= 𝑖.
Considering discrete-time switched system (11)-(12), we

choose the following Lyapunov function given by

𝑉
𝑖
(𝑥 (𝑘)) = 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑘−1

∑

𝑠=𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) , (16)

where, ∀𝑃
𝑖
, 𝑄
𝑖
> 0 and 𝜆 > 0 is a given constant.

Proposition 8. For a given scalar 𝜆 > 1 and the delay ℎ > 0,
there exist matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, and 𝑖 ∈ 𝑆 such that the

following matrix inequality

Γ = (
𝜆
2
𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝑄
𝑖

𝜆
ℎ+2
𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

∗ 𝜆
2(ℎ+2)

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝑄
𝑖

) < 0 (17)

holds; then the function𝑉
𝑖
(𝑥(𝑘)) in (16) along any trajectory of

system (14)-(15) guarantees the following growth estimation:

𝑉
𝑖
(𝑥 (𝑘)) ≤ 𝜆

−2(𝑘−𝑘0)𝑉
𝑖
(𝑥 (𝑘
0
)) , 𝑘 ≥ 𝑘

0
. (18)

Proof. Applying the transformation 𝑥(𝑘) = 𝜆
−(𝑘−𝑘0)𝜉(𝑘), we

obtain the following system from (14)-(15):

𝜉 (𝑘 + 1) = 𝜆𝐴
𝑖
𝜉 (𝑘) + 𝜆

ℎ+1
𝐵
𝑖
𝜉 (𝑘 − ℎ) (19)

and the initial condition

𝜉
𝑘0
(𝜃) = 𝜉 (𝑘

0
+ 𝜃) = 𝜆

𝜃
𝑥
𝑘0
(𝜃) , 𝜃 ∈ [−ℎ, 0] . (20)

Choose the following Lyapunov function for system (19)-(20):

𝑊
𝑖
(𝜉 (𝑘)) = 𝜉

𝑇
(𝑘) 𝑃
𝑖
𝜉 (𝑘) +

𝑘−1

∑

𝑠=𝑘−ℎ

𝜉
𝑇
(𝑠) 𝑄
𝑖
𝜉 (𝑠) . (21)

The forward difference of the Lyapunov function 𝑊
𝑖
(𝜉(𝑘))

along the trajectory of system (19)-(20) is given by

Δ𝑊
𝑖
(𝜉 (𝑘)) = 𝑊

𝑖
(𝜉 (𝑘 + 1)) − 𝑊

𝑖
(𝜉 (𝑘))

= [𝜆𝐴
𝑖
𝜉 (𝑘) + 𝜆

ℎ+1
𝐵
𝑖
𝜉 (𝑘 − ℎ)]

𝑇

⋅ 𝑃
𝑖
[𝜆𝐴
𝑖
𝜉 (𝑘) + 𝜆

ℎ+1
𝐵
𝑖
𝜉 (𝑘 − ℎ)]

− 𝜉
𝑇
(𝑘) 𝑃
𝑖
𝜉 (𝑘) + 𝜉

𝑇
(𝑘) 𝑄
𝑖
𝜉 (𝑘)

− 𝜉
𝑇
(𝑘 − ℎ)𝑄

𝑖
𝜉 (𝑘 − ℎ)

= 𝑦
𝑇
Γ𝑦,

(22)

where Γ is defined in (17) and 𝑦 = [𝜉𝑇(𝑘), 𝜉𝑇(𝑘 − ℎ)]𝑇. Using
(17), we arrive at

Δ𝑊
𝑖
(𝜉 (𝑘)) < 0 (23)

which implies

𝑊
𝑖
(𝜉 (𝑘)) ≤ 𝑊

𝑖
(𝜉 (𝑘
0
)) . (24)

From (16), we have

𝑉
𝑖
(𝑥 (𝑘)) = 𝜆

−2(𝑘−𝑘0)𝜉
𝑇
(𝑘) 𝑃
𝑖
𝜉 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝜆
−2(𝑠−𝑘0)𝑥

𝑇
(𝑘) 𝑄
𝑖
𝑥 (𝑘)

= 𝜆
−2(𝑘−𝑘0)𝑊

𝑖
(𝜉 (𝑘))

(25)
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and the fact that

𝑊
𝑖
(𝜉 (𝑘
0
)) = 𝑉

𝑖
(𝑥 (𝑘
0
)) . (26)

It follows that

𝑉
𝑖
(𝑥 (𝑘)) ≤ 𝜆

−2(𝑘−𝑘0)𝑉
𝑖
(𝑥 (𝑘
0
)) , 𝑘 ≥ 𝑘

0
. (27)

The proof is completed.

Theorem 9. For given scalars 𝜆 > 1 and 𝜇 ≥ 1 and the delay
ℎ > 0, assume that there exist 𝑃

𝑖
> 0 and 𝑄

𝑖
> 0 such that

equality (17) holds. Then, switched delay-time system (11)-(12)
is exponentially stable if the following conditions hold:

(A1) the positive definite matrices 𝑃
𝑖
and 𝑄

𝑖
satisfy

𝑃
𝑗
≤ 𝜇𝑃
𝑖
, 𝑄
𝑗
≤ 𝜇𝑄
𝑖

∀𝑖, 𝑗 ∈ 𝑆; (28)

(A2) there exists 1 < V ≤ 𝜆 such that the average dwell time
𝜏
𝑎
satisfies

𝜏
𝑎
≥

ln 𝜇
(2 ln V)

. (29)

Proof. Choose the following Lyapunov function for system
(11)-(12):

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) = 𝑥
𝑇
(𝑘) 𝑃
𝜎(𝑘)

𝑥 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝑥
𝑇
(𝑠) 𝑄
𝜎(𝑘)

𝑥 (𝑠) .

(30)

For 𝑖 ∈ 𝑆, using Proposition 8, if equality (17) holds, we obtain

𝑉
𝑖
(𝑥 (𝑘)) = 𝜆

−2(𝑘−𝑘𝑞−1)𝑉
𝑖
(𝑥 (𝑘
𝑞−1
)) . (31)

Using condition (A1), then we have

𝑉
𝜎(𝑘𝑞)

(𝑥 (𝑘
𝑞
)) = 𝑥

𝑇
(𝑘
𝑞
) 𝑃
𝜎(𝑘𝑞)

𝑥 (𝑘
𝑞
)

+

𝑘𝑞−1

∑

𝑠=𝑘𝑞−ℎ

𝜆
2(𝑠−𝑘𝑞)𝑥

𝑇
(𝑠) 𝑄
𝜎(𝑘𝑞)

𝑥 (𝑠)

≤ 𝑥
𝑇
(𝑘
𝑞
) 𝜇𝑃
𝜎(𝑘−1)

𝑥 (𝑘
𝑞
)

+

𝑘𝑞−1

∑

𝑠=𝑘𝑞−ℎ

𝜆
2(𝑠−𝑘𝑞)𝑥

𝑇
(𝑠) 𝜇𝑄

𝜎(𝑘𝑞−1)
𝑥 (𝑠)

= 𝜇𝑉
𝜎(𝑘𝑞−1)

(𝑥 (𝑘
𝑞
)) .

(32)

By virtue of (31) and (32), it follows that

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) ≤ 𝜆
−2(𝑘−𝑘𝑞)𝑉

𝜎(𝑘𝑞)
(𝑥 (𝑘
𝑞
))

≤ 𝜆
−2(𝑘−𝑘𝑞)𝜇𝑉

𝜎(𝑘𝑞−1)
(𝑥 (𝑘
𝑞
))

≤ 𝜇𝜆
−2(𝑘−𝑘𝑞)𝜆

−2(𝑘𝑞−𝑘𝑞−1)

⋅ 𝑉
𝜎(𝑘𝑞−1)

(𝑥 (𝑘
𝑞−1
)) .

(33)

Iterating 𝑘
𝑞
from 𝑞 − 1 to 0, we have

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) ≤ 𝜇
𝑁
𝜆
−2(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑥 (𝑘
0
)) . (34)

Applying (29), we have

𝑉
𝑁
(𝑥 (𝑘)) ≤ 𝜇

𝑁0𝑒
−2(ln 𝜆−ln V)(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑥 (𝑘
0
)) . (35)

Thus, there exists ln 𝜌
1
= ln 𝜆 − ln V > 0 and 𝐾

1
= 𝜇
𝑁0 such

that

𝑉
𝑁
(𝑥 (𝑘)) ≤ 𝜇

𝑁0𝑒
−2(𝑘−𝑘0) ln 𝜌1𝑉

𝜎(𝑘0)
(𝑥 (𝑘
0
))

= 𝐾
1
𝜌
−2(𝑘−𝑘0)

1
𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
)) .

(36)

It follows that

𝛽
1 ‖𝑥 (𝑘)‖

2
≤ 𝑉
𝜎(𝑘)

(𝑥 (𝑘)) ≤ 𝐾
1
𝜌
−2(𝑘−𝑘0)

1
𝛽
2

𝜙


2

𝐿
(37)

which yields ‖𝑥(𝑘)‖ ≤ √𝐾
1
𝛽
2
/𝛽
1
𝜌
−(𝑘−𝑘0)

1
‖𝜙‖
𝐿
, where

𝛽
1
= min
𝑖∈𝑆

𝜆min (𝑃𝑖) ,

𝛽
2
= max
𝑖∈𝑆

𝜆max (𝑃𝑖) + ℎmax
𝑖∈𝑆

𝜆max (𝑄𝑖) .
(38)

Hence, it is concluded from Definition 4 that switched delay-
time system (11)-(12) is exponentially stable. The proof is
completed.

3.2. Uncertain Discrete-Time System with Time Delay. Con-
sider the following subsystem of switched system (1)-(2):

𝑥 (𝑘 + 1) = [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑘)] 𝑥 (𝑘)

+ [𝐵
𝑖
+ Δ𝐵
𝑖
(𝑘)] 𝑥 (𝑘 − ℎ)

(39)

and the initial condition

𝑥
𝑘0
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−ℎ, 0] , (40)

∀𝑖 ∈ 𝑆. Choose the following Lyapunov function for (39)-
(40):

𝑉
𝑖
(𝑥 (𝑘)) = 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

(41)

where ∀𝑃
𝑖
, 𝑄
𝑖
> 0 and 𝜆 > 1 is a given constant.

To derive the exponential stability of switched time-
delay system (1)-(2), we give the decay estimation of the
Lyapunov function 𝑉

𝑖
(𝑥(𝑘)) along the trajectory (39)-(40) in

the following proposition firstly.

Proposition 10. For a given scalar 𝜆 > 1, 𝜀 > 0, and any
delay ℎ > 0, if there exist matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, and 𝜀𝐼 −

(
𝐸
𝑇

𝑖
𝑃𝑖𝐸𝑖 𝐸

𝑇

𝑖
𝑃𝑖𝐻𝑖

𝐻
𝑇

𝑖
𝑃𝑖𝐸𝑖 𝐻

𝑇

𝑖
𝑃𝑖𝐻𝑖

) > 0 such that the following inequalities,

𝑋
𝑖
+ 𝑌
𝑖
𝑍
−1

𝑖
Ω
𝑖
< 0,

𝑍
𝑖
> 0,

𝑅
𝑖
> 0,

(42)
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hold, then function 𝑉
𝑖
(𝑥(𝑘)) in (41) along any trajectory of

switched system (39)-(40) guarantees the decay estimation as
follows:

𝑉
𝑖
(𝑥 (𝑘)) ≤ 𝜆

−2(𝑘−𝑘0)𝑉
𝑖
(𝑥 (𝑘
0
)) , 𝑘 ≥ 𝑘

0
, (43)

where

𝑅
𝑖
= 𝑃
−1

𝑖
−
1

𝜀
(𝐸
𝑇

𝑖
𝐸
𝑖
+ 𝐻
𝑇

𝑖
𝐻
𝑖
) ,

𝑋
𝑖
= 𝜆
2
(𝐴
𝑇

𝑖
𝑅
−1

𝑖
𝐴
𝑖
+ 𝜀𝐹
𝑇

𝑖
𝐹
𝑖
) − 𝑃
𝑖
+ 𝑄
𝑖
,

𝑌
𝑖
= 𝜆
ℎ+2
𝐴
𝑇

𝑖
𝑅
−1

𝑖
𝐵
𝑖
,

Ω
𝑖
= 𝜆
ℎ+2
𝐵
𝑇

𝑖
𝑅
−1

𝑖
𝐴
𝑖
,

𝑍
𝑖
= 𝑄
𝑖
− 𝜆
2(ℎ+1)

(𝐵
𝑇

𝑖
𝑅
−1

𝑖
𝐵
𝑖
+ 𝜀𝐺
𝑇

𝑖
𝐺
𝑖
) .

(44)

Proof. ∀𝜆 > 1, by applying the transformation 𝑥(𝑘) =

𝜆
−(𝑘−𝑘0)𝜉(𝑘), we obtain the following system from (39)-(40):

𝑥 (𝑘 + 1) = 𝜆 [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑘)] 𝜉 (𝑘)

+ 𝜆
ℎ+1

[𝐵
𝑖
+ Δ𝐵
𝑖
(𝑘)] 𝜉 (𝑘 − ℎ)

(45)

and the initial condition

𝜉
𝑘0
(𝜃) = 𝜆

𝜃
𝑥
𝑘0
(𝜃) , 𝜃 ∈ [−ℎ, 0] . (46)

Choose the following Lyapunov function for switched system
(45)-(46):

𝑊
𝑖
(𝜉 (𝑘)) = 𝜉

𝑇
(𝑘) 𝑃
𝜎(𝑘)

𝜉 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−ℎ

𝜉
𝑇
(𝑘) 𝑄
𝜎(𝑘)

𝜉 (𝑘) .

(47)

Let 𝐴
𝑖
= 𝜆[𝐴

𝑖
+ Δ𝐴

𝑖
(𝑘)] and 𝐵

𝑖
= 𝜆
ℎ+1
[𝐵
𝑖
+ Δ𝐵
𝑖
(𝑘)].

The forward difference of Lyapunov function𝑊
𝑖
(𝑘) along any

trajectory of system (45)-(46) is given by

Δ𝑊
𝑖
(𝜉 (𝑘)) = 𝑊

𝑖
(𝜉 (𝑘 + 1)) − 𝑊

𝑖
(𝜉 (𝑘))

= [𝐴
𝑖
𝜉 (𝑘) + 𝐵

𝑖
𝜉 (𝑘 − ℎ)]

𝑇

⋅ 𝑃
𝑖
[𝐴
𝑖
𝜉 (𝑘) + 𝐵

𝑖
𝜉 (𝑘 − ℎ)]

− 𝜉
𝑇
(𝑘) 𝑃
𝑖
𝜉 (𝑘) + 𝜉

𝑇
(𝑘) 𝑄
𝑖
𝜉 (𝑘)

− 𝜉
𝑇
(𝑘 − ℎ)𝑄

𝑖
𝜉 (𝑘 − ℎ)

= 𝑦
𝑇
𝑀
1
𝑦,

(48)

where

𝑦 = [𝜉
𝑇
(𝑘) , 𝜉
𝑇
(𝑘 − ℎ)]

𝑇

,

𝑀
1
= (

𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝑄
𝑖

𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝑄
𝑖

) .

(49)

Note that

𝑀
1
= (

𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝑄
𝑖

𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝑄
𝑖

)

= (
−𝑃
𝑖
+ 𝑄
𝑖

0

0 −𝑄
𝑖

)

+ (
𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

)𝑃
𝑖
(𝐴
𝑖
𝐵
𝑖
) .

(50)

On the other hand, by virtue of Lemma 6, we have

(
𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

)𝑃
𝑖
(𝐴
𝑖
𝐵
𝑖
)

= [(
𝜆𝐴
𝑇

𝑖

𝜆
ℎ+1
𝐵
𝑇

𝑖

) + (
𝜆𝐹
𝑇

𝑖
0

0 𝜆
ℎ+1
𝐺
𝑇

𝑖

)

× (
𝐹
𝑇
(𝑘) 0

0 𝐹
𝑇
(𝑘)
)(

𝐸
𝑇

𝑖

𝐻
𝑇

𝑖

)]𝑃
𝑖

× [(𝜆𝐴
𝑖
𝜆
ℎ+1
𝐵
𝑖
) + (𝐸𝑖 𝐻𝑖) (

𝐹 (𝑘) 0

0 𝐹 (𝑘)
)

×(
𝜆𝐹
𝑖

0

0 𝜆
ℎ+1
𝐺
𝑖

)]

≤ (
𝜆𝐴
𝑇

𝑖

𝜆
ℎ+1
𝐵
𝑇

𝑖

)𝑅
−1

𝑖
(𝜆𝐴
𝑖
, 𝜆
ℎ+1
𝐵
𝑖
)

+ 𝜀(
𝜆𝐹
𝑇

𝑖
0

0 𝜆
ℎ+1
𝐺
𝑇

𝑖

)(
𝜆𝐹
𝑖

0

0 𝜆
ℎ+1
𝐺
𝑖

)

= (
(1, 1) (1, 2)

(2, 1) (2, 2)
) ,

(51)

where

𝑅
𝑖
= 𝑃
−1

𝑖
−
1

𝜀
(𝐸
𝑇

𝑖
𝐸
𝑖
+ 𝐻
𝑇

𝑖
𝐻
𝑖
) ,

(1, 1) = 𝜆
2
(𝐴
𝑇

𝑖
𝑅
−1

𝑖
𝐴
𝑖
+ 𝜀𝐹
𝑇

𝑖
𝐹
𝑖
) ,

(1, 2) = 𝜆
ℎ+2
𝐴
𝑇

𝑖
𝑅
−1

𝑖
𝐵
𝑖
,

(2, 1) = 𝜆
ℎ+2
𝐵
𝑇

𝑖
𝑅
−1

𝑖
𝐴
𝑖
,

(2, 2) = 𝜆
2(ℎ+1)

(𝐵
𝑇

𝑖
𝑅
−1

𝑖
𝐵
𝑖
+ 𝜀𝐺
𝑇

𝑖
𝐺
𝑖
) .

(52)

Then,

𝑀
1
= (

𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝑄
𝑖

𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝑄
𝑖

)

≤ (
𝑋
𝑖
𝑌
𝑖

Ω
𝑖
−𝑍
𝑖

) .

(53)

Now taking into account (42) and using Lemma 5, we have

Δ𝑊
𝑖
(𝜉 (𝑘)) < 0 (54)
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which implies that

𝑊
𝑖
(𝜉 (𝑘)) ≤ 𝑊

𝑖
(𝜉 (𝑘
0
)) . (55)

From (41), we have

𝑉
𝑖
(𝑥 (𝑘)) = 𝜆

−2(𝑘−𝑘0)𝜉
𝑇
(𝑘) 𝑃
𝑖
𝜉 (𝑘)

+

𝑘−1

∑

𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝜆
−2(𝑠−𝑘0)𝜉

𝑇
(𝑘) 𝑄
𝑖
𝜉 (𝑘)

= 𝜆
−2(𝑘−𝑘0)𝑊

𝑖
(𝜉 (𝑘))

(56)

and the fact that

𝑊
𝑖
(𝜉 (𝑘
0
)) = 𝑉

𝑖
(𝑥 (𝑘
0
)) . (57)

It follows that

𝑉
𝑖
(𝑥 (𝑘)) ≤ 𝜆

−2(𝑘−𝑘0)𝑉
𝑖
(𝑥 (𝑘
0
)) . (58)

The proof is completed.

Theorem 11. For given scalars 𝜆 > 1 and 𝜇 ≥ 1 and any delay
ℎ > 0, if there exist matrices 𝑃

𝑖
> 0 and 𝑄

𝑖
> 0, such that

inequalities (42) and the conditions

𝑃
𝑗
≤ 𝜇𝑃
𝑖
, 𝑄
𝑗
≤ 𝜇𝑄
𝑖
, ∀𝑖, 𝑗 ∈ 𝑆, (59)

𝜏
𝑎
>

ln 𝜇
2 ln 𝜆∗

(60)

hold, then the uncertain switched time-delay system (1)-(2) is
exponentially stable and guarantees a decay rate 𝜌

2
= 𝜆/𝜆

∗ ,
where 1 < 𝜆∗ < 𝜆 and 𝜏

𝑎
is the average dwell time.

Proof. Considering system (1)-(2), choose the following Lya-
punov function given by

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) = 𝑥
𝑇
(𝑘) 𝑃
𝜎(𝑘)

𝑥 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−ℎ

𝜆
2(𝑠−𝑘)

𝑥
𝑇
(𝑠) 𝑄
𝜎(𝑘)

𝑥 (𝑠) .

(61)

By virtue of (59), we have

𝑉
𝜎(𝑘𝑞)

(𝑥 (𝑘
𝑞
)) ≤ 𝜇𝑉

𝜎(𝑘𝑞−1)
(𝑥 (𝑘
𝑞
)) . (62)

On the other hand, function 𝑉
𝑖
(𝑘) ensures the decay estima-

tion (43) under condition (42). Hence, we have

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) ≤ 𝜆
−2(𝑘−𝑘𝑞)𝑉

𝜎(𝑘𝑞)
(𝑥 (𝑘
𝑞
))

≤ 𝜆
−2(𝑘−𝑘𝑞)𝜇𝑉

𝜎(𝑘𝑞−1)
(𝑥 (𝑘
𝑞
))

≤ 𝜇𝜆
−2(𝑘−𝑘𝑞)𝜆

−2(𝑘𝑞−𝑘𝑞−1)𝑉
𝜎(𝑘𝑞−1)

(𝑥 (𝑘
𝑞−1
))

≤ 𝜇
𝑁(𝑘,𝑘0)𝜆

−2(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
))

≤ 𝜇
𝑁0𝑒
((𝑘−𝑘0)/𝜏𝑎) ln 𝜇𝜆−2(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑥 (𝑘
0
)) .

(63)

Let 𝐾
2
= 𝜇
𝑁0 ; by virtue of (60), we have

𝑉
𝜎(𝑘)

(𝑥 (𝑘)) ≤ 𝐾
2
(𝜆
∗
)
2(𝑘−𝑘0)

𝜆
−2(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑥 (𝑘
0
))

≤ 𝐾
2
𝜌
−2(𝑘−𝑘0)

2
𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
)) ,

(64)

where 𝜌
2
= 𝜆/𝜆

∗
> 1. It follows that

𝛼
1 ‖𝑥 (𝑘)‖

2
≤ 𝑉
𝜎(𝑘)

(𝑥 (𝑘))

≤ 𝐾
2
𝜌
−2(𝑘−𝑘0)

2
𝛼
2

𝜙


2

𝐿

(65)

which yields ‖𝑥(𝑘)‖ ≤ √𝐾
2
𝛼
2
/𝛼
1
𝜌
−(𝑘−𝑘0)

2
‖𝜙‖
𝐿
, where

𝛼
1
= min
𝑖∈𝑆

𝜆min (𝑃𝑖) ,

𝛼
2
= max
𝑖∈𝑆

𝜆max (𝑃𝑖) + ℎmax
𝑖∈𝑆

𝜆max (𝑄𝑖) .
(66)

Hence, by virtue of Definition 4, the switched system (1)-(2)
is exponentially stable. The proof is completed.

Remark 12. In literature [21], the commonLyapunov function
was employed to derive the delay-independent conditions.
From condition (59), it can be seen that the common
Lyapunov function approach can be treated as a special case
of Theorem 11 if and only if 𝜇 satisfies 𝜇 = 1. In this sense,
we get away from the common Lyapunov conditions as 𝜇
increases from 1, which indicates the conservativeness of the
commonLyapunov function approach. In contrast, this paper
presents the delay-dependent exponential stability conditions
by constructing multiple Lyapunov functions.

Remark 13. It should be noted that [11] only considers the
switched time-delay systems without the parameter uncer-
tainties. The present paper extends the results in [11] to
the uncertain switched time-delay system in discrete-time
domain by constructing different Lyapunov functions and
employing the concept of the average dwell time.

4. Numerical Example

In this section, we use an example to illustrate the results in
Section 3.

Example 1. Consider the delay-time switched system (11)-(12)
given by

𝐴
1
= (

0 0.3

−0.2 0.1
) , 𝐵

1
= (

−0.1 0

0.1 0
) ,

𝐴
2
= (

0.2 −0.5

0 0.8
) , 𝐵

2
= (

0 0.1

0 0.3
) ,

(67)

where 𝑆 = {1, 2}. Let ℎ = 1. Assuming that the average dwell
time is 𝜏

𝑎
= 2 and 𝜇 = 1.5, then we have V ≥ 1.1067. If we

take V = 1.2, then we can choose 𝜆 = 1.8. From equalities (17)
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and (28), by using LMIs toolbox, we can obtain the feasible
solutions for 𝑃

1
, 𝑄
1
and 𝑃

2
, 𝑄
2
given by

𝑃
1
= (

1.7733 0.1339

0.1339 1.5144
) , 𝑄

1
= (

1.3174 0.1059

0.1059 0.5855
) ,

𝑃
2
= (

0.0929 0.0247

0.0247 0.0137
) , 𝑄

2
= (

0.5327 0.0549

0.0549 0.2748
) .

(68)

FromTheorem 9, it is concluded that the delay-time switched
system (11)-(12) is exponentially stable.

Example 2. Consider the delay-time switched system (1)-(2),
where 𝑖 ∈ {1, 2}, and

𝐴
1
= (

−0.6 0

0 0.1
) , 𝐵

1
= (

−0.1 0

0 0.1
) ,

𝐴
2
= (

0.2 0

0 −0.8
) , 𝐵

2
= (

−0.1 0

0 0.3
) ,

𝐸
𝑖
= (

𝑒
1

𝑖
0

0 𝑒
2

𝑖

) , 𝐻
𝑖
= (

ℎ
1

𝑖
0

0 ℎ
2

𝑖

) ,

𝐹
𝑖
= (

𝑓
1

𝑖
0

0 𝑓
2

𝑖

) , 𝐺
𝑖
= (

𝑔
1

𝑖
0

0 𝑔
2

𝑖

) ,

(69)

where

𝑒
1

1
= 0.02, 𝑒

2

1
= 0.04, 𝑒

1

2
= 0.01, 𝑒

2

2
= 0.03,

ℎ
1

1
= 0.01, ℎ

2

1
= 0.03, ℎ

1

2
= 0.02, ℎ

2

2
= 0.04,

𝑓
1

1
= 0.01, 𝑓

2

1
= 0.02, 𝑓

1

2
= 0.01, 𝑓

2

2
= 0.03,

𝑔
1

1
= 0.04, 𝑔

2

1
= 0.05, 𝑔

1

2
= 0.04, 𝑔

2

2
= 0.09.

(70)

Let ℎ = 1. Assuming that the average dwell time is 𝜏
𝑎
= 1 and

𝜇 = 1.4, then we have 𝜆∗ ≥ 1.1832. If we take 𝜆∗ = 1.2, then
we can choose 𝜆 = 1.32. By virtue of Theorem 11, the decay
rate is 𝜌

2
= 1.1. If we choose 𝜀 = 0.5 and the matrices

𝑃
1
= (

0.8 0

0 0.8
) , 𝑃

2
= (

0.2 0

0 0.2
) , (71)

we can verify the conditions

𝜀𝐼 − (
𝐸
𝑇

1
𝑃
1
𝐸
1

𝐸
𝑇

1
𝑃
1
𝐻
1

𝐻
𝑇

1
𝑃
1
𝐸
1
𝐻
𝑇

1
𝑃
1
𝐻
1

) > 0,

𝜀𝐼 − (
𝐸
𝑇

2
𝑃
2
𝐸
2

𝐸
𝑇

2
𝑃
2
𝐻
2

𝐻
𝑇

2
𝑃
2
𝐸
2
𝐻
𝑇

2
𝑃
2
𝐻
2

) > 0,

𝑍
1
= (

0.1590 0

0 0.5874
) > 0,

𝑍
2
= (

0.1493 0

0 0.2016
) > 0.

(72)
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Figure 1: State trajectories of switched systems.

From equalities (42) and (59), by using LMIs toolbox, we can
obtain the feasible solutions for 𝑄

1
and 𝑄

2
given by

𝑄
1
= (

0.2056 0

0 0.6365
) , 𝑄

2
= (

0.1609 0

0 0.3183
) ,

(73)

where

𝑅
1
= (

1.2490 0

0 1.2450
) , 𝑅

2
= (

4.9990 0

0 4.9950
) .

(74)

The initial states are given by 𝑥
0
= (2, −3)

𝑇. According to
Theorem 11, the state curves can be obtained by simulation
(as shown in Figure 1).

5. Conclusions

In this paper, we have investigated the stability for switched
time-delay systems in discrete-time domain. Several suffi-
cient conditions have been proposed by utilizing multiple
Lyapunov functions with the average dwell time. On one
hand, the exponential stability conditions have been derived
for the switched systems in the presence of time delays. On
the other hand, the exponential stability conditions have
been developed for the uncertain switched linear systemwith
time delays based on LMIs conditions. Finally, the illustrative
examples have been given to verify the main theoretical
results.

We are currently working on the switched systems with
interval time delays as well as controller synthesis methods
for such systems, in the hope that switching controller
design can in the long run offer a new look of synthesis of
systems with large and/or time-varying delays when a single
controller cannot suffice the design requirements.
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