
Identification of Refused Bequest Code Smells

Elvis Ligu, Alexander Chatzigeorgiou, Theodore Chaikalis, Nikolaos Ygeionomakis
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

{mai1315, achat, chaikalis}@uom.edu.gr, nygeion@gmail.com

Abstract—Accumulated technical debt can be alleviated by
means of refactoring application aiming at architectural
improvement. A prerequisite for wide scale refactoring
application is the automated identification of the corresponding
refactoring opportunities, or code smells. One of the major
architectural problems that has received limited attention is the
so called 'Refused Bequest' which refers to inappropriate use of
inheritance in object-oriented systems. This code smell occurs
when subclasses do not take advantage of the inherited behavior,
implying that replacement by delegation should be used instead.
In this paper we propose a technique for the identification of
Refused Bequest code smells whose major novelty lies in the
intentional introduction of errors in the inherited methods. The
essence of inheritance is evaluated by exercising the system's
functionality through the corresponding unit tests in order to
reveal whether inherited methods are actually employed by
clients. Based on the results of this approach and other structural
information, an indication of the smell strength on a
'thermometer' is obtained. The proposed approach has been
implemented as an Eclipse plugin.

Keywords—software maintenance; refactoring; code smell;
Refused Bequest

I. INTRODUCTION
One of the most challenging activities, in terms of cost and

effort, in the lifecycle of contemporary software systems is the
process of maintenance, an inevitable consequence of software
evolution. From the perspective of quality, as software
systems evolve, their original architecture usually deteriorates
due to the fact that design and implementation decisions are
taken under time pressure. To confront software degradation
over time, code and design refactorings can offer significant
aid by improving the internal structure of a software system
without changing its external behavior [2]. The application of
a refactoring can eliminate specific architectural anomalies or
principle violations, widely known as “code smells”, and
restore the code structure that exhibited a smell, to an
acceptable level of quality. However, while the mechanics for
the application of each refactoring have been defined in detail
[2], the identification of code smells that should be refactored
is a non-trivial, time-consuming and challenging activity. To
this end, a number of automated tools for the identification of
code smells and the facilitation of software maintainers have
been developed [6], [10].

In the context of object-oriented systems, the notion of
inheritance has been recognized as a key feature claimed to

reduce the amount of software maintenance. However,
inheritance is not a panacea, especially if it is applied
incorrectly in cases where other forms of relationships would
be more appropriate. The Refused Bequest code smell
concerns an inheritance hierarchy where a subclass does not
support the interface inherited from its parent class [2]. More
precisely, this smell is present if the functionality inherited by
the subclass is not utilized by its clients nor specialized by
means of overriding. In other words, the relation between the
superclass and the subclass does not constitute an “is-a”
relationship. The appropriate refactoring is the “Replace
Inheritance with Delegation” [2] which dictates to transform
an inheritance relationship into composition where the
subclass contains a reference to an object of the superclass and
uses only the desired functionality. This refactoring is in
agreement to the GoF suggestion “Favor Composition over
Inheritance” [3]. It can be deduced that the Refused Bequest
bad smell cannot emerge in abstract classes or interfaces.

This paper proposes a methodology for the identification
of the Refused Bequest smell that employs static source code
analysis for the identification of suspicious hierarchies and
dynamic unit test execution for the determination of
subclasses that actually exhibit the smell. Identified smells are
sorted according to their intensity based on criteria such as the
number of overridden methods, the invocation of superclass
methods and the results from test execution. Smell
interpretation is facilitated by a “Smell Thermometer” which
depicts graphically the intensity of the smell. The approach
has been implemented as an extension on the JDeodorant
Eclipse plug-in [4] and is evaluated on an open-source project.

II. KEY CONCEPT
The key idea behind the proposed identification technique

lies in the detection of whether a subclass in a given hierarchy
actually "wants to support the interface of the superclass" [2].
Refusing an inherited interface, in the sense that clients of the
subclass do not invoke any of the inherited functionality (but
rather access only new functionality) is a relatively clear sign
of Refused Bequest. There are numerous factors that come
into play and indicate whether the use of inheritance is
justified or not, but the notion of "refusing" the inherited
behavior implies that the particular generalization does not
have the properties of an "is-a" relationship.

This is a property that in general is hard to assess without
relying on human expertise and thus is difficult to automate.

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.55

392

However, we could rely on the potential invocations of
subclass' methods from the rest of the classes to detect
whether inherited methods (and consequently the interface of
the superclass) are actually exploited by the subclass. This
concept is illustrated with the help of Fig. 1 where inherited
and additional methods of Beta can be accessed by the Client.

+ m4()
+ m5()

Beta
Client

+ m1()
+ m2()
+ m3()

Alpha

class Client {
 private Beta ref;
 public void foo() {
 . . .
 ref = new Beta();
 ref.mX();
//where X is any of 1..5

 . . .
}

}

Fig. 1. Client accessing subclass methods.

According to the Dependency Inversion Principle [7] the
proper scenario should be a client holding a reference to the
superclass to exploit the benefits of polymorphism. However,
in case the subclass contains additional methods, these can
only be assessed by a client holding a reference of type Beta.

If the Client is to invoke only the additional methods of
class Beta (m4 and m5) without never calling the inherited
superclass methods (m1, m2 or m3), and the same holds for all
clients of class Beta, it appears that the subclass somehow
"denies" the inherited interface implying that generalization
might not be appropriate (instances of Beta are not used as
specializations of Alpha entities). The role of other
parameters such as overriding and invocations of superclass
methods through super will be discussed in the next section.

One way to detect whether superclass methods are actually
invoked on subclass instances, is to override these methods in
the subclasses and intentionally introduce an error in the
corresponding implementation (such as a division by zero). If
the corresponding method is invoked anywhere in the code
base on instances of the subclasses, then, in case of overriding,
the overridden methods will be invoked instead, causing an
easily observable failure. If, despite the introduction of errors,
the execution of all system scenarios does not lead to any
failures, it can be concluded that the inherited superclass
methods would not be actually used on any of the subclasses,
providing a strong hint for the presence of Refused Bequest.

Actual System Modified System (for test)

public interface
which is
inherited

Alpha

+ m1()
+ m2()
+ m3()

Beta

+ m4()
+ m5()

e

Is the subclass
using the
inherited
interface?

 Alpha

+ m1()
+ m2()
+ m3()

Beta

+ m1()
+ m2()
+ m3()
+ m4()
+ m5()

1. superclass
methods overriden
2. errors
introduced in them

 (a) (b)

Fig. 2. (a) Inheritance relation under investigation, (b) Error insertion.

The proposed approach is illustrated in Fig. 2. Assuming
that a subclass inherits behavior (Fig.2(a)), the question is
whether the subclass actually uses the inherited interface. In
Fig. 2(b) the non-overridden methods are now implemented in
the subclass with errors deliberately introduced in them. If the
execution of system functionality exhibits failures, it means
that the overridden and faulty methods are invoked. In this
case it can be concluded that in the initial system the inherited
interface is not "Refused" and thus the smell is not present.

To exercise the system's functionality in order to reveal
whether the inherited methods are invoked on instances of a
subclass one could either rely on a) manually invoking all
system functionality, b) executing specific methods that aim at
demonstrating a large portion of the system's functionality and
c) executing test cases within a project, assuming that a
sufficient level of coverage is provided. We have relied on the
third alternative since the execution of test cases can be
automated and because for several open-source projects unit
tests cover a large portion of the corresponding code base.

In contrast to other detection techniques which rely only
on static analyses, the proposed approach can reveal dynamic
information which is crucial for determining whether an
inheritance relationship is appropriate or not. For example,
polymorphic method invocations which totally justify the use
of generalization, can only be detected by dynamic analysis.

III. SMELL THERMOMETER
As already mentioned, the proposed approach takes several

factors into account to assess the smell intensity. Based on the
findings the following classification is obtained:

a) Abstract Superclass or Interface
When a designer employs a generalization relationship and

places an abstract class or an interface on the root of the
hierarchy, his/her intention is rather clear: The goal is to apply
the Dependency Inversion Principle and essentially to allow
polymorphic behavior where the public interface of the base
abstract class (or interface) is implemented by a corresponding
subclass. In these cases it is theoretically impossible to
encounter a Refused Bequest symptom, since the same benefit
cannot be achieved by other means. In other words, it is
clearly evident that the employed generalization is on purpose,
well-designed and constitutes an "is-a" relationship. When the
superclass is neither abstract nor an interface, the following
cases can be distinguished.

b) Overriding and Failures
In this case one or more superclass methods have been

overridden. Moreover, when exercising the system
functionality failures emerged because of the introduced
errors. Here, we have two clear indications that the presence
of Refused Bequest is highly improbable. First, since the
designer re-implemented methods which have been inherited
to provide functionality that is specific to the subclass, it can
be deduced that the goal is to enable polymorphism. Second,
the presence of errors indicates that the inherited methods are
invoked on instances of the subclass, i.e. the inherited
functionality is actually employed. Thus, we can conclude that
generalization is appropriately applied and cannot be replaced.
The picture in the following cases is less clear.

393

c) Some overriding and No failures
A first indication that Refused Bequest might be present is

the lack of failures in the executed test cases. This means that
(assuming that the test cases provide complete coverage) no
method in the entire system has invoked inherited methods on
subclass instances. In other words, subclasses exhibit signs of
refusing the inherited interface. However, if at the same time
one or more of the superclass methods are overridden in the
subclass, the symptom is alleviated. Overriding allows
polymorphism, something which would not be possible in case
inheritance is replaced by delegation. Therefore, we consider
this situation as a mixed case where only limited signs of
Refused Bequest can be diagnosed.

d) No overriding, some failures and invocation of super
When the subclasses in a generalization do not override

superclass' methods, the inherited interface is no longer
specialized by the descendants in the hierarchy. As a result the
designer's intention deviates from the goal of enabling
polymorphic behavior or conforming to the requirements of a
design pattern such as State, Strategy or Template Method. On
the other hand, the presence of failures which implies that the
inherited methods are invoked on subclass instances, is a sign
towards the opposite direction. Since the subclass does not
override superclass methods, the only alternative left (for an
hierarchy to be meaningful) is to introduce additional methods
to the subclass. This particular case can be further categorized,
depending on whether the introduced subclass methods invoke
superclass methods through the super keyword. Although
method invocations through super could be refactored in case
inheritance is replaced by delegation [5], the presence of the
super keyword is an indication of a certain degree of reuse.
Consequently, we consider the presence of superclass method
invocations as a (relatively weak) indication that inheritance
might be appropriate, at least in comparison to the next case.

e) No overriding, some failures and No invocation of super
Here, the only difference to the previous case is the lack of

superclass method invocations in the additional methods of the
subclass. In combination with the lack of overridden methods,
these characteristics imply an even stronger probability that a
Refused Bequest symptom actually exists. In fact, only the
occurrence of some failures due to the introduced errors points
to the opposite direction.

f) No overriding, No failures
This case constitutes the stronger indication that the

Refused Bequest smell exists in the examined hierarchy. Here,
no superclass method is overridden, none of the inherited
methods is actually used on instances of the subclass and none
of the additional subclass methods contains a superclass
method invocation. In other words it appears as if the subclass
refuses any connection to its superclass and the corresponding
generalization can hardly be characterized as an "is-a"
relationship. No argument in favor of inheritance can be made
and the hierarchy can be safely refactored to delegation [5].

All of the aforementioned symptoms according to which
the strength of the Refused Bequest smell can be deduced, are
summarized visually in the Smell Thermometer of Fig. 3. The
higher the "temperature" gets, the stronger the smell is.

oC

0

10

20

30

40

Abstract Superclass / Interface

- Overriding
- Failures

- Some overriding
- No failures

- No overriding
- Some failures
- invocation of super

- No overriding
- Some failures
- No invocation of super

- No overriding
- No failures

R
ef

us
ed

 B
eq

ue
st

 In
di

ca
to

r

Fig. 3. Refused Bequest Thermometer.

To facilitate the identification of Refused Bequest smells
we have extended the JDeodorant Eclipse plugin [4]. The
plugin1 enables the user to select either an entire Java project
or a particular package, execute the identification and observe
the findings, ordered by smell severity. The identification
relies on the representation of the project under study as an
Abstract Syntax Tree (AST) provided by the Eclipse JDT API.

IV. CASE STUDY AND THREATS TO VALIDITY
The developed plugin has been applied on SweetHome3D

(v.4.0) which is an open-source Java interior design
application. Size properties are shown in Table I. The
approach revealed one characteristic example shown in Fig. 5.

TABLE I. OVERVIEW OF SWEETHOME3D SIZE METRICS

LOC
NUMBER

OF
PACKAGES

NUMBER
OF

CLASSES
NUMBER OF
OPERATIONS

NUMBER OF
INHERITANCE
HIERARCHIES

NUMBER
OF TEST
CASES*

76730 9 460 3360 69 42
*These tests act as integration tests exercising a large portion of software features.

URLContent

 5 public methods

TemporaryURLContent

No overriden methods
No new method

HomeURLContent

No overriden methods
No new method

ResourceURLContent

No overriden methods
1 new method

1 Error 33 Errors

0 clients invoking
inherited methods
on instances of
the subclasses

Fig. 4. No overriding, No failures case in SweetHome3D (Refused Bequest).

A URLContent enables the retrieval of resources from a
Uniform Resource Locator. TemporaryURLContent is
supposed to extend the URLContent parent class. However it
provides no additional methods and consists of a single
constructor and a single static method. No methods of the
superclass are invoked through super. Overriding all 5
inherited methods and introducing errors into them has not led
to any failure in the execution of JUnit test cases. Since there
is no opportunity for polymorphic behavior and no use of the

1 The plugin can be downloaded from http://java.uom.gr/ref_bequest/

394

inherited methods, it appears that this particular case exhibits
the symptoms of a clear Refused Bequest. Even refactoring by
means of delegation seems to make no sense for this case.

A similar, however slightly different observation can be
made for the HomeURLContent subclass. Once again, no
additional method is introduced. However when executing the
test cases, one error was generated because of the flawed
overriding of the superclass methods, implying that one of
these methods has been invoked on a subclass instance. The
symptom of Refused Bequest still exists since the rest of the
superclass interface is refused by the subclass. In any case the
intensity of the smell is lower than in the previous case.

Concerning the ResourceURLContent class, one
additional method is introduced. More important is the fact
that the introduction of errors in the overridden methods
generated 33 failures, implying that the inherited interface is
heavily used by clients of the subclass. As a result, Refused
Bequest is hardly present. The only evidence that
generalization is not exploited as much it could be, is the lack
of any overridden methods (prohibiting essential
polymorphism) and the lack of superclass method invocations.

The proposed detection process is based on the assumption
that unit tests exercise thoroughly the system's functionality to
reveal whether the inherited methods are actually invoked on
instances of a subclass. This could impose a threat to construct
validity which deals with how well the selected measures or
tests can stand in for the concepts of interest. In particular, the
exercised unit tests might not invoke the inherited methods on
instances of the subclasses of interest and false positives might
emerge. In other words, the introduced errors might not lead to
test failures just because the unit tests have not been designed
to cause the invocation of the corresponding methods and not
because they are not actually utilized in the system. To
mitigate this threat it is advised to perform the identification
on projects with extensive test coverage, something which
becomes typical for contemporary software projects.

V. RELATED WORK
Although the frequency of the Refused Bequest smell is

relatively low, it has been investigated by several researchers.
Some works explicitly target the Refused Bequest smell, while
others treat more general inheritance related problems. Zhang
et al. [11] performed a literature review regarding approaches
in the field of code smell detection and refactoring. According
to their findings, 11 out of 39 relevant papers (28%), deal
either with the identification or the removal of Refused
Bequest. The need to analyze an hierarchy’s clients to find out
the original intention of a generalization has also been
emphasized in [8]. Stefan Slinger [9] developed the CodeNose
Eclipse plug-in which is capable of identifying the Refused
Bequest smell by examining subclasses and the methods that
they may override. Refused Bequest can also be identified by
the detection strategy proposed by Marinescu [6] relying on a
combination of selected code metrics and the definition of
appropriate thresholds. Tourwe and Mens [10] employed logic
meta-programming for the identification of Inappropriate
Interfaces, which are unclear or incomplete interfaces
hindering the evolution of hierarchies in a way that favors

polymorphism. Arevalo et al. [1] in their smell identification
approach, which is based on Formal Concept Analysis, refer to
this type of smell as “Unanticipated Dependency Schemas”.
Kegel and Steimann [5] defined pre and post conditions for
the application of the “Replace Inheritance with Delegation”
refactoring to alleviate the Refused Bequest smell.

VI. CONCLUSIONS
Code smell detection is an extremely challenging

maintenance task because it involves both static analysis for
parsing structural code properties as well as dynamic
examination of the context in which a particular code structure
is being used. In this paper we have attempted to confront the
problem of diagnosing Refused Bequest smells, employing a
combination of static and dynamic analyses. The key
contribution lies in the introduction of intentional errors in the
non-overridden inherited methods, enabling designers to
determine whether a subclass refuses the inherited interface or
not. Measuring symptom severity on a smell thermometer can
highlight suspect hierarchies that warrant further attention. We
believe that the concept of intentionally introduced errors and
the inspection of the resulting software behavior by means of
test case execution can be generalized for the detection of
other architectural problems.

ACKNOWLEDGMENT
This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework
(NSRF) – Research Funding Program: Thalis – Athens
University of Economics and Business - SOFTWARE
ENGINEERING RESEARCH PLATFORM.

REFERENCES
[1] G. Arévalo, S. Ducasse, and O. Nierstrasz, "Discovering unanticipated

dependency schemas in class hierarchies," 9th European Conference on
Software Maintenance and Reengineering, UK, March 2005, pp. 62-71.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[4] JDeodorant, http://www.jdeodorant.com, June 2013.
[5] H. Kegel, and F. Steimann, “Systematically refactoring inheritance to

delegation in java,” 30th IEEE/ACM Int. Conference on Software
Engineering, Leipzig, Germany, May 2008, pp. 431-440.

[6] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” 20th IEEE Int. Conference on Software Maintenance,
Chicago Illinois, USA, September 2004, pp. 350–359.

[7] R.C. Martin, Agile Software Development: Principles, Patterns and
Practices. Prentice Hall, 2003.

[8] P. F. Mihancea, “Towards a Client Driven Characterization of Class
Hierarchies”, 14th IEEE Int. Conference on Program Comprehension.
Athens, Greece, June 2006, pp. 285-294.

[9] S. Slinger, “Code Smell Detection in Eclipse,” Ph.D. Thesis, Delft
University of Technology, March 2005.

[10] T. Tourwe and T. Mens, “Identifying Refactoring Opportunities using
Logic meta programming,” 7th European Conference on Software
Maintenance and Reengineering, Italy, March 2003, pp. 91-100

[11] M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: a review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179–202, 2011.

395

