
Programming a Music Synthesizer through Data Mining

Jörn Loviscach
Hochschule Bremen (University of Applied Sciences)

Flughafenallee 10
28199 Bremen, Germany

joern.loviscach@hs-bremen.de

ABSTRACT

Sound libraries for music synthesizers easily comprise one
thousand or more programs (“patches”). Thus, there are
enough raw data to apply data mining to reveal typical
settings and to extract dependencies. Intelligent user inter-
faces for music synthesizers can be based on such statistics.
This paper proposes two approaches: First, the user sets
any number of parameters and then lets the system find the
nearest sounds in the database, a kind of patch autocomple-
tion. Second, all parameters are “live” as usual, but turning
one knob or setting a switch will also change the settings
of other, statistically related controls. Both approaches can
be used with the standard interface of the synthesizer. On
top of that, this paper introduces alternative or additional
interfaces based on data visualization.

Keywords

Information visualization, mutual information, intelligent
user interfaces

1. INTRODUCTION
Most software-based synthesizers adhere to standard pro-

gramming interfaces to retrieve program data, to set param-
eters, and to notify other software if a parameter is changed
through the synthesizer’s graphical user interface. Thus, by
creating appropriate host software, one can not only collect
the sound programs for data mining, but also intervene in
the actions triggered by the synthesizer’s switches, knobs
and sliders. The novel interfaces proposed in the paper em-
ploy this possibility to enhance a synthesizer’s standard user
interface through statistical data:

Patch Autocompletion. One may set only a selec-
tion of parameters such as the oscillators’ pitch and wave-
forms and the envelope, but leave all other parameters un-
touched. Then the system can search for sound programs in
the database in which the touched parameters have similar
settings. This process is similar to word autocompletion in
text-processing software. In this mode, the standard user
interface of the synthesizer is augmented by an interactive
parallel coordinates visualization.

Co-Variation. Whenever the user edits a parameter,
other parameters are varied along with the first parameter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME08, Genoa, Italy
Copyright 2008 Copyright remains with the author(s).

according to their statistical relation with it. For instance,
increasing the attack time for the amplitude envelope may
also increase the attack time of the filter envelope. Setting
an oscillator to a pulse wave may configure the LFO for
pulse width modulation. In this mode, the standard user
interface of the synthesizer is augmented by an arrangement
of the parameters as dots on a 2D field. Statistically related
parameters are placed next to each other. Every parameter
influences its neighbors according to their distance and the
joint statistics.

The presented methods work with synthesizers of the clas-
sic Moog type. Due to the large variations in their wave
forms, sampling synthesizers may not benefit from the pre-
sented methods. Also synthesizers of the FM type cannot
be treated well, since the acoustical meaning of their pa-
rameters changes drastically with the choice of the FM al-
gorithm, that is: the interconnection of the operators.

The freely available software synthesizer Synth1 (http:
//www.geocities.jp/daichi1969/softsynth/) serves as a
model for the experiments. It is implemented as a VST
plug-in (http://www.steinberg.de/324_1.html) and offers
87 patch parameters; its sound library as collected from
different sources on the Internet comprises 1250 patches
including lead synth, pad, and effect sounds. The proto-
type software employs Hermann Seib’s publically available
C++ source code for a VST host program (http://www.
hermannseib.com/english/vsthost.htm). The host code
has been extended to communicate via Internet Protocol
(IP) and to automatically extract all available patch data
of the synthesizer and write them to a text file on startup.
For easier visualization and debugging, the statistical com-
putations and the augmented user interfaces are created
in a C#-based application that reads in the text file with
the patch data and sends and receives parameter change
commands to and from the VST host through a local IP
connection on the same computer, see Figure 1.

2. RELATED WORK
Statistical methods have a long history in sound and mu-

sic computing, in particular concerning information extrac-
tion [5]. Attempts to learn about the human perception
of timbre [3] are psychoacoustic studies and thus are in-
herently of a statistical nature. The approach proposed in
this paper studies bypasses psychoacoustics, however, and
directly evaluates the statistics of a sound library. One may
liken this to the technical analysis of share prices, through
which analysts try to learn about a company without taking
a look at its fundamental data.

Several works that aim at handling the vast parameter
spaces of synthesizers employ evolutionary methods with a
human in the loop. Both Genophone [9] and MutaSynth [4]
do not rely on detailed knowledge of the inner workings
of the synthesis unit and thus can be used with a large

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

221



Figure 1: The prototype comprises a modified VST
host, additional graphical user interfaces, and a
statistics engine.

range of sound generators—an aspect in which they resem-
ble the approach presented in this paper. Hoffman and
Cook [7] discuss a database model for feature-based syn-
thesis. They employ an Ln distance in the low-dimensional
feature space. The database retrieval is related to the au-
tocompletion mode presented in this work, even though the
databases’ contents are different in the two works.

Co-variation, the second interaction mode described in
this paper, can be interpreted as equipping a synthesizer
with “embedded” metaparameters: Every single of the usual
controls acts like a metaparameter in that it controls a num-
ber of related parameters. There is no dedicated control
for the metaparameter’s value, as opposed to standard ap-
proaches to metaparameters such as in VirSyn miniTERA
http://www.virsyn.de/, in which all technical details are
subsumed under a handful of general controls. Johnson and
Gounaropoulos [8] train a neural net to map metaparame-
ters to low-level controls.

Bencina [1] maps an arbitrary number of control dimen-
sions to a 2D surface. This seems to be related to the co-
variation interaction mode described in this paper. Bencina,
however, places parameter settings manually in 2D, whereas
this work automatically places parameters as such.

3. PATCH AUTOCOMPLETION
Autocompletion is a standard feature in text-based soft-

ware. While the user types a word, the software queries a
dictionary of common terms and—if successful—either of-
fers a context menu containing all possible completions or
offers the shortest found completion for immediate inser-
tion. This interaction mode can be carried over to music
synthesizers: The user sets as few or as many parameters
as he or she likes. Then the system searches the patch
database for sounds with corresponding values of these pa-
rameters. The synthesizer is set to the patch forming the
closest match. If the user is not satisfied with the result,
he or she can also retrieve the next best matches or sim-
ply adjust the parameters, the ones set before as well as
additional ones, and again ask for the best match.

Patch autocompletion presents one major issue as com-
pared to word autocompletion: Only rarely will the matches

Figure 2: Most parameters possess a clustered dis-
tribution. Every parameter is normalized to the
interval [0, 1] and smoothed with a Parzen window
of width 0.02.

be exact, since most of the parameters are continuous. Thus,
the method also shares some aspects with a text spell-
checker, which looks for close but not exact matches. To
implement this, one needs a method to measure the “dis-
tance” between two patches. In principle, one could base
such a distance function on psychoacoustic measurements,
for instance through dividing the parameter space into just
noticeable differences. However, the parameter space of a
standard synthesizer may easily comprise one hundred di-
mensions; it is hard to see how this could be exhausted by
experiments with human listeners. A different option could
be to set up a computational model of timbre perception
that inputs audio files; this could be used to evaluate the pa-
rameter space fully automatically. Such an approach would
still face the curse of dimensionality. In addition, psychoa-
coustic timbre models are still in their infancy [3]. Thus,
this work resorts to the data that are at hand: the patch
statistics. Based on these data, one can, for instance, de-
termine which values are more probable (see Figure 2) and
define a per-parameter distance based on the rank statistics.

To determine a data-based distance between a certain pa-
rameter’s values 0.4 and 0.8, we count for which percentage
of the patches this parameter is larger than or equal to 0.4
but smaller than 0.8. This distance measure is more sen-
sitive at points where the values cluster. For instance, the
detune values cluster around zero, so that the distance mea-
sure feels a slight detuning as strongly as a strong tuning
difference far away from zero.

One can argue whether this approach is reasonable for
nominal, discrete-valued parameters, too. For instance, a
control for a wave form may offer sawtooth, rectangle, tri-
angle, and sine. Then, the parameter distance between the
latter two is the same as between the rectangle and triangle
wave, which does not correspond to the perceived degree
of similarity. In many instances, however, the assignment
of discrete parameters to switch positions conforms to per-
ception. This is true for a frequency range switch with the
settings 16”, 8”, 4”, 2” as well as for a filter type switch
with the settings LPF, BPF, HPF. Thus, this work sticks
to the same simple definition of per-parameter distance for
all types of parameters even though this may not be the
optimum choice in all situations.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

222



Conflicts in rank order occur when the values of a certain
parameter are exactly identical in two patches. To resolve
this, every parameter value is shifted by a small random
number that is negligible concerning the actual sound.

To find best-matching patches in the library, the overall
distance between the settings made by the user and a patch
from the library has to be computed. To this end, the per-
parameter distances for the parameters set by the user are
combined in a Euclidean manner: The total distance is the
square root of the sum of the squares of the per-parameter
distances. This computation ignores that some parameters
may be meaningless. For instance, the LFO’s frequency
does not matter if the amount of LFO modulation is set to
zero. Thus, the system relies on the user providing sensible
input: He or she should set the LFO modulation amount to
zero and provide no further LFO adjustments.

The graphical user interface for this interaction mode con-
sists of the original synthesizer panel plus a parallel coordi-
nates plot of the patch collection, see Figure 3. The parallel
coordinates plot recommends typical settings: It allows to
read off the value distribution of any single parameter and
the correlations this parameter may have with its neigh-
bors. This includes, for instance, dependencies between the
ADSR parameters of an envelope generator.

Parameters can be set both in the original interface and in
the parallel coordinates plot; they show up as red dots. The
parameter values of the best or n-th best match in the sound
library are indicated by a polyline. In the prototype, the
parameters set by the user retain the precise values the user
has set them to and do not reflect the values belonging to the
patch retrieved from the library. This facilitates tweaking
the sound: Small edits still lead to the same nearest patch.
On the other hand, however, this approach means that no
sound from the library will be reproduced perfectly.

4. CO-VARIATION OF PARAMETERS
The mathematical construct of mutual information be-

tween two random variables allows us to learn which param-
eters bear any kind of statistical relation. In contrast to the
usual measurement, which is Pearson’s correlation coeffi-
cient, mutual information deals well with nominal, discrete-
valued parameters such as waveform settings. In addition,
it also detects relations such as y = x2 for x ∈ [−1, 1]. Mu-
tual information is measured in bits, giving the typical gain
in knowledge one gets about one of the two random vari-
ables from knowing the value of the other. If there is no
statistical relation, this gain is zero bits.

This work considers only the statistical relations between
pairs of parameters. In principle, one could also try to infer
the best value for a parameter (such as the filter’s cutoff fre-
quency) given two others (such as one oscillator’s waveform
and the amplitude envelope’s sustain level). But this faces
another curse of dimensionality: There may not be enough
patches in the library with this waveform setting and a sim-
ilar sustain level to warrant a meaningful decision.

Mutual information is not the only mathematical tool
to measure the degree of dependency between two random
variables. Another prominent choice for this task is condi-
tional entropy. It is not symmetric, however, which makes
it hard to visualize, because the geometric distance from A
to B always equals the distance from B to A.

Depending on the overall settings, some parameters may
have little or no influence on the sound. For instance, the
speed of an LFO is of less interest when the modulation
amount is low. This degree of relevance is taken care of by
weights introduced into the computation of the mutual in-
formation. These weights stem from a simple model created

Figure 4: The joint probability density of all pairs
of parameters can be determined from the patches
in the database (Parzen window of width 0.1).

Figure 5: A substantial number of the parameters
exhibits clear statistical dependencies in terms of
mutual information.

specifically for the current synthesizer. For instance, it as-
signs a weight w of zero to one to the LFO speed depending
on the value of its modulation amount setting.

The weighted mutual entropy I(X; Y ) thus amounts to

I(X; Y ) =
∑

x

∑

y

w(x) w(y) p(x, y) log2

(
p(x, y)

p(x)p(y)

)
,

where the x are the values of the first parameter X, p(x)
is the probability of the first parameter being x, similarly
for the second parameter Y , and p(x, y) is the probability
of the first parameter being x and the second being y at
the same time. Since most of a synthesizer’s parameters
are continuous, we divide every parameter’s range into 16
bins to compute probabilities. This method is a basic ap-
proach to estimate probability distributions and needs to be
replaced by more sophisticated estimators if the number of
samples (that is: sound programs) is low. Figure 4 shows
the joint distribution for several pairs of parameters with
high mutual information, based on the 1250 patches from
the sound library. Figure 5 displays all pair-wise results.

On startup, the prototype software computes the mu-
tual information between all pairs of parameters. It cre-
ates a 2D layout of the parameter set that visualizes the
statistical relationship through nearness or distance, see
Figure 6. To this end, a force-directed graph-layout al-
gorithm [6] is applied that attempts to minimize the en-

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

223



Figure 3: The “autocompletion” interaction mode augments the synthesizer’s interface by a parallel coor-
dinates plot of the library.

Figure 6: The parameters (represented by dots) are
arranged according to their statistical relation, with
their colors representing functional groups. The
disk indicates the influence radius. The window ti-
tle names the parameter below the cursor.

ergy E =
∑

X !=Y

(
1 − dactual

X;Y /dtarget
X;Y

)2
while staying in a

square of 400 × 400 pixels. Here, dactual
X;Y denotes the dis-

tance of the markers representing the parameters X and
Y on the screen, and the targeted distance is given by
dtarget

X;Y =
(
I(X; Y )3 + 1

200

)
−1

, so that unrelated parameters
are pushed 200 pixel apart. The third power lets related pa-
rameters exhibit a strong pull on each other.

The user can specify an influence radius in this 2D repre-
sentation to control how many other parameters a change
in one parameter will affect. The new value of each influ-
enced parameter is computed through a weighted average
of its value in every patch. The relative weight of a patch is
exp

(
−r2/(2 · 0.012)

)
, where r denotes the difference of the

parameter value set by the user and its value in the patch.

5. CONCLUSION AND OUTLOOK
This work presented two interaction modes that give new

meaning to the classic controls of a synthesizer, no matter if
they are actual knobs or if they are drawn on a computer’s
screen. This allows sticking to existing hardware or to ex-

isting screen interfaces. Reusing the standard knobs and
switches also presents some issues, however. For instance,
the standard user interface does not reveal which controls
have been set and which have not. On the screen, this could
be solved through a semitransparent overlay.

The presented approach may only be the first step toward
a statistical evaluation of sound libraries: Can one correlate
three or more parameters, possibly through dimensional re-
duction? [2] Can one create a perception-oriented layout of
the parameter controls on the screen? What is the appro-
priate weighting for sound parameters when computing the
“distance” between patches: Is the filter frequency more
important than the LFO speed? How can one improve the
statistical analysis of the sound library with—manageable—
psychoacoustic tests?

6. REFERENCES
[1] R. Bencina. The metasurface: applying natural

neighbour interpolation to two-to-many mapping. In
NIME ’05, pages 101–104, 2005.

[2] C. J. C. Burges. Geometric methods for feature
extraction and dimensional reduction. In Data Mining
and Knowledge Discovery Handbook, pages 59–91.
Springer, 2005.

[3] J. A. Burgoyne and S. McAdams. Non-linear scaling
techniques for uncovering the perceptual dimensions of
timbre. In ICMC 2007, pages 73–76, 2007.

[4] P. Dahlstedt. A MutaSynth in parameter space:
interactive composition through evolution. Org. Sound,
6(2):121–124, 2001.

[5] D. P. Ellis. Extracting information from music audio.
Commun. ACM, 49(8):32–37, 2006.

[6] I. Herman, G. Melançon, and M. S. Marshall. Graph
visualization and navigation in information
visualization: a survey. IEEE Transactions on
Visualization and Computer Graphics, 6:24–43, 2000.

[7] M. Hoffman and P. R. Cook. Real-time feature-based
synthesis for live musical performance. In NIME ’07,
pages 309–312, 2007.

[8] C. G. Johnson and A. Gounaropoulos. Timbre
interfaces using adjectives and adverbs. In NIME ’06,
pages 101–102, 2006.

[9] J. Mandelis and P. Husbands. Don’t just play it, grow
it!: breeding sound synthesis and performance
mappings. In NIME ’04, pages 47–50, 2004.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

224


