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Abstract 
This paper analyzes the optimal level of 

operations on a single runway used only for arrivals. 
Two risks associated with landing procedures are the 
risk of a wake vortex encounter and the risk of 
simultaneous runway occupancy. We develop 
optimization models to maximize successful landing 
operations while mitigating these risk factors. The 
risks are mitigated by enforcing go-around 
procedures when separation distances are too small. 
In our capacity optimization, we assume that the go-
around procedures are strictly enforced (making the 
operations risk-free) and their execution is absolutely 
safe. We develop two models as decision support 
tools which mimic the system dynamics and provide 
new insights into the landing process. One model 
maximizes the risk-free throughput (number of 
successful landings per unit of time) with and without 
wake-vortex effects. The second model accounts for 
dollar benefits and go-around costs in optimizing the 
system operations’ level. This model maximizes 
expected net economic outcome (total dollar benefits 
minus total go-around costs) by adjusting the rate of 
landing attempts. Through these models, we calculate 
the maximum (risk-free) achievable throughput in the 
system. This provides a new definition of the landing 
capacity of the runway taking into account the 
probabilistic behavior of operations. Several 
numerical examples are given. 

1 Introduction 
There is increasingly high demand for runway 

slots (landing or departure) during peak periods at 
congested airports. The expense of runways and the 
high demand have made them very limiting and 
economically valuable resources of the air 
transportation network. The limitation of runway and 
airport capacity is a major cause of delays in the 
network. Thus, it is desirable to obtain the maximum 
possible output of the runway operations. The 
objective of this paper is to understand the 
probabilistic dynamics of landing operations and to 
estimate runway capacity based on these dynamics 

while also considering go-around procedures to 
mitigate risk. 

There are extensive studies regarding capacity 
estimations and throughput maximizations of 
airports, see Gilbo [1], for example. Railsback et al. 
[2] provides an overview of methods and tools used 
to estimate runway capacities. Our study is focused 
on landing/approach operations only. Early studies of 
landing capacity go back to the 1940’s when runways 
became congested and delays became a concern. 
Capacity is commonly considered a constant rate as 
the reciprocal of the minimum-allowed / safe-time 
spacing between aircraft, Bowen, et al. [3], and Bell 
[4]. In a classical capacity study, Blumstein [5] 
focused on landings under instrument flight rules 
(IFR) when an aircraft separation is required prior to 
the final approach and the velocity differences cause 
loss of capacity. In a more recent study, Lang et al. 
[6] studied the possibility of increasing throughput by 
using cross-wind information in sequencing the 
landings on closely spaced parallel runways. They 
studied the effect of safe reducing wake vortex 
separation minima. Some other works and tools are 
used to evaluate the capacity and delay benefits of 
different operating scenarios, for example Boesel [7].  

This study is concerned with optimization of 
landing operations on a single runway for a given 
pair of follow-lead aircraft, large-large for example. 
In this paper, two major safety risks in aircraft 
landing procedures are considered. These are the 
risks of a wake vortex (WV) hazard and the risk of 
simultaneous runway occupancy (SRO). A wake-
vortex hazard occurs when the following aircraft 
enters the wake vortex of its leading aircraft. When 
the wake is strong enough, the encounter may cause a 
loss of control, which may result in passenger injuries 
or even fatalities. SRO risk is the probability that a 
following aircraft reaches the runway threshold 
before the leading aircraft exits the runway. SRO is a 
precursor for a physical collision on the runway. 
These risks are to be avoided to assure a safe landing. 
Separation requirements to mitigate these risks are 
the major constraints on the capacity of the runway. 

Existing probabilistic approaches to this 
problem study the relation between these risks (or 
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safety) and throughput rate, see for example Xie, et 
al. [8], Xie [9], Levy [10]. The maximum throughput 
occurs at the point of maximum allowable risk. For 
example, Jeddi et al. [11] illustrate a methodology for 
the case of a restricted SRO probability. In that paper, 
the probabilistic nature of aircraft separation is 
considered and the maximum throughput is set so 
that the probability of a SRO equals some pre-
specified small value. However, the SRO risk was 
not completely eliminated from the operations. In this 
paper, we eliminate these risk factors from the 
operations by considering “go-around” (GA) or 
“missed approach” procedures, Nolan [12]. We 
assume that such procedures are strictly enforced and 
respected whenever the separation distance is below a 
specified threshold. The optimal level of operations is 
determined to maximize the number of successful 
landings, while also considering (and minimizing) the 
number of arriving aircraft that must take a go-
around. Numerical examples here are based on 
probability distributions of landing time interval 
(LTI) and runway occupancy time (ROT) for Detroit 
Metropolitan airport estimated in Jeddi et al. [13]. 
These distributions are for the pairs with 3 nmi FAA 
minimum separation standard [14], [15]. 

The paper is organized as following. Section 3 
explains GA enforced or risk-free landing operations. 
Section 3 formulates a model to maximize landing 
throughput. Section 4 formulates another model to 
find the optimal level of operations to maximize the 
economic output. Section 5 presents conclusions and 
proposals for future research. 

Notation 
The following notations are used throughout the 

paper. The input parameters are: 

LTIk,k+1 landing time interval between aircraft k and 
k+1 measured at the runway threshold in 
seconds and assumed to have the lower limit  
L 

ROTk  runway occupancy time of aircraft k 
measured in seconds 

R dollar benefit of one successful landing 

C expected average cost of a go-around or 
unsuccessful landing 

x0 minimum wake vortex safe separation of 
successive aircraft given in seconds 

DP1 decision point 1; nmi distance from 
threshold where pilot/controller decides 
whether to execute go-around procedure to 

avoid SRO. This is officially referred to as 
decision height. 

DP2 decision point 2; nmi distance from 
threshold where pilot/controller decides 
whether to execute go-around procedure to 
avoid hazardous wake vortex encounter 

The decision variables are 

ω landing attempts per hour, i.e., flow rate 
through the glide slope, and 

( )LTImean3600=ω  
λ arrival rate to TRACON or, equivalently, the 

runway throughput rate, landing per hour 

p probability of go around P{GA} 

 
2 Risk Free Landing (Go Around 
Enforced) 

It is desired that the chance of a simultaneous 
runway occupancy or a WV hazard, i.e., moderate or 
severe encounter, be nearly or exactly zero. In 
conventional models in the literature, increasing the 
target separation between successive aircraft 
decreases these two risks. This relationship is studied 
by many authors, for example see [6]-[8]. The risk 
can also be reduced by implementing go-around 
procedures. For example, if two aircraft will be on 
the runway at the same time, the trailing aircraft can 
execute a go-around procedure to avoid a SRO. In 
reality, the go-around is not always taken. 

In this paper, we assume that an aircraft is 
always enforced to execute a go-around whenever 
separation minima are not or will not be met. This 
will be discussed later in this article. In addition, we 
assume perfect information to make this decision. 
With these assumptions, the risk of a SRO or a wake-
vortex hazard is exactly zero, though there is possibly 
an increase in the number of go-arounds. 

Making the system risk-free by enforced GA 
creates a different dynamic and may change the 
optimal level of operations, i.e., the best number of 
attempts per hour. As we show in later sections, the 
optimal level of attempts per hour depends on the GA 
probability P{GA}. This section calculates this 
probability for two cases of with and without wake 
vortex effect. 

In the approach / landing process, two different 
aircraft flows can be recognized: the flow through the 
glide slope ω measured in landing attempts per hour 
and the flow through the runway (or simply 
throughput) λ measured in actual landings per hour. 



3 

Figure 1 demonstrates this dynamic with enforced 
GA procedures. When the following aircraft is at 
decision point 2 (DP2), e.g., 8 nmi from runway 
threshold, the controller/pilot decide(s) whether or 
not to take a GA procedure to avoid the risk of 
encountering a hazardous wake from the leading 
aircraft. We suppose that if the separation is less than 
a specific value, x0, at this point, then the following 
aircraft must go-around (GA) to a holding position 
and return to the glide slope when cleared to attempt 
again. Such a minimum WV safe separation exists 
and can be estimated using wake vortex theories, [9], 
[16], [17], for example, and/or field observations, 
Shortle, et al. [18]. We name this operation as the 
“wake vortex GA” or “wake vortex missed approach” 
procedure in contrast with the well known GA 
procedure executed to avoid a SRO. We call the latter 
a “SRO GA” or “SRO missed approach”. In this 
paper, for illustration purposes, we consider DP2 to 
be 8 nmi from the threshold, and x0 = 65 s separation 
as the minimum WV safe separation. 

If a safe separation is achieved at DP2, then the 
aircraft continues the approach. At DP1, which is 
called the decision height, the follower decides 
whether or not to execute a go-around to avoid 
simultaneous runway occupancy with the leading 
aircraft [12]. 

We define p to be the total GA probability. Note 
that p is a function of ω, the number of attempts per 
hour. The average GA rate (number of go-arounds 
per hour) is p(ω)·ω and the average successful 
landing rate is λ(ω) = [1-p(ω)]·ω. The rate of aircraft 
attempting to land is the arrival rate of aircraft λ(ω) 
plus the rate of aircraft executing a go-around p(ω)·ω. 
As a check for consistency, the attempt rate is [1-
p(ω)]·ω + p(ω)·ω which equals ω. 

In addition, we make the following 
assumptions: 

• LTIk+1,k  and ROTk are independent random 
variables 

• The separation is minimized at DP2 and 
remains unchanged afterwards until the 
touchdown. In other words, the separation at 
DP2 equals LTI 

• Shifting LTI to the right or left does not 
change the shape of its probability 
distribution 

• Zero risk assumed for execution of both GA 
procedures  

• GA are absolutely respected and enforced at 
both decision points 

• The number of GA in an hour is not 
restricted 

• Wake vortex GA and SRO GA conditions 
never simultaneously occur for a pair. That 
is, no simultaneous go around for aircrafts k 
and k+1 happens for all k=1,2,…. 
 

Where LTIk,k+1 is the landing time interval 
between aircraft k and k+1 measured at the runway 
threshold (in seconds), and ROTk is the runway 
occupancy time of aircraft k (measured in seconds). 

2.1 Go-Around Probability Assuming no 
Wake Vortex Effect 

In this section, we ignore the possible go-
around at DP2. In other words, we only consider the 
risk of a SRO and not the risk of a hazardous wake 
vortex encounter. The probability of a SRO is 

λ = rate of 
successful
landings / h

ω = rate of 
attempts / h λ = rate of new 

arrivals

p·ω= rate of GA

DP1 DP2

FAF

p·ω

λλ=(1-p)·ω Glide Slope

GA GA

Runway

 
Figure 1. Top: Bird’s Eye View over the Glide Slope. Bottom: Go-around Procedures on the Glide Slope 

and the Rates 
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This probability can be reduced to zero by 

enforcing the go around procedure. In this case, 
P{Follow aircraft lands | LTI < ROT}= 0, and  

p1(ω) = P{GA}= P{LTI < ROT}. (1) 

Probability distribution functions of peak period 
LTI and ROT are estimated for DTW in [13] for the 
pairs of FAA 3 nmi minimum separation pairs. These 
follow-lead aircraft pairs include S-S, L-S, B757-S, 
H-S, L-L, B757-L, and H-L indicated in [17] and 
[18]. The estimations are used here for methodology 
illustrations. LTI is the peak period distribution 
calculated for arrival of aircraft to the glide slope (or 
the final approach fix) with the rate ω. 

Figure 2 illustrates the LTI and ROT probability 
distributions obtained in [13] for 3 nmi pairs. p(ω) is 
estimated as 0.004, the mean of LTI  is 106 s, and the 
average number of attempts per hour (during peak 
periods) is ω = 3600/106 = 34 attempts/h.  In this 
period, no go-around was observed, so ω = λ, but 
P{SRO} = 0.004 instead of 0.0. 
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Figure 2. Distributions of ROT and LTI 

In this paper, we assume that changes in arrival 
rates (that is, changes in λ or ω) can be modeled by 
shifting the LTI distribution to the left or right, i.e., 
by changing the location parameter. Shifting the LTI 
distribution also changes the probability that 
LTI<ROT, or equivalently, the probability of a go-
around. p(ω) = P{LTI < ROT} is given by broken line 
in Figure 3. 

Shifting LTI toward left or right, i.e., changing 
the location parameter, provides different values for 
ω and p(ω) assuming other parameters of the 

distribution remain unchanged by shifting. p(ω) = 
P{LTI < ROT} is given by broken line in Figure 3. 
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Figure 3. Total P(GA), P(LTI<ROT), and dp/dω 

for WV Safe Threshold of 65 s 

2.2 Total go-around Probability with Wake 
Vortex Effect 

When the wake vortex effect is taken into 
account and WV GA procedure is in place, an aircraft 
would possibly miss the approach for two reasons at 
two different points: WV safe threshold and runway 
safe threshold (decision height). For this situation, let 
x0 to be the minimum wake vortex safe separation of 
successive aircraft given in seconds, and L to be the 
lower limit of LTI distribution; e.g., L = 40 s [13]. To 
calculate P(GA) two cases for L and x0 shall be 
considered as follows: 

Case 1: L < x0. For this case  

( ) ( )
( ) ( ),

)(

00

0

xFxF

ydFyFGAP

ROTLTI

x ROTLTI

+

= ∫
∞

 (2) 

where FLTI  and FROT are CDF of LTI and ROT, 
respectively. Detailed calculations are given in 
Appendix I. 

Case 2: L >= x0. This case means that LTI shifted to 
the right as much that its lower point L is above the 
wake vortex safety threshold of x0. No wake vortex 
GA would ever occur in this case, and P{GA} is 
obtained from equation (1). 

Total p(ω) = P{GA} is shown in Figure 3 for 
peak period DTW IMC distributions, which are given 
in Figure 2, and for x0 = 65 s. This figure also shows 
p1 and derivative of p(ω) in terms of ω. The 
derivative dp/dω, which will be used in the following 
sections, is multiplied by 10 to make it more visible 
in this figure. 
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3 Maximizing Runway Throughput 
We are interested to find the relation between 

glide-slope rate of ω attempts/h, runway throughput 
λ(ω), and go around probability p(ω). Then one can 
find out for what values of ω and p throughput λ is 
maximum while P{SRO} = 0 is maintained by 
enforced GA procedure. In other words, the objective 
is maximization of the runway throughput. That is,  

Maximize λ(ω) = [1-p(ω)]·ω. (3) 

This model is the same for both with and 
without WV effect assumptions. However, p(ω) 
differs depending on each of these cases, as discussed 
below. 

3.1 Maximum Throughput without Wake 
Vortex Effect 

In this case p(ω) is calculated from equation (1) 
and plugged into the problem (4) to maximize the 
throughput. Fig 4 provides λ(ω) in the left axis for the 
distributions in hand. λ(ω) is calculated for all pairs 
of (ω, p(ω)) in the right axis. By increasing the rate of 
attempts ω, the percentage of GA increases but the 
percentage of successful landings decreases. So that, 
after a point the decrease in the rate of successful 
landings dominates the increase in the rate of 
attempts. In other words, throughput λ(ω) has a 
unique maximum or optimal point. This can also be 
explained in mathematical terms. p(ω)>0 is 
increasing, and 1- p(ω) is decreasing in ω. So after a 
point, decrease of 1- p(ω) dominates increase of ω 
and [1-p(ω)]·ω would have a maximum. 

For distributions in hand, the optimal (ω,λ,p) is 
(46.5, 39.6, 0.148), see Figure 4. To have a stable 
system, the arrival rate to the TRACON, λ, is 
adjusted so that ω is maintained in the optimal level 
of 46.5 attempts/h. 39.6 landings/h is the maximum 
and optimal throughput. 

3.2 Maximum Throughput with Wake 
Vortex Effect 

In previous section we analyzed the optimal 
level of landing attempts when the wake vortex 
constraint was relaxed and SRO was the only risk 
factor. In this section, wake vortex risk is also 
considered in maximization of runway throughput. 
Using P{GA} =  p(ω) from equations (2) and (1) in 
problem (3) we obtain the solution. 
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Figure  4. Landing/h (left) and P{GA} (right) vs. 

Attempts/h (ω) 

Throughput λ(ω) in terms of ω attempts / h is 
shown in Figure 5 with the solid line (indicated by 
r=0). Other plots of this figure are the subject of next 
section. The optimal (ω,λ,p) is about (37.0, 33.5, 
0.08) and ω·p(ω) is 3 go-around per h. 

We can obtain an interesting result here that 
WV is costing the system 39.6- 33.5 = 6 landings per 
peak hour. Thus WV is costing the system about 
21,900 landings per year if there is 10 hours of peak 
period every day. This is for the cases of 3 nmi pairs, 
which majority of them are large aircrafts. Now we 
can multiply this value by R and obtain dollar value 
WV cost estimation. For R = $1000, we have about 
$22 m per year for a single landing runway under 
IMC. 
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Figure 5. λ(ω)  and g(ω;r) for r = 1, 2, and 4 from 
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4 Maximizing Net Economic Gain 
Maximizing the number of (successful) landings 

does not necessarily guarantee the overall economic 
optimality of the landing operations. This is because 
costs and gains from the operations are important 
optimality parameters and will be taken into account. 
For the landing operations when absolute safety is 
guaranteed by enforced GA procedure, the economic 
profit/benefit to the regional/whole economy 
(including airlines, airport, employees, etc) is the 
result of a successful landing. The overall cost to the 
regional/whole economy associates with the go-
around procedure. The costs of successful landings 
are embedded in the landing profits, that is, total 
revenue to all stakeholders minus operational cost, 
except the cost of GA execution. The net economic 
gain or surplus, that is, total gain minus total cost of 
an hour of peak period operations, is desired to be 
maximized with respect to the number of attempts / h 
rate, ω. Since this net economic gain is a random 
variable, we consider maximizing its expected value, 
ES = E{economic surplus}. 

The gain from one successful landing is R 
which occurs with probability 1-p(ω) for every 
landing attempt. The loss of one landing attempt is 
the cost of go-around C which occurs with 
probability p(ω). Thus, since the number of attempts 
per hour is ω, then the expected value of the net gain 
from hourly landing attempts is ES(ω;R,C) given in 
(4) and the optimization objective is 

( )
( )( ) ( )[ ]CpRp

CRES
⋅−⋅−⋅= ωωω

ω
1

,; Maximize  (4) 

We consider some dollar values for R and C to 
illustrate economic behavior of the system. For any 
given type of aircraft, C is the summation of cost 
components such as passenger delay cost, disturbed 
schedules cost of downstream flights, take off cost, 
aircraft operations cost, and airport cost. Any of these 
cost components depend on parameters such as 
aircraft load factors and the arrival rate at a given 
time, which are uncertain. Thus, C is a random 
variable. However, we consider its expected value as 
a suitable estimation of this parameter. Estimation of 
R and C is our ongoing research. However, at the 
time being and for the sake of illustration, we 
consider C = $4,000 for a large aircraft in a peak 
hour. Three scenarios of $1,000, $2,000, and $4,000 
are considered for R here. 

4.1 Economic Optimality without Wake 
Vortex Effect 

For this case p(ω) is calculated from equation 
(1), and fed into problem (4). Figure 6 is a plot of 
ES(ω;R,C) in thousands of dollars, for assumed 
values of R and a fixed C = $4,000. 

To obtain a more general form, we write ES in 
terms of the ratio C/R. Factoring out R in equation (2) 
gives 

C = $4,000
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Figure 6. ES(ω;R,C) of One Hour Peak Period 
Landing Operations 
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Thus, ES(ω;R,C) is a multiplication of constant 

dollar value R and a function of ω. Define the latter 
function to be g(·) as follows: 

( ) ( ) ( )[ ]ωωω prrg +−⋅= 11;  
or 

( ) ( ) ( )ωωωλω prrg ⋅⋅−=; , 

where r = C/R. Thus, maximizing g(ω;r) is equivalent 
to maximizing ES(ω;R,C). So the problem reduces to 
the more general form of 

( ) ( ) ( )[ ]
( ) ( )ωωωλ

ωωω
pr
prrg
⋅⋅−=

+−⋅= 11; Maximize
. (5) 

Figure 7 illustrates g(ω;r) for r = 0, 1, 2, 4 and 
ω in [28,55]. 
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Figure 7. g(ω;r) for Different Values of Cost to 

Benefit Ratio. Optimal Throughput Increases as r 
Decreases 

Note that the optimal solution ω*(r) = 
Argmax{g(ω;r)} depends on the ratio r = C/R. The 
derivative of g(ω;r) with respect to ω is zero at ω*. 
ES(ω;R,C) and g(ω;r) have the following interesting 
properties (at least for the LTI and ROT distributions 
in hand): 

Property 1: For given R and C, ES(ω;R,C) and 
g(ω;r) are unimodal in a practical peak period rates of 
[28,55] attempts/h. That is, they have a unique 
maximum in this range. This is the necessary 
optimality condition. We justify this fact here by 
visual investigations of Figures 4 and 5 for given 
DTW peak period landing distributions. However, 
this fact remains to be proven mathematically. In Fig. 
4, ES(ω;R,C) has a unique maximum for any given R 
and C. In Figure 5, g(ω;r) has a unique maximum for 
any given r. 

Property 2: g(ω;r) decreases as r increases for 
any fixed ω. This is seen from equation (5). The only 
term that includes r is the term inside the brackets 
which is decreasing in r. 

Property 3: 

( ) ( ) ( )( ) +→⋅−=→ 0  when  1; rprg ωωωλω , 
which is obvious from equation (5). So, g(ω;r) is 
bounded by λ(ω) = [1- p(ω)]·ω and is below it, see 
Fig. 7. 

Property 4: ω*(r) = Argmax{g(ω;r)} is 
decreasing in r for 28<ω<Argmax{dp/dω}.(This 
property is proven in Appendix A.) 

These properties are seen in Fig. 6 and 7. They 
are unimodal (property 1). ω* decreases as r increases 
(property 2). Argmax{dp/dω} is calculated 49.7 
attempts/h for the LTI and ROT in hand. g(ω;r) is 
below λ(ω). Peak of g(ω;r) moves down and left by 

increasing the relative penalty of go-around to the 
landing benefit. Properties of g(ω;r) imply that the 
highest value for the optimal number of attempts per 
hour and the upper bound of the optimal throughput 
is the maximal point of λ(ω). This is achieved when 
C is much smaller than R.  

In such a case, the problem reduces to 
maximizing λ(ω) = [1- p(ω)]·ω scenario, which is 
discussed in Section 3. The highest throughput value 
is a good estimation of the average runway landing 
capacity. For our example, this capacity is 39.6 
landings/h for the case that wake vortex effect is 
ignored, and GA procedure is enforced. 

As examples, for r = 1, (ω, λ, p)* = (40.0, 38.2, 
0.045). For r = 2, (ω, λ, p)* = (38, 37.1, 0.024). The 
latter means that to maximize the expected value of 
the net economic gain (surplus) from the landing 
operations, when go-around cost C is 2 times larger 
than landing profit R, the average glide slope 
throughput shall be adjusted at 38.2 attempts/h which 
gives 37.0 successful landings/h. Note that in this 
case, system throughput is 3 landings/h more than the 
current level of 34 landing/h with associated 
P{SRO}= 0.004, see Figure 4. 

4.2 Economic Optimality with Wake Vortex 
Effect 

In this case the problem is maximizing (6), or 
equivalently (4), where P{GA} = p(ω) is calculated 
from equations (2) and (1). Note that 
ω=3600/mean(LTI) where LTI is in seconds. All 
properties of g(ω;r) in Section 4.1 are still valid for 
this new p(ω). Justification procedures are the same 
that are provided in Section 4.1 and Appendix I. For 
DTW peak period IMC distributions of 3 nmi pairs 
derivative of p(ω) is maximized at 41.3 attempts/h 
when wake vortex safe threshold is 65 s or 2.2 nmi, 
see Figure 3. This is the condition for property 4. 

The optimal results for DTW distributions are 
provided in Table 1 and Figure 5 for x0 = 65, 70, and 
75 seconds. Figure 8 is visualization of Table 1. The 
optimal solution (ω, λ, p)* is (36.8, 33.6, 0.087) for 
(x0,r) = (65, 0). Since r = 0, that is, cost of go-around 
is negligible in comparison with the landing profit, 
then this is the optimal number of landings/h. So the 
average landing capacity of the system is 33.6 
landings / h independent of the market condition. (ω, 
λ, p)* is (32.7, 32.3, 0.014) for (x0,r) = (65,2), 
meaning that the optimal throughput is 32.3 landings 
/ h if C = 2R in the market, that is, the cost of go-
around is two times bigger than the profit gained 
from a successful landing. Note that in Table 1 
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optimal throughput decreases as safe WV threshold 
increases; however, eventually the safe threshold is a 
certain number and once it is recognized other cases 
become irrelevant. 

As a closing discussion some capacity 
estimations would be helpful. As we mentioned in the 
introduction of this article, the reciprocal of the 
minimum safe separation is sometimes considered as 
an estimation of the capacity. Using that method for 
the safe minimum separation of 65 s, one obtains the 
capacity of 55.4 landings per hour. One can 
intuitively recognize that this number is too high 
since in practice the capacity is generally between 30 
and 40 landings / h. The problem with this method is 
that it ignores the probabilistic nature of the process. 
Achieving this level of throughput requires that the 
mean of LTI to be adjusted at 65 s which implies 
P{LTI<ROT} = 0.30 from Figure 4. In other words, 
with the enforced go-around procedure, there will be 
more than 30% loss of attempted landings at DP1. 
This would lead to the throughput level of less than 
32 landing / h as can be seen in Figure 5. Further, in 
such an operation the system should tolerate the high 
cost of 13 go-around / h. So this reciprocal method is 
not suitable. 

Table 1 Optimal Values for Different safe WV 
threshold and r 

WV threshold r ω* λ* P* 

x0 = 65 s 0 36.8 33.6 0.087 

 1 33.7 32.8 0.026 

 2 32.7 32.3 0.014 

 3 32.1 31.9 0.009 

 4 31.8 31.6 0.007 

x0 = 70 s 0 34.7 32.0 0.079 

 1 32.1 31.4 0.024 

 2 31.3 30.8 0.013 

 3 30.8 30.5 0.009 

 4 30.4 30.2 0.006 

x0 = 75 s 0 33.0 30.5 0.073 

 1 30.7 30.0 0.022 

 2 29.9 29.5 0.012 

 3 29.5 29.2 0.008 

 4 29.1 29.0 0.006 
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Figure  8. Optimal Throughput in r for Safe WV 
Thresholds of 65, 70, and 75 s 

Our methodology, which considers the 
probabilistic behavior of the system, estimated the 
average capacity of 33.6 landings per hour for 65 s 
safe WV threshold and risk free landings. Economic 
considerations may reduce the optimal throughput to 
about 32 landings / h with maximized net economic 
gain, 1% go-around, and risk free (safe) operations. 

Conclusion 
We studied the landing / approach process to a 

single independent runway which is used for landing 
operations only. The goal is to take the most 
advantage of this scarce and increasingly demanded 
resource of the air transportation network. However, 
increasing utilization trade-off with risking safety and 
human lives. Through this research, we initiated four 
steps to manage this trade-off and achieve the goal:  

1) We proposed a go-around procedure to avoid 
wake vortex incidents and to assure the landing 
safety. We suggested that enforced go-around can be 
economically rational.  

2) We suggested that increasing go-around rate 
(by shortening the average separation spacing) might 
be helpful to increase the landing throughput. One 
optimization model developed to mimic this dynamic 
of the system. The maximization model is solved for 
the peak period landing distributions of Detroit 
airport, and the results supported our hypothesis of 
increased throughput.  

3) The aforementioned optimization model 
estimates landing capacity of the runway, with or 
without the presence of wake vortex effect. These 
estimates are 39.6 and 33.6 landings per hour, 
respectively. This provides a logical framework to 
estimate the economic effect of wake vortex 



9 

phenomenon in the system. Using these figures we 
roughly estimated the cost of WV phenomenon (for 
Detroit airport case) as about 22,000 landings of large 
aircraft per year. This translates to WV cost of tens of 
millions of dollars per year in a moderately busy 
airport. 

4) We hypothesized that maximizing the 
throughput (by adjusting the average separation 
spacing) does not necessarily assure the most 
economic use of the runway. Another model 
developed to mimic these economic dynamics of the 
approach operations accounting for the go-around 
cost (to all beneficiaries) and the befit of every 
successful landing (to all beneficiaries). System 
beneficiaries include airlines, passengers, airports, 
employees, etc. We showed that economically 
optimal level of operations depends on cost to benefit 
ratio rather than depending on specific values of go-
around cost and successful landing profit. The results 
validated our hypothesis. 

We illustrated the methodologies for specific 
pairs of follow-lead aircraft without loss of 
generality. An immediate extension to our models is 
to consider a varied fleet mix that includes a mix of 
varied separation standards. The economic model 
presented in this article should be extended to 
account for different types of aircrafts. Some general 
properties of the developed optimization models are 
discussed for specific probability distributions. 
Property 1 needs to be investigated with more 
rigorous mathematical expressions. It might be true 
for more general classes of landing time interval 
distributions, Gamma class distributions, for 
example. Some real world estimations of the cost of 
go-around and the successful landing profit are 
necessary to obtain. Also, the proposed wake vortex 
go-around procedure needs to be further explored and 
investigated for real world implementation purposes. 
These subjects are practical research topics to 
consider. 

Appendix I 
Proof of Property 4: The proof is by contradiction. 
ω*(r) is the point where dg/dω = 0 or 
( ) ( ) ( )rpp +=′⋅+ 11*** ϖϖϖ . Increasing r decreases 

the right hand side and consequently the left hand 
side of this equation. On the other hand, ω, p(ω), and 
dp/dω are all increasing in ω  for ω<Argmax{dp/dω}. 
Thus if ω does not decrease, the LHS will not 
decrease. This is a contradiction, and completes the 
proof.◄ 

Derivation of equation (2). For the case L < x0, note 
that  

P(GA) = P{separation at DP2 < x0 or, exclusively, 
separation at DP1 < ROT} 

= P{LTI < x0 or LTI < ROT}. 

Then, 

( ) ( ) { }00  and xLTIROTLTIPxLTIPGAP ≥<+<= . (I.1) 

On the other hand, 
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where FLTI and FROT are CDF of LTI and ROT, 
respectively. Joint distribution of LTI and ROT is 
broken into multiplication of their marginal 
distributions because of their independence. Plugging 
in (I.2) in (I.1) gives equation (2). 
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