
DRAW: A Challenging and Diverse Algebra Word Problem Set

Shyam Upadhyay
University of Illinois at Urbana-Champaign

Urbana, IL, USA
upadhya3@illinois.edu

Ming-Wei Chang
Microsoft Research

Redmond, WA, USA
minchang@microsoft.com

Abstract

We present DRAW, a dataset consisting
of 1000 algebra word problems, semi-
automatically annotated for the evaluation of
automatic solvers.1 Details of the annotation
process are described, which involves a novel
template reconciliation procedure for reduc-
ing equivalent templates. DRAW also con-
sists of richer annotations, including gold co-
efficient alignments and equation system tem-
plates, which were absent in existing bench-
marks.

We present a quantitative comparison of
DRAW to existing benchmarks, showing that
DRAW consists a wide variety of problems,
both in terms of narrative diversity and prob-
lem types. We provide a strong baseline for
DRAW using a simple yet powerful solver. We
also experimentally verify that the additional
annotations indeed improves the performance
for our automatic solver.

1 Introduction

Developing automatic solvers which can solve sim-
ple mathematical reasoning problems is a long pur-
sued sub-goal of AI (Newell et al., 1959; Bo-
brow, 1964; Mukherjee and Garain, 2008). Recent
work (Kushman et al., 2014; Hosseini et al., 2014;
Shi et al., 2015) in the NLP community has been
devoted to solving word problems, as they require
synergy across several disciplines — the automatic

1The dataset and the official train-dev-test split
can be downloaded at http://research.
microsoft.com/en-US/downloads/
5aeeacb2-8abd-4999-8ac4-9155d1f85109/
default.aspx.

systems should be able to parse natural language,
perform reasoning and model world knowledge.

A word problem is a piece of text describing a real
world scenario or a story, where mathematical re-
lationships are expressed in the narrative instead of
explicit algebraic equations. There are two steps for
solving the algebra word problems: building math-
ematical expressions (the semantic parsing compo-
nent) and answering the questions (the question an-
swering component).

The following is an example of a word problem:

Maria is now four times as old as Kate. Four
years ago, Maria was six times as old as Kate.
Find each of their actual ages now.

The input of the semantic parsing component is
a word problem (like the one above), and the de-
sired output is an equation system which expresses
the same mathematical relationship symbolically:
m = 4 × n and m − 4 = 6 × (n − 4). The ques-
tion answering component then parses the question,
like “find their ages now” or “what is the age of the
older sister” and answers according to the equation
system. Following previous work (Kushman et al.,
2014; Zhou et al., 2015), we mainly focus on the
semantic parsing component and leave the question
answering component as future work.

While there exist a few benchmark
datasets (Kushman et al., 2014; Hosseini et
al., 2014; Shi et al., 2015) for this task, they suffer
from several limitations. For example, although
the data sets proposed in (Kushman et al., 2014;
Hosseini et al., 2014) have good narrative variety,
they have limited variations in the equation systems.
On the other hand, the data set proposed in (Shi et

al., 2015) focuses on number word problems2 and
has many different types of equation systems, but
it has limited textual variations and lacks narrative.
We believe an ideal evaluation dataset for algebra
word problems should have enough diversity on
both vocabularies and equation systems, as it lends
to broad-domain mathematical reasoning.

In this paper, we describe DiveRse Algebra Word
problem set (DRAW), a new dataset with 1000 an-
notated algebra word problems over a wide range
of narratives and equation systems, thereby closing
the gap left by earlier datasets. DRAW is also the
first dataset that provides the alignments between
coefficients in equations and the numbers in the text
and annotated templates. The alignment annotations
uniquely identify the derivation of an equation sys-
tem from its template, thereby providing more reli-
able features for learning.

To summarize, the contributions of our paper are:

• We release DRAW, a challenging algebra word
problem dataset that has a rich diversity in vo-
cabulary and the types of equation systems.

• Unlike existing datasets, DRAW includes
gold coefficient alignments that are necessary
uniquely identify the derivation of an equation
system (Section 3). We also propose a novel
template reconciliation procedure and use it in
DRAW’s annotation process.

• We constructed a simple yet powerful baseline
system that achieve close to state-of-the-art re-
sults on existing datasets using only POS tag-
ging and number extraction components. We
then analyze its performance by re-training on
DRAW, to show the challenges of DRAW and
confirms the benefits of the additional annota-
tions (Section 5).

2 Preliminaries

We describe the notations and definitions used
throughout the paper. Table 1 concisely explains our
notations using an example word problem.

Let x represent an algebra word problem. Each
example in the annotated dataset provides us with a

2Number word problems describes algebraic manipulations
explicitly and are not set in a narrative. Thus such problems can
often be expressed with simple vocabularies

word problem x and an equation system expressing
the algebraic relation described in x. An equation
system consists of one or more equations.

We define a textual number as span of text in x
that indicates a numeric quantity. Some examples of
textual numbers are “two” in “two numbers”,“14” in
“14 kittens”, “one” in “one day” etc. Note that some
textual numbers need not be relevant to the prob-
lem. We use the quantities normalizer in Stanford
CoreNLP (Manning et al., 2014) and a small lexicon
that maps phrases to numbers (e.g. “half” to 0.5), to
extract all the textual numbers. The set all textual
numbers for a problem x is denoted by Q(x).

We denote an equation system using E. Note that
E only contains variables and constants. The real-
value solution(s) of the equation system can be ob-
tained by directly applying a solver3 to E.

Kushman et al. (2014) introduced the notion of an
equation system template4. We define an equation
system template as follows:

Definition 1 An equation system template T is a
family of equation systems parameterized by a set of
coefficients C(T) = {ci}ki=1, where each coefficient
ci aligns to a textual number in a word problem.

To identify an equation system belonging to the
family represents by T , we need alignments to spec-
ify the value of each coefficient. More formally,
an alignment A is a set of tuples A = {(q, c)} s.t.
q ∈ Q(x), and c ∈ C(T) ∪ {ε}.5

We use (a, b, c, . . .) to represents coefficients and
(m,n, . . .) to represent the variables.

A Universal Template? At first glance, it may
seem that only a single equation system template
should suffice for solving all algebra problems.

More specifically, consider the equation system
template:

Am+Bn = C,

Dm+ En = F.

Note that here A,B, . . . , F are not the coefficients.
In our definition, the coefficients need to be able

3We use a gaussian elimination based solver.
4We use the terms “template” and “equation system tem-

plate” interchangeably.
5The symbol ε is a special null-slot. An alignment (q, ε)

means the number q is not relevant for the final equation system.

Terms Sym Example
Problems x Maria is now four times as old

as Kate. Four years ago, Maria
was six times as old as Kate.
Find each of their actual ages
now.

Textual Number Q(x) {four, Four, six}
Equation System E m = 4×n,m−4 = 6×(n−4)
Solution n = 10, m = 40

Equation System
Template

T m − a × n = −1 × a × b +
b,m− c× n = 0

Variables v m, n

Coefficients C(T) a, b, c

Alignment A a→ 6, b→ Four, c→ four

Table 1: Notations used in this paper. Note the difference be-
tween E and T . T is more informative than E, as it is impos-
sible to distinguish between “four” and “Four” just using E in
the example above. In contrast to existing datasets, which only
provide E, DRAW also provides annotation for T and A.

to be mapped directly to the numbers in the text.
Therefore, A,B, . . . , F etc. can denote any arith-
metic expressions consisting of coefficients, which
themselves map to some textual number. For ex-
ample, A could be a complicated arithmetic expres-
sion such as (1/c2) + c1. Moreover, A and B can
share coefficients in their respective arithmetic ex-
pressions. Every combination of arithmetic expres-
sions describes a new template.

3 Data Collections and Annotations

We first discuss the annotations schema used by
DRAW. We restrict ourselves to linear equation sys-
tems.

Existing datasets (Kushman et al., 2014; Shi et
al., 2015; Hosseini et al., 2014) only include the an-
notations of the equation systems and the solutions.
Although (Kushman et al., 2014) introduce the con-
cept of equation system template and use a template-
based approach, their dataset does not have annota-
tions for templates and alignments. Unfortunately,
an equation system alone is not enough to correctly
identify the correct alignments of textual numbers to
coefficients. Indeed, the example in Table 1, shows
that we cannot disambiguate which numbers (four or
Four) aligns to which real-value coefficients in the
equation system (given that the multiple values that
are 4) using only the equation system. Therefore,
DRAW’s annotation schema includes template and

x + y = 10 (total cars)
2x+3y = 1
2(10-y)+3y = 1
20-2y+3y = 1

Figure 1: Equations crawled from the explanation given
by a user for a single problem. The equations were ex-
tracted automatically.

alignment annotations.

We now discuss the procedure of creating
DRAW in detail.

3.1 Crawling Word Problems

We crawl over 100k problems from http://
algebra.com. The 100k word problems include
some problems which require solving non-linear
equations (e.g. finding roots of quadratic equations).
As our focus in this work is to solve algebra word
problems involving a system of linear equations, we
filter out these problems using keyword matching.
We also filter problems whose explanation do not
contain a variable named “x”. This leaves us with
12k word problems.

Extracting Equations A word problem on
algebra.com is accompanied by a detailed
explanation provided by instructors, which often
includes a derivation of the relevant equations.
Ideally, one would extract the equations from the
accompanying explanation, thereby crawling both
the word problems and their equations.

In our crawler, we use simple pattern matching
rules to extract all the equations in the explanation.
In Figure 1, we shown an example of the equations
we extracted from the explanation of one problem.

The example demonstrates the difficulty of us-
ing crawled equations directly. Some of the equa-
tions are just derivations of other equations. More-
over, the equations often have explanatory annota-
tions ((total cars) above), which are some-
times difficult to distinguish from variable (e.g.
10*(total cars)). Therefore, we did not use
the extracted equations directly. Instead, we use
these extracted equations to aid manual annotations,
which we describe in detail in the next section.

3.2 Annotating Equation Systems

To aid manual annotation, we created an annotation
tool, that presents a human annotator with a semi-
clean version of a word problem and a list all the
equations extracted from the explanation. The anno-
tator can choose the correct equations from the list
of extracted equations, and clean them if necessary.
When the target equations are not in the list, the an-
notator can type the equation systems manually. We
found that the list of extracted equations helps re-
duce the annotation effort considerably.

The problems often have sentences which are ir-
relevant to solving the word problem (e.g. “Please
help me, I am stuck.”). During cleaning, the an-
notator removes such sentences from the final word
problem and performs some minor editing if neces-
sary.6

3.3 Template and Alignment Derivation

After collecting word problems and their corre-
sponding equation system, we now describe the pro-
cedure of generating the template and alignment an-
notations.

We generate the template and alignment annota-
tion simultaneously. We first use an approximate
procedure to generate a template and alignments
from a word problem x and its equation system E.
This is followed by a template reconciliation step,
which we describe later. Finally, a post processing
and cleaning is done to correct the alignments and
templates.

In our automatic procedure for generating tem-
plates, for each real-value number appearing in E,
we replace it by a coefficient c if we can find a tex-
tual number q ∈ Q(x) with the same value. At the
same time, the alignment (q, c) is added to the final
alignment set. When there are multiple valid choices
of q, we randomly pick one. It is also possible that
there are multiple real-value numbers in E with the
same value. In such cases, we assume that they all
map to the same coefficient. Note that this is an ap-
proximation procedure, and the generated template
and alignment might not be correct.

We canonicalize the generated templates so that

6In some cases, some of the numbers in the text are
rephrased (“10ml” to “10 ml”) in order to allow NLP pipeline
work properly.

the terms with variables always appear on the left-
hand side of the equation. Using this procedure, we
generate 332 templates.

Template Reconciliation The above approxima-
tion over-generates templates as it is possible for two
generated templates to be equivalent to each other.
Consider the following two templates,

m− b× n = a,m+ n = c (1)

m+ n = a,m− c× n = b. (2)

Note that the template (1) and the template (2) are
the same equation system template after renaming
coefficients. To remove the extraneous templates,
we perform a template reconciliation step. We re-
duce the number of template by seeking pairs of
templates that are equivalent to each other, and only
keep one of them. To identify such pairs, we first
formalize the notion of template equivalence.

Given two template T1 and T2 with the same num-
ber of coefficients, let γ to represent a one-to-one
mapping function that maps the coefficients of T1 to
the coefficients in T2. That is,

γ(c) = c′, c ∈ C(T1), c′ ∈ C(T2)

such that ci 6= cj =⇒ γ(ci) 6= γ(cj). In other
words, γ represents a choice of renaming the coeffi-
cients. Then, we have the following definition:

Definition 2 Let Cγ = {c′|γ(c) = c′, c ∈ C(T1)}.
Two template T1 and T2 are said to be equivalent if
and only if

1. |C(T1)| = |C(T2)|

2. There exist a mapping γ such that the equa-
tions in the template T1 can be derived from
the equation template T2 using algebraic ma-
nipulations.

In practice, we use an approximate method to de-
tect if two templates are equivalent. We generate all
possible mappings γ between the coefficient sets of
two templates, T1 and T2. Given a γ, the template
T1 parameterized by Cγ and the equation template
T2 parameterized by C(T2) share exactly the same
set of the coefficients. We then generate a random
assignment vector for these coefficients, where the
value of each coefficient ranges from -1 to 1. This

assignment describes two equation systems. If T1
and T2 are equivalent, then the solutions of these
equation systems should agree. For a given γ, we
repeat this procedure 10 times and if the solutions
agree for all 10 random assignments, we consider
these two templates to be equivalent. We checked
all possible mappings γ and see if there exists one
mapping that make two templates equivalent.

We can find some interesting reductions using the
above procedure. For example, the following reduc-
tion was found by our system:

a

b
m+

a

c
m− a =

a2

b
→ 1

b
m+

1

c
m− 1 =

a

b

After applying our procedure, we reduced the total
number of templates to 244 from 332 (a reduction of
over 25% in size).

Post-Processing and Cleaning After the reduc-
tion is done, we manually go over the template and
fix the template and alignment mistakes. After fix-
ing the template, the annotators might introduce an
unseen template that is equivalent to existing ones.
Therefore, we re-run the template reconciliation pro-
cedure one more time to finalize the dataset. Finally,
the total number of template is 238.

4 Comparisons to Existing Datasets

In this section, we compare DRAW to existing word
problem datasets and highlight its unique properties.

Existing Datasets We compare DRAW to ALG-
514 (Kushman et al., 2014) and VERB-395 (Hos-
seini et al., 2014). We briefly describe ALG-514
and VERB-395 first, and discuss the relatively new
dataset DOLPHIN (Shi et al., 2015) later.

Alg-514 consists of 514 problems, ranging over
a variety of narrative scenarios, including distance-
speed, computing cost, object counting, simple in-
terest etc.7 Evaluation on ALG-514 is performed
using manually chosen splits for cross-validation,
where the splits are chosen so as to avoid unseen
templates.

7We also augment this dataset with our annotation by run-
ning our template reconciliation procedure and adding the gold
alignments. The new annotations are released in the same URL
as well.

Dataset DRAW ALG-514 VERB-395
of templates 232 24 3
of problems 1000 514 395
Vocab8 2.48k 1.97k 1.10k
of problems
of templates 4.31 21.41 131.67
of words 35.3k 19.3k 12.4k
of sentences 2.67k 1.61k 1.13k

Table 2: Comparison of statistics of DRAW, ALG-
514 (Kushman et al., 2014),VERB-395 (Hosseini et al.,
2014). See text for details and the comparisons to DOL-
PHIN (Shi et al., 2015).

We also compare to Verb-395, which is a dataset
aimed at simpler mathematical relationships ex-
pressed through arithmetic word problems. Arith-
metic word problems can be viewed as a special case
of algebra word problems, involving only one un-
known variable. Evaluation on VERB-395 is also
done using manually created splits, where the splits
are chosen to test robustness to different dataset
types.

Some statistics for all the datasets are shown in
Table 2. We now analyze these along the following
dimensions:

Template Diversity It is desirable to have a di-
verse set of equation system templates in a dataset.
Otherwise, with a small template vocabulary, an au-
tomatic solver can simply memorize template spe-
cific rules for each template. We use size of the
template vocabulary as a measure of diversity in the
equation systems templates (i.e. equation-side vari-
ation) in the dataset.

In Table 2, it is clear that DRAW has the most
number of templates. Surprisingly, the number of
templates in DRAW is around 10 times that of the
number of templates in ALG-514, whereas the num-
ber of problems is only around twice as large. The
reason behind this is that in DRAW, we do not re-
move the problems with rare templates, as we be-
lieve that it is closer to the real-word settings.9

We also estimate the template diversity by the av-
erage number of problems which share the same
template. This metric for DRAW is only 4.31, while

8Vocabulary was computed after removing all numbers in
the text, as we are only looking for textual variation

9Kushman et al. (2014) removed problems whose template
appeared less than 6 times in their dataset.

for ALG-514 and VERB-395, this metric is 21.41
and 131.67 respectively.

Narrative Diversity Another desirable property
of an evaluation dataset is that it should be textu-
ally diverse. In Table 2, we can see that DRAW uses
the largest non-numerical vocabulary. Given that
DRAW consists of problems with a wide array of nar-
rative scenarios, an automatic solver needs to learn
how to ground various natural language expressions
that lead to the same mathematical expression.

Comparison to Dolphin DOLPHIN (Shi et al.,
2015) is a new dataset that has a different goal com-
pared to DRAW. Unlike ALG-514, DOLPHIN fo-
cuses on number word problems. An example of a
number word problem is:

The difference between two numbers is 8.
Five times the larger number is 4 more than
8 time the other. Find the numbers ?

As we can see, number word problems express re-
lationships between numbers, but solving them re-
quires very little background knowledge. The nature
of the number word problems restrict the size of the
vocabulary, which explains why DOLPHIN has 1233
linear problems but only 0.69k words in its vocabu-
lary. Therefore, although Dolphin also has impres-
sive amount of variety in the equation systems, its
vocabulary is the smallest of all of the datasets. This
restricts its ability to evaluate the generalization of
an automatic solver to broad domain mathematical
reasoning problems.

4.1 Comparison with ALG-514

Among all the existing datasets, DRAW is most sim-
ilar to ALG-514 as we both focus general algebra
word problems. Moreover, several works have used
ALG-514 as the benchmark dataset, so it is worth-
while to analyze the differences between ALG-514
and DRAW in detail.

We draw the template distribution for both ALG-
514 and DRAW in Figure 2. In the Figure 2(a), we
plot the proportion of problems that can be solved
by a given template, for the top 10 templates. ALG-
514 suffers from a skewed distribution of templates
favoring one template, which appears in more than
25% of the problems. For DRAW, the top template
only accounts for less than 10% of the problems.

0 2 4 6 8 10
0

0.1

0.2

Equation System Template ID

Pr
op

or
tio

n
of

th
e

da
ta

se
tu

si
ng

th
is

te
m

pl
at

e

DRAW

ALG-514

(a)

0-5 5-10 10-

0

50

100

150

200 196

17 19
0

12 12

Number of problems

#t
em

pl
at

e

DRAW ALG-514

(b)

Figure 2: Comparison of the template distributions of
DRAW and ALG-514. (a) We list the top 10 popular tem-
plates and show the proportion of the entire dataset which can
be solved using these templates. (b) We list the number of tem-
plates appeared in less than 5 problems, 5-10 problems, and
more than 10 problems, respectively.

In Figure 2(b), we bin the templates by the num-
ber of problems they appear in. It is clear that
ALG-514 lacks rare templates (frequency < 5). On
the other hand, a large proportion of templates in
DRAW were seen in less than 5 problems. As rare
templates appear naturally in a broad-domain prob-
lem solving setting, it is desirable to have a bench-
mark dataset which contains a long tail of rare tem-
plates.

We believe DRAW evaluates ability to generalize
to rare templates and model textual variation in a
more realistic setting than existing datasets.

5 Experiments

We first describe an automatic solver which achieves
near state-of-the-art performance on existing bench-
marks. Then we re-train the same solver on
DRAW to provide a strong baseline. Our experimen-
tal results show that there are still a lot of room to
improve performance on DRAW.

Moreover, we empirically show that template
reconciliation and the additional alignment annota-
tions, which are unique to the annotation schema of
DRAW, prove valuable in learning better solvers.

Baseline Solver We describe a simple automatic
solving system that we use in our experiments.

We train our model using the structured percep-
tron algorithm (Collins, 2002). In our inference al-
gorithm, we first use our model to select the top 10
templates. Note that the templates are chosen from
the set of training templates only, and hence this
model does not have access to the templates in the

test data at all. After this step, all of the derivation
for the chosen templates are generated and ranked
by the model.

Following (Zhou et al., 2015), we do not model
the alignment of nouns phrases to variables and
hence our search space is small enough for the in-
ference to be tractable.

Evaluation We use solution accuracy as the eval-
uation metric in all our experiments. Given a refer-
ence solution G = (u1, u2, ...), and a system output
P = (v1, v2, ...), we execute the following:

1. If |G| 6= |P |, the solution is incorrect. Other-
wise,

2. Sort P and G. If the maximum difference be-
tween corresponding positions in G and P is
smaller than 0.001, the solution is correct.

Note that our evaluation is stricter than the stan-
dard evaluation adopted by (Kushman et al., 2014;
Zhou et al., 2015).10 To ensure fair comparisons,
we use the relaxed version when conducting experi-
ments on ALG-514.

Results on ALG-514 and VERB-395 We first dis-
cuss results on ALG-514 and VERB-395. We eval-
uate our system under the standard setting of 5-fold
cross validation and 3-fold cross-validation respec-
tively, in order to ensure fair comparison with other
systems. Recall that the folds for ALG-514 and
VERB-395 were manually created, and we use the
folds provided by the authors. The results are re-
ported in Table 3.

Dataset Ours KAZB11 ZDC12 ARIS 13

ALG-514 78.2 68.7 79.7 N/A
VERB-395 78.3 64.0 N/A 77.7

Table 3: Comparison of our baseline system and other
state-of-the-art systems. Results are averaged accuracy
using 5-fold cross-validation on the ALG-514 dataset and
3-fold cross-validation for the VERB-395 dataset.

10The standard evaluation for ALG-514 only checks if there
exists an element in P that is close enough for each element in
G. In other words, the requirement |G| = |P | is relaxed. It
is important to notice that solution accuracy only evaluates the
performance of the semantic parsing components rather than
the question answer component given that the ordering of the
answers is disregarded.

Setting Dev Test
DRAW 53.5 55.0
DRAW + ALG-514 53.0 53.5

Table 4: Results on DRAW. Note that adding ALG-514
does not improve performance.

Although our system does not use features from
a dependency parser and a coreference system, the
performance of our system is competitive to the
state-of-the-art system of (Zhou et al., 2015) on
ALG-514. On VERB-395, our baseline solver is
also competitive to previous state-of-the-art system
of (Hosseini et al., 2014), despite using very few re-
sources.

Results on DRAW We randomly split14

DRAW into train (600), dev (200) and test (200)
examples, and re-train the baseline solver on the
train split. Table 4 shows the results of the re-trained
baseline solver on DRAW.

The baseline solver, which was achieving near
state-of-the-art accuracy on ALG-514, achieves
only 55 % on our dev and test split, which is about
25% lower than the performance on ALG-514 de-
spite the fact that the size of training data is larger.
It is evident that there is a lot of room for improve-
ment on DRAW.

The result may appear surprising, given that both
ALG-514 and DRAW are crawled from Algebra.
com. But, as we analyzed in Section 4, DRAW has a
wide variety of problems and textual variation, mak-
ing it a harder evaluation setting than ALG-514.

A natural question to ask is what happens if we
include ALG-514 in our training split. Interestingly,
adding examples ALG-514 from does not improve
the solution accuracy (Table 4). A possible explana-
tion is that the template distribution of ALG-514 is
quite different from that of DRAW.

Value of Annotations and Reconciliation To
show the value of the additional alignment annota-
tions and the template reconciliation, we first run
experiments with the approximate procedure of find-
ing alignments and templates automatically from the

11The system of (Kushman et al., 2014)
12The system of (Zhou et al., 2015)
13The system of (Hosseini et al., 2014)
14We release these splits with the dataset.

DRAW Dev Test
(1): auto template alignment deduc-
tion

47.5 54.0

(2): (1) + template reconciliation 51.0 54.5
(3): (2) + gold alignment 53.5 55.0

Table 5: Contributions of our additional annotations.

word problem and the equation system. In the sec-
ond experiment, we add the template reconciliation
module, which allows the solver to operate with a
smaller template space. Finally, we run the system
with both reduced template space and gold align-
ments. From the results in Table 5 we can see that
both template reconciliation and alignment annota-
tions improve accuracy consistently, justifying the
need for these annotations.

6 Conclusion

We have described DRAW, a new dataset for alge-
bra word problems which provide richer annotations
and wider variety than existing benchmarks. We
hope that DRAW enables a more realistic and exten-
sive evaluation of automatic solvers for word algebra
problems.

References

Daniel G. Bobrow. 1964. A question-answering system
for high school algebra word problems. In Proceed-
ings of the October 27-29, 1964, Fall Joint Computer
Conference, Part I, AFIPS ’64 (Fall, part I), pages
591–614, New York, NY, USA. ACM.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms.

Javad Mohammad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533. Association for Computational Lin-
guistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281. Association for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Anirban Mukherjee and Utpal Garain. 2008. A re-
view of methods for automatic understanding of nat-
ural language mathematical problems. Artif. Intell.
Rev., 29(2):93–122.

Allen Newell, John C Shaw, and Herbert A Simon. 1959.
Report on a general problem-solving program. In IFIP
Congress, pages 256–264.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving num-
ber word problems by semantic parsing and reason-
ing. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages
1132–1142, Lisbon, Portugal, September. Association
for Computational Linguistics.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quadratic
programming. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 817–822, Lisbon, Portugal, September. As-
sociation for Computational Linguistics.

