
On Gradient Computation in
Single-shooting Nonlinear Model Predictive

Control

Ruben Ringset ∗ Lars Imsland ∗,∗∗ Bjarne Foss ∗∗

∗ Cybernetica AS, Leirfossveien 27, N-7038 Trondheim, Norway.
(e-mail: ruben.ringset@cybernetica.no).

∗∗ Department of Engineering Cybernetics, NTNU, N-7038,
Trondheim, Norway. (e-mail: lars.imsland,bjarne.foss@itk.ntnu.no)

Abstract: This paper gives an overview of methods for computing derivative information in
dynamic optimization with path constraints. Efficiency of forward and adjoint techniques are
discussed in a discrete-time setting and some algorithms are derived. Next, the discussion
is extended to also include continuous-discrete systems. Dimensions in the model, signal
parameterization, horizon length and sampling interval affect each of the methods differently.
The key contributions of this paper is to give an overview of these methods, how they can be
combined, and how different parameters affect efficiency.

Keywords: dynamic optimization, nonlinear model predictive control, adjoint method,
sensitivity analysis, sequential quadratic programming.

1. INTRODUCTION

Algorithms for optimization-based control using nonlin-
ear dynamic models such as nonlinear model predictive
control (NMPC) formulates an ’open-loop’ constrained
dynamic optimization problem, which is re-solved and re-
implemented at regular sampling intervals. This combines
the advantage of the numerical optimal control solution
with the feedback achieved through updated model infor-
mation (measurements, and estimated states and param-
eters).

The NMPC nonlinear dynamic optimization problem is
typically discretized and solved by applying quadratic
programming sequentially to quadratic/linear approxima-
tions of the optimization problem (Sequentially Quadratic
Programming, SQP). SQP algorithms for NMPC may be
categorized based on how they discretize the dynamic
optimization problem. Broadly speaking, algorithms using
only manipulated variables as optimization variables are
often called single shooting algorithms (or sequential, as
numerical optimization is executed sequential to numerical
simulation for gradient computation), while algorithms
using in addition a discretization of the future process
model variables as optimization variables, are often called
simultaneous algorithms. In-between solutions, offering a
trade-off between the traits of the two extremes, are often
called multiple shooting. Such algorithms are discussed in
e.g. Li and Biegler (1989); Biegler et al. (2002); Bock et al.
(2000).

This paper is concerned with gradient computation for
single-shooting NMPC optimization, using a setup similar
to Li and Biegler (1989); De Oliveira and Biegler (1995).
Our aim is to give a clearer picture of the possibilities and
trade-offs involved in the computation of the gradient, in
particular the impulse- (or step-) response matrix. First,
we use a pure discrete-time setting to focus on the al-

gorithms for constructing the impulse-response matrices.
In particular we demonstrate how using an adjoint-based
approach amounts to constructing the impulse-response
matrices row-wise, rather than column-wise as a ’forward’
implementation would do. Some numerical examples illus-
trate that for ’fat’ systems this can be advantageous.

Thereafter, we complement the picture by evaluating al-
ternatives when the discrete-time model originates from
simulating a continuous-time model.

2. SINGLE-SHOOTING DISCRETE-TIME DYNAMIC
OPTIMIZATION

Assume that the nonlinear system model is on the form

xk+1 = f(xk, uk), (1a)
zk = g(xk, uk−1), (1b)

where f and g are differentiable functions. For simplicity
assume that

f(0, 0) = 0, g(0, 0) = 0, (2)

and that the origin is the desired settling point for both
the states and the control inputs. Note, however, that the
results presented throughout this paper can be generalized
to, and is probably most useful for, time-varying reference
signals.

Under the above assumptions, the dynamic optimization
problem to be solved in an NMPC implementation, is
stated as

min J =
1
2

N−1∑
k=0

(
zTk+1Qzk+1 + uTkRuk

)
, (3a)

s.t. x0 = x(t0), (3b)
xk+1 = f(xk, uk), k ∈ {0, . . . , N − 1} , (3c)
zk = g(xk, uk−1), k ∈ {1, . . . , N} , (3d)

umin ≤ uk ≤ umax, k ∈ {0, . . . , N − 1} , (3e)
zmin ≤ zk ≤ zmax, k ∈ k ∈ {1, . . . , N} , (3f)

in which Q = QT ≥ 0, R = RT > 0, xk ∈ Rnx are
the state variables, uk ∈ Rnu the controlled inputs and
zk ∈ Rnz the controlled outputs. Since x0 is fixed, {xk}Nk=1

and {zk}Nk=1 are uniquely determined by {uk}N−1
k=0 . Using

a single shooting formulation the optimization problem is
posed regarding {xk}Nk=1 and {zk}Nk=1 as implicit functions
of {uk}N−1

k=0 , which are obtained by simulation, thus remov-
ing the model equations as equality constraint in (3).

Define

u =

 u0

...
uN−1

 , R̄ =

R 0
. . .

0 R

 , (4)

z =

 z1

...
zN

 , Q̄ =

Q 0
. . .

0 Q

 , (5)

and let the impulse response matrix of the linearized
system model be defined by

Ξ =

C1B0 +D1 0 0 · · ·
C2A1B0 C2B1 +D2 0 · · ·
C3A2A1B0 C3A2B1 C3B2 +D3 · · ·

...
...

...
. . .

 , (6)

where

Ak =
∂f(xk, uk)

∂xk
, Bk =

∂f(xk, uk)
∂uk

, (7)

Ck =
∂g(xk, uk−1)

∂xk
, Dk =

∂g(xk, uk−1)
∂uk−1

. (8)

Note that the impulse response matrix includes the sen-
sitivities from every controlled input uk to each of the
outputs zk on the horizon, i.e.

Ξ[i, j] =
∂zi
∂uj−1

(9)

Thus, the gradient and, perhaps remarkably, also the
Hessian of J are given by

∇uJ = ΞQ̄z + R̄u, (10)
∇2
uuJ = ΞT Q̄Ξ + R̄, (11)

which can be used to compute the Newton search direc-
tion,

p = −[∇2
uuJ]−1[∇uJ], (12)

in for instance an SQP algorithm.

The constraint gradient for u is trivial, while the constraint
gradient for z is given from Ξ. Thus, all the required
derivative information is given from Ξ.

In (3) the inputs uk are used directly as free optimization
variables, while it in many cases is desirable to use the
input moves ∆uk = uk − uk−1 instead. In this case, the
impulse response matrix is more-or-less replaced by the

step response matrix, which can easily be calculated from
the impulse response matrix. Most observations in this
paper holds for this case as well.

The concept of input blocking (Maciejowski, 2001) (or
similar blocking concepts (Cagienard et al., 2007)) is
very important to reduce computational complexity. Input
blocking consists of dividing (individually or collectively)
the input horizon into blocks where the inputs are kept
constant. To keep the discussion simple, we avoid intro-
ducing input blocking at this stage, but we will comment
on it later on.

In situations where the output constraints zmin < zk <
zmax are not present ∇uJ can be calculated by a simpler
and much more computationally efficient method than by
first obtaining Ξ. It is well known that adjoint meth-
ods are very efficient for obtaining sensitivities of a low
dimensional function with respect to a large number of
parameters. Using the adjoint method, calculating ∇uJ
only requires one simulation in forward time and one in
reverse time. See e.g. Cao et al. (2003) which presents
adjoint methods for obtaining sensitivities for parameter-
dependent differential algebraic equation systems (DAEs)
up to index two, and Jørgensen (2007) who discusses
calculation of derivative information by adjoint meth-
ods in the context of nonlinear model predictive control
(NMPC), nonlinear moving horizon estimation (MHE)
and continuous-discrete system models.

3. CALCULATION OF IMPULSE RESPONSE
MATRIX

As noted above, all the necessary derivative information
required in each SQP iteration of solving (3) is given by Ξ.
In this section we will elaborate on different methods and
choices in order to calculate the impulse response matrix.
Since gradient computation is the most computationally
expensive part of a typical NMPC algorithm, finding
efficient algorithms is important as a means to increase
overall efficiency.

In this section the focus is on a discrete-time setting.
For discrete-time systems originating from simulation of
continuous-time systems, this can be interpreted as a focus
on the computational cost in gradient computation except
for simulation. Later, the discussion will be extended to
also include simulation (that is, considering continuous-
discrete models).

3.1 Finite Differences

In situations where the linearized system matrices Ak,
Bk, Ck, and Dk are unavailable Ξ may be found by
using finite difference techniques. Using one-sided finite
differences requires a number of nu · N + 1 simulations.
In complex applications, choosing the right size for the
perturbation parameter can be a delicate matter since
there is a trade-off between loss of accuracy due to final
precision arithmetic and error in approximation of the
exact derivative by not choosing an infinitesimally small
perturbation value.

3.2 Forward Method

The following algorithm constructs the impulse response
matrix by the forward method. Structure is exploited in a

column-wise manner by noting that adjacent elements in
each column only differ by two matrix multiplications from
left. By inspecting the progress of the algorithm the reader
may observe that the matrix is constructed in forward
time, meaning that Ak is inserted before Ak+1.

Algorithm 1 Ξ - Forward method
1: for j = 1 to N do
2: for i = 1 to j − 1 do
3: ψ[1, i] = Aj−1ψ[1, i]
4: end for
5: ψ[1, j] = Bj−1

6: for i = 1 to j − 1 do
7: Ξ[j, i] = Cjψ[1, i]
8: end for
9: Ξ[j, j] = Cjψ[1, j] +Dj

10: end for

3.3 Adjoint Method

As opposed to forward methods, adjoint methods compute
derivative information by applying the chain rule in a
reverse manner. Forward methods are generally best suited
for obtaining sensitivity of a potentially high dimensional
function or functional with respect to a small number
of parameters. Adjoint methods becomes efficient for the
opposite case, where the sensitivity of a low dimensional
function or functional with respect to a large number
of parameters is desired. In the following we derive the
adjoint equations for calculating the impulse response
matrix.

Define the function

Lj = zj −
j−1∑
i=0

[
λTi+1(xi+1 − f(xi, ui))

]
. (13)

In order to comply with the nonlinear model, the first
variation of Lj is identical to the first variation of zj given
by

δzj =
(
∂zj
∂xj

δxj +
∂zj
∂uj−1

δuj−1

)
+
j−1∑
i=0

(
λTi+1

∂f(xi, ui)
∂ui

δui

)

+
j−1∑
i=0

(
−λTi+1δxi+1 + λTi+1

∂f(xi, ui)
∂xi

δxi

)
. (14)

By inserting the identity
j−1∑
i=0

λTi+1δxi+1 =
j−1∑
i=0

λTi δxi + λTj δxj − λT0 δx0, (15)

substituting the Jacobian matrices and rearranging, we
obtain

δzj = Cjδxj +
j−1∑
i=0

([
λTi+1Ai − λTi

]
δxi
)
− λTj δxj

+ λT0 δx0 +Djδuj−1 +
j−1∑
i=0

(
λTi+1Biδui

)
. (16)

By noting that δx0 = 0 and letting λi fulfill
λTj = Cj , (17a)

λTi = λTi+1Ai, i ∈ {j − 1, . . . , 1} , (17b)

the δxi terms vanish and the gradient is given by

∂zj
∂ui

=
δzj
δui

=
{
λTj Bj−1 +Dj , i = j − 1
λTi+1Bi, i ∈ {j − 2, . . . , 0} . (18)

Calculation of the impulse response matrix by the adjoint
method is done in Algorithm 2 which obtains each of the
elements in Ξ by iterating (17) and (18) backwards.

Algorithm 2 Ξ - Adjoint method
1: for k = N to 1 do
2: λ[k, 1] = Ck
3: for i = k + 1 to N do
4: λ[i, 1] = λ[i, 1]Ak
5: end for
6: Ξ[k, k] = λ[k, 1]Bk−1 +Dk

7: for i = k + 1 to N do
8: Ξ[i, k] = λ[i, 1]Bk−1

9: end for
10: end for

An unavoidable drawback with adjoint methods is that in
order to reconstruct the information needed in the reverse
solve, the state trajectory {xk}Nk=1 must be stored during
the forward solve. Also note that if Ak and Bk cannot
be reconstructed directly from xk and uk they will also
need to be stored in memory. This will for instance be
the case for continuous-discrete models where Ak and
Bk are obtained by integration of sensitivity equations.
Continuous-discrete models and integration of sensitivities
are discussed in more detail later.

3.4 Comparison of forward and adjoint method

The difference between Algorithm 1 (forward method) and
Algorithm 2 (adjoint method) is that Algorithm 1 exploits
that adjacent elements in each column of Ξ only differ by
two matrix multiplications from left while Algorithm 2 ex-
ploits that adjacent elements in each row of Ξ only differ by
two matrix multiplications from right. Hence, the adjoint
method exploits structure row-wise by constructing Ξ in
reverse time while the forward method exploits structure
column-wise by constructing Ξ in forward time.

Since the order of the matrix multiplications in Algorithm
1 and Algorithm 2 are not the same, they will also differ
in the total number of single multiplications. The total
number of multiplications is

n2
xm

N−1∑
k=1

k + nznxnu

N∑
k=1

k =

n2
xmN(N − 1) + nznxnuN(N + 1)

2
, (19)

where m = nu for Algorithm 1 and m = nz for Algorithm
2.

Therefore, we conclude that the adjoint method is best
suited for problems where nz < nu, while the opposite
is true if nu < nz. If nz = nu and the full impulse
response matrix is to be found, the forward method should
be preferred as generation of Ξ may be done in parallel
with the simulation opposed to the adjoint method where
the entire state trajectory must be obtained and stored in
memory first.

In applications one may consider using a different pa-
rameterization of the output trajectory than in (3). If
only certain ’coincidence points’ of the controlled variables
zk on the prediction horizon of length N are included
in the optimization criterion J as well as in the output
constraints zmin < zk < zmax only the corresponding rows
of Ξ will be required in order to construct derivative infor-
mation used in the optimization algorithm. By choosing a
parameterization of the controlled variables with Nz < N
coincidence points, Algorithm 2 may easily be modified
such that only the corresponding rows are calculated. Also
note that due to the lower block triangular structure of Ξ,
removing output variables close to the end of the horizon
will have greater impact on computation time compared to
removing them early in the horizon. Note that Algorithm
1 needs to generate the full impulse response matrix even
though only some of the rows are needed.

It is tempting to believe that applying input blocking to
the control variables uk will result in a similar reduction
in computation complexity for the forward method by
making some of the columns of Ξ redundant, but un-
fortunately this is not the case. Even though some of
the control variables are not allowed to change at certain
sample instants, their sensitivity still needs to be included
in the optimization. That is, using input blocking will not
reduce complexity in discrete-time gradient computation
unless finite differences are used.

The following figures show runtime as function of horizon
length when computing Ξ using Algorithm 1 and Algo-
rithm 2. Runtime for a modified version of Algorithm 2 is
also shown. The modified version of Algorithm 2 assumes a
parameterization where the output variables are included
in the optimization every fifth sample. Thus only every
fifth row of Ξ is calculated.

In Figure 1 nu < nz, and thus as expected the forward
method is best suited. The simulated runtimes for Algo-
rithm 1 relative to the runtime for Algorithm 2 was found
to be in very good accordance with the total number of
multiplications in each of the algorithms given by (19).

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Horizon length N

R
un

tim
e

Forward
Adjoint
Modified Adjoint

Fig. 1. Runtime - Calculate Ξ (nx = 40, nu = 5, nz = 20)

Results for the opposite situation, i.e. nz < nu, are
shown in Figure 2. This time, again as expected, Figure 2
illustrates that Algorithm 2 is faster than Algorithm 1.

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Horizon length N

R
un

tim
e

Forward
Adjoint
Modified Adjoint

Fig. 2. Runtime - Calculate Ξ (nx = 40, nu = 20, nz = 5)

Both figures also show runtime for a modified version
of Algorithm 2. The modified adjoint method assumes a
parameterization where the output variables are included
in the optimization every fifth sample. As noted earlier,
the adjoint method can benefit from this, as calculation
of some of the rows in Ξ can be omitted. Comparison
of the figures demonstrate that runtime for the different
algorithms is highly dependent on the dimensions in the
model, and the parameterization of zk.

It should be noted that in generation of Figures 1 and 2
we have implemented matrix multiplications ’by hand’
to avoid overhead and optimization/parallelization that
might appear in use of a matrix library.

4. CONTINUOUS-DISCRETE SYSTEMS

In this section the discussion will be extended to in-
clude continuous-discrete models. Assume that the system
model is on ODE form,

ẋ(t) = φ(x(t), u(t)), (20a)
z(t) = γ(x(t), u(t)). (20b)

Moreover, assume that the control signal is parameterized
using zero order hold, i.e.,

u(t) = u(kTs) = uk, kTs ≤ t < (k + 1)Ts. (21)

4.1 Sensitivity method 1

To handle models on this form in the previous discrete-
time framework, one should use ODE solvers/integrators
to obtain a discrete-time formulation (1). At the same
time, one should calculate the discrete-time Jacobians Ak
and Bk. While using finite differences, or direct differenti-
ation in case of fixed-step ODE solvers, is possible, it is in
general preferable to use sensitivity integration (e.g. Hairer
et al. (1993)).

By defining

Wk(t) =
∂x(t)
∂x(kTs)

, Sk(t) =
∂x(t)
∂u(kTs)

, (22)

the discrete-time Jacobians are given by

Ak =
∂x([k + 1]Ts)
∂x(kTs)

= Wk([k + 1]Ts), (23)

Bk =
∂x([k + 1]Ts)
∂u(kTs)

= Sk([k + 1]Ts). (24)

The matrices Wk and Sk may be obtained by integration
of the sensitivity equations

Ṡk(t) =
∂φ

∂x
(t)Sk(t) +

∂φ

∂u
(t), (25a)

Ẇk(t) =
∂φ

∂x
(t)Wk(t). (25b)

where the continuous-time Jacobians are found either
symbolically, using automatic differentiation, or by finite
differences, in order of decreasing overall efficiency. The
sensitivity ODEs (25) are solved for each sampling interval
with initial values reset to

Wk(kTs) = I, Sk(kTs) = 0, (26)
at every sampling instant. This approach is incorporated
in Algorithm 3 which may be combined with either Algo-
rithm 1 or Algorithm 2 to construct Ξ. While the above is
well known in the literature (e.g. Li and Biegler (1989)),
the purpose of including them here is to investigate how
they may be combined with Algorithm 1 and Algorithm 2
and to elaborate on some practical issues that may be
of importance for achieving an efficient implementation.
Note that combining Algorithm 3 and 2 requires that the
sensitivities Ak, Bk are stored during the forward solve
as they are needed in reverse order when constructing Ξ.
Hence, this method may easily be constrained by limited
internal memory size.

Algorithm 3 Sensitivity integration - method 1
1: x0 = xinit
2: for k = 0 to N − 1 do
3: Sk(kTs) = 0
4: Wk(kTs) = I
5: Integrate from t = kTs to t = (k + 1)Ts
6: ẋ(t) = φ(x(t), u(t))
7: Ṡk(t) = ∂φ

∂x (t)Sk(t) + ∂φ
∂u (t)

8: Ẇk(t) = ∂φ
∂x (t)Wk(t)

9: end for

Even though the dimension of the matrix ODEs (25) may
be large, the fact that they share Jacobians with (20)
may be exploited in specialized algorithms for sensitivity
integration (Hindmarsh and Serban, 2006; Schlegel et al.,
2004). However, as the dimension of the sensitivity ODE
(25) is n2

x+nxnu, integrating (25) for system models with
a large number of states, may become a daunting task,
even if structure is exploited.

4.2 Sensitivity method 2

For system models where nx � nu one might instead
consider using an alternative method for obtaining the
sensitivities (Li and Biegler, 1989).

By defining the ODE system

Ṡk(t) =

∂φ

∂x
(t)Sk(t) +

∂φ

∂u
(t), kTs≤ t< (k+1)Ts

∂φ

∂x
(t)Sk(t), t ≥ (k+1)Ts

(27)

all the sensitivities required to construct Ξ may be ob-
tained without having to integrate Wk(t) ∈ Rnx×nx . By

using (27) instead of (25) the dimension of the sensitivity
ODE is reduced from nx(nx+nu) to nxnu, but this smaller
ODE must be simulated several times. That is, the total
integration length is increased as can be seen by inspecting
Algorithm 4.

Algorithm 4 Sensitivity integration - method 2
1: x0 = xinit
2: for k = 0 to N − 1 do
3: Integrate from t = kTs to t = (k + 1)Ts
4: ẋ(t) = φ(x(t), uk)
5: Ṡk(t) = ∂φ

∂x (t)Sk(t) + ∂φ
∂x (t)

6: for n = k + 1 to N − 1 do
7: Integrate from t = nTs to t = (n+ 1)Ts
8: ẋ(t) = φ(x(t), un)
9: Ṡk(t) = ∂φ

∂x (t)Sk(t)
10: end for
11: end for

Using Algorithm 4, the sensitivities Sk(t) cannot be di-
rectly used in Algorithm 1 and 2, since the sensitivities
Wk(t) have not been calculated. Instead, the following
simple algorithm can be combined with Algorithm 4 in
order to calculate Ξ.

Algorithm 5 Sensitivity integration - method 2
1: for k = 1 to N do
2: Ξ[k, k] = CkBk−1 +Dk

3: for n = k + 1 to N do
4: Ξ[n, k] = CnSk−1(nTs)
5: end for
6: end for

4.3 Comparison of methods for sensitivity integration

By inspecting Algorithm 3 it is easy to see that the
total integration length is NTs. The total integration
length for Algorithm 4 is

∑N−1
k=1 kTs = 1

2N(N − 1)Ts
which at first sight makes Algorithm 3 seem like a better
choice. However, Algorithm 4 has the advantage that the
dimension of the sensitivity ODE is only nxnu compared to
Algorithm 3 where the dimension of the sensitivity ODE
is nx(nx + nu). In applications where the dimension of
the state vector is large compared to the dimension of the
control vector Algorithm 4 may outperform Algorithm 3
even though the total integration length is increased.

To demonstrate how Algorithm 3 and Algorithm 4 com-
pare for different dimensions of the state vector, consider
the one dimensional heat equation

∂Ψ
∂t

(x, t) =
∂2Ψ
∂x2

(x, t), x ∈ [0, 1] , t ≥ 0. (28)

Ψ(x, t) is the temperature distribution in the medium
which is assumed to have length 1. Moreover, assume
that the temperature at the end of the medium is fixed
to Ψ(1, t) = 0 while the temperature on the other end
can be directly controlled, i.e. Ψ(0, t) = u(t). The term
∂2Ψ
∂x2 is approximated using a second order central differ-
ence approximation. This gives a finite dimensional model
where the spacial discretization length and thereby also
the number of states may be increased arbitrarily.

Simulated runtime as a function of dimension of the state
vector is shown in Figure 3 which demonstrates that

Algorithm 4 becomes more efficient than Algorithm 3
as the dimension of the state vector is increased. These
simulations were implemented in Matlab using CVODES
as solver routine.

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

Dimension of state vector nx

R
un

tim
e

Sensitivity method 1
Sensitivity method 2

Fig. 3. Runtime - Integration of sensitivities

Note that the sensitivities calculated by Algorithm 4
needs to be combined with Algorithm 5 in order to build
the impulse response matrix. Another important point
to make is that Algorithm 4 incorporates most of the
matrix multiplications performed by Algorithm 1 or 2
in the simulation of the ODEs. The total number of
multiplications in Algorithm 5 is

nznxnu

N∑
k=1

k =
nznxnuN(N + 1)

2
. (29)

Comparison of (19) and (29) shows that the number of
multiplications for Algorithm 5 can be small compared to
Algorithm 1 and 2 when the dimension of the state vector
is large, which is the second reason why sensitivity method
2 may be better suited if nx � nu.

Finally, we make some remarks regarding using variable-
step ODE-solvers and input blocking. When using a vari-
able step-size ODE solver, one needs to reset integration
at every sample instant due to the reinitialization of Sk
and Wk in Algorithm 3 and 4 (and also, ideally, due
to the discontinuity introduced by the sample-and-hold
implementation of the input).

This reinitialization is typically expensive in terms of
computational complexity. However, when using input
blocking, one can implement algorithms similar to the
above such that reinitialization takes place only once per
input block, giving a significant speed-up.

5. CONCLUDING REMARKS

We have investigated some issues regarding gradient com-
putation using both the forward and adjoint techniques.
To minimize the number of multiplications required for
constructing Ξ the forward method should be preferred
when nu < nz and the adjoint method for the opposite
case. We also demonstrated that the adjoint method can
benefit further from parameterizing the output variables
usingNz < N coincidence points. Finally, these algorithms
were discussed in combination with different approaches

for integration of sensitivity equations for continuous-
discrete systems.

Although the setup used might seem somewhat outdated
from an academic point of view, in practice these types
of algorithms have advantages that makes them amenable
for industrial use (Foss and Schei, 2007; Pluymers et al.,
2008). Compared to using finite differences, one can argue
that using analytical methods for sensitivity integration
as explored herein, has extra potential in cases where the
models come from advanced modeling tools with capability
of producing symbolic Jacobians (Imsland et al., 2009).

REFERENCES

Biegler, L.T., Cervantes, A.M., and Wächter, A. (2002).
Advances in simultaneous strategies for dynamic process
optimization. Chem. Eng. Sci., 57, 575–593.

Bock, H.G., Diehl, M., Leineweber, D.B., and Schlöder,
J.P. (2000). A direct multiple shooting method for
real-time optimization of nonlinear DAE processes. In
F. Allgöwer and A. Zheng (eds.), Nonlinear Predictive
Control, volume 26 of Progress in Systems Theory, 246–
267. Birkhäuser, Basel.

Cagienard, R., Grieder, P., Kerrigan, E., and Morari, M.
(2007). Move blocking strategies in receding horizon
control. Journal of Process Control, 17, 563–570.

Cao, Y., Li, S., Petzhold, L., and Serban, R. (2003). Ad-
joint sensitivity analysis for differential-algebraic equa-
tions: The adjoint dae system and its numerical solution.
SIAM J. SCI. COMPUT., 24, 1076–1089.

De Oliveira, N.M.C. and Biegler, L.T. (1995). An ex-
tension of newton-type algorithms for nonlinear process
control. Automatica, 31(2), 281–286.

Foss, B.A. and Schei, T.S. (2007). Putting nonlinear model
predictive control into use. In Assessment and Future
Directions Nonlinear Model Predictive Control, LNCIS
358, 407–417. Springer Verlag.

Hairer, E., Nørsett, S.P., and Wanner, G. (1993). Solving
Ordinary Differential Equations I – Nonstiff problems.
Springer-Verlag, 2nd edition.

Hindmarsh, A.C. and Serban, R. (2006). User Documenta-
tion for CVODES v2.5.0. Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory.

Imsland, L., Kittilsen, P., and Schei, T.S. (2009). Using
modelica models in real time dynamic optimization –
gradient computation. In Proc. of Modelica’2009. Como,
Italy.

Jørgensen, J.B. (2007). Adjoint sensitivity results for
predictive control, state- and parameter-estimation with
nonlinear models. In European Control Conference
2007.

Li, W.C. and Biegler, L.T. (1989). Multistep, newton-type
control strategies for constrained, nonlinear processes.
Chem. Eng. Res. Des., 67, 562–577.

Maciejowski, J.M. (2001). Predictive Control with Con-
straints. Prentice-Hall.

Pluymers, B., Ludlage, J., Ariaans, L., and Brempt, W.V.
(2008). An industrial implementation of a generic
nmpc controller with application to a batch process. In
Proceedings of the 17th IFAC World Congress.

Schlegel, M., Marquardt, W., Ehrig, R., and Nowak,
U. (2004). Sensitivity analysis of linearly-implicit
differential-algebraic systems by one-step extrapolation.
Applied Numerical Mathematics, 48, 83–102.

