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Abstract 
This paper focuses on the problem of line balancing in an assembly line. Although there are numerous 
studies published on the various aspects of the problem, most of the work focuses on the single-model 
problem, while the number of studies on the mixed-model assembly line balancing problem assume that 
processing times of tasks are deterministic. Task time variation however has a great impact with short 
cycle times. So, because there is always some variation when performing tasks, our research addresses 
stochastic processing duration of tasks. We propose an analytical analysis of the problem by using a 
multi-objective mathematical formulation that aims to minimize the total number of stations, to maximize 
system's productivity and to find a production sequence that smoothes system's operation. 
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1. Introduction  
 
In today's intensively competitive and customer centric market, manufacturers try their best to attract 
every single customer with more varieties of their products, by delivering product at shorter cycle times. 
A typical case of this situation is the automotive industry: any model has some options and customers can 
choose a model based on their preference and financial capability (i.e. with or without airbags, with or 
without air-conditioner, and so on) (Jin and Wu, 2002). As a consequence, different options mean that 
different parts should be put on the basic model. Due to the high cost of building and maintaining an 
assembly line, the manufacturers produce one model with different options or several models on a single 
assembly line. Under these circumstances, the mixed-model assembly line balancing problem arises to 
smooth the production and decrease the cost. 
 
In the literature, the assembly line balancing problem has received considerable attention from researches 
in the last 40 years. The problem is NP-complete, since with a single model and tasks with no precedence 
relations, it is easy to reduce the problem to the NP-complete bin-packing problem. Hence, the 
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combinatorial nature of the mixed-model line balancing problem makes difficult to obtain optimal 
solution, though the mixed-model line is the most frequently encountered type in industry due to the 
pressure of producing several models to attain high customers satisfaction (Gokcen and Erel, 1998). The 
mixed-model assembly line balancing problem can be stated as follows: Given N models, the set of tasks 
and a cycle time associated with each model, the performance times of the tasks and the set of precedence 
relations which specify the permissible ordering of the tasks for each model, the problem is to assign the 
tasks to an ordered sequence of stations such that the precedence relations are satisfied and some 
performance measure is optimized. 
 
Although there are numerous studies published on the various aspects of the problem, most of the work 
focuses on the single-model assembly line balancing problem by proposing optimum-seeking procedures 
or heuristic algorithms. Interested readers may see (Baybars, 1986, Ghosh and Gagnon, 1989). The 
number of studies on the mixed-model assembly line balancing problem, however, is relatively small. 
Thomopoulos (1967) relates costs to different types of inefficiency, for example, idle time and utility 
time, and formulates the model to minimize the total penalty cost with a heuristic method for solving it. 
Roberts and Villa (1970) constructed a binary integer-programming model in order to propose an 
optimum-seeking procedure. Nevertheless, the extensive number of variables and constraints prohibits the 
applicability of the model for even small size instances. Gokcen and Erel (1998) proposed a binary 
integer formulation for the mixed-model assembly line balancing problem and developed some properties 
that prevent the fat increase in the number of variables. These authors, later, use a shortest-route 
formulation to minimize the task time for different models with precedence constraints (Erel and Gokcen, 
1999). 
 
These papers, however, assume that processing times of tasks are deterministic. Since there is always 
some variation when performing tasks, and since task time variation has a greater impact with shorter 
cycle times, this research addresses stochastic processing duration of tasks. To the best of our knowledge, 
only the work of McMullen and Frazier (1997) has addressed this stochastic version of the problem. 
These authors proposed a heuristic procedure by modifying the heuristic algorithm proposed in (Gaither, 
1996) in order to incorporate stochastic task durations. In this paper, we propose an analytical analysis of 
the problem by using a multi-objective mathematical formulation that aims to minimize the total number 
of stations, to maximize system's productivity and to find a production sequence that smoothes system's 
operation. 
 
 
2. Mathematical model 
 
The general solution procedure consists on three steps: 

1. From the requirements for each product, demands, processing times of tasks and precedence 
relations, an equivalent (or composite) single-product model is defined, 

2. Cycle time and the minimum number of stations are defined, and 
3. Productivity maximization, or minimization of total line idle time. 

 
We use a hierarchical multi-objective model in which the line is firstly balanced for a equivalent single-
product model in order to minimize the total number of stations in the line and to minimize the idle time. 
The concept of bottleneck station is finally used to determine the sequencing of products that maximize 
the objective. 
 
For a given precedence relation matrix of a set of N models (products), the proposed model is based on 
the following assumptions: 

• Tasks processing times associated with each model are normally distributed. Common tasks 
among the models do not need to have the same processing time. 

• Processing times are independent and do not depend on workers' training. 
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• Precedence relations between tasks of each model are known. 
• No work-in-process inventory buffer is allowed between stations. 
• Demand of each model is deterministic and known beforehand. 

 
 
2.1 Definition of the equivalent (composite) product 
 
The equivalent product is defined as one resulting from the reduction of the stochastic task durations of 
the mixed-model production demand into composite stochastic task durations. The reduction procedure 
employed in this paper is the same proposed in (McMullen and Frazier, 1997). The variable dn is the 
demand for product n, and the total demand, DT, for all of the N different products demanded is given by 

∑
=

=
N
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1
. The weight wn of product n is computed as Tnn D/dw = . With weights determined, 

proportions of product-mix for each product are known. This information is then used to compute 
weighted average task durations for each individual task. The mean processing time of task i of product n 
is denoted as (ti)n. The variable ti represents thus the weighted mean (equivalent) processing time for task 
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The estimates of the equivalent processing times for the equivalent (or composite) product have now been 
attained. These estimates are used in conjuction with a specified coefficient of variation (CV) to obtain 
standard deviations. Hence, the estimated standard deviation of task i for product n, denoted as σin, is 
computed as σin=tin×CVin. The estimated of the standard deviation for the equivalent product task i, 
denoted as σi, is calculated as follows: 
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The mixed-model has been reduced to a single-product model with processing times of tasks following a 
normal distribution with parameters N(ti, iσ̂ ). 
 
Cycle time, C, is determined as C=pm/hp, where pm represents the productive minutes per hour and hp is 
the desired hourly output. Cycle time is measured in minutes per unite. The theoretical minimum number 

of stations, K°, is computed as ⎥
⎥
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, where A is the total number of tasks, and the symbol ⎡ ⎤  

is the ceiling function. 
 
At this point, the actual line balancing procedure commences. 
 
 
2.2 Line balancing 
 
The actual line balancing procedure proposed in this paper is based on a mathematical formulation that 
considers the reduced single-product model studied previously. Binary decision variables are defined as: 
 

⎩
⎨
⎧

=
othewise0

station   the toassigned is  task if1 ki
xik  

 
Objective function 



 

  4  

The objective is to minimize the number of stations utilized: 

∑∑
= =

A

i

K

k
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1 1
 

where ( ) 1−°= k
ik KC  is a logical cost depending on K°. 

 
Constraints 
Capacity constraints: Let Sk be the set of tasks assigned to the k-th station, then 
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where E(Sk) and V(Sk) are, respectively, the expected value and the variance of the processing time at the 
k-th station. The capacity constraint for a 0.99 probability of completion of all the tasks at this station is 
 

C)S(V.)S(E kk ≤+ 332 , k=1,2,…,K. 
 
This constraint has a non-linear factor that increases the complexity of the model. Hence, in order to solve 
this, it is possible to use one of the following procedures. 

a) Linearity: this is the suitable choice but the square-root contains integer decision variables that 
produces a discontinuous function that does not allow us to use Taylor’s series.  

b) Approximation: the left side of the equation is based on statistical laws that can be used to 
approximate the function. In fact, the non-linearity and non-continuous complexity of the 
function are due to the stochastic feature of the constraint. Let consider that the standard deviation 
of the capacity results from the sum of the standard deviation of processing times at that station. 

The restriction may be expressed as Cxˆ.xt
A

i
iki

A

i
iki ≤σ+ ∑∑

== 11
332 , k=1,2,…,K. It is to note that this 

approximation will assure that the line is always balanced with a capacity utilization near to the 
optimum. 

 
Assignment constraints: this set of constraints assures that tasks of each model are assigned to at most one 
station and can be written as 

1
1

=∑
=

K

k
ikx , i=1,…,A. 

 
Precedence constraints: for the precedence diagram of the mixed-model problem, we define CP={(u,v)}, 
where task v is an immediate follower of task u. The constraint is thus expressed as 

∑
=

≤
b

j
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1
, b=1,…,K and (u,v)∈CP. 

 
Station constraints: we define CM={(u,v)} as the set of task pairs that have to be performed on the same 
station, and CD={(u,v)} as the set of task pairs that can not be performed on the same station. This can be 
accomplished by introducing the following constraints: 

1
1
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Bottleneck station: taking into account the previous considerations, the relative workload at a station is 
defined by the following approximation: 

∑∑
∈∈

σ+=
kk Si

i
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ik ˆ.tC 332 , k=1,…,K. 

 
The bottleneck station is the station having the maximum workload, )(maxarg kkb Ck = . Once the 
bottleneck has been identified, the percentage of utilization for each model (product) can be computed as 
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Let CB={Cb1,Cb2,…,CbN) be a (1×N)-vector defined by those percentages. 
 
Once the minimum number of stations has been determined, it is possible to minimize the total idle time 
as follows: 
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At this point, it is possible to determine a sequencing strategy for the products. 
 
 
2.3 Sequencing 
 
For each model (or product) n, we want to produce a total of dn units during the production planning 
horizon. Let { }ndp max= , the biggest demand among all products. The quantities of each model that most 
be produced during the planning horizon are defined as p/dU nn = , n=1,…,N. The cycle must be 
repeated p times to satisfy demand of each model. Hence, the total number of unites produced per cycle 

are ∑
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. 

 
Once the workload at the bottleneck station is calculated, as well as the quantities for each product during 
the cycle, it is possible to define the sequencing strategy in order to minimize the maximum utilization of 
the bottleneck station for each product of the mixed-model with respect to the average utilization at this 
station. 
 
Let define a binary variable yrn as follows: 
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Before implementing the model, it is necessary to define the following notation. 

Wn is the advance of the n-th model in the sequence, 
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DC is standard deviation of the relative workload of n-th model against Cb during the sequencing of the 

bottleneck station, 
⎪
⎩

⎪
⎨

⎧

≠∀−+

=−

=
∑∑
= =

− 1

1

2 1
1 rCyCC

rCC

DC r

q

N

n
b)q(bnbn

bbn

. 

 



 

  6  

In addition, it is mandatory to compute ∑
=

N

n
nbn yC

1
1  for r=1. This represents that the first product has been 

released. 
 
Objective functions 
The formulation searches for the optimization of the following objective functions at each step of the 
sequencing procedure: 

∑
=

N

n
rnbn yDCMin

1
, r=1,…,UT, and 

∑
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n
rnn yWMax

1
, r=1,…,UT. 

 
where r n states which product type will be assigned to the r-th position in the schedule. 
 
Constraints 
While running the sequencing procedure, it is mandatory to be sure that at least one unit of any product 
type is released to the program to be scheduled. This can be expressed by the following set of constraints: 

1
1

=∑
=

N

n
rny , r=1,…,UT. 

 
 
3. Illustrative example 
 
In this section, we apply the proposed model to a mixed-model assembly line balancing problem with 
stochastic processing times of tasks. Precedence relations, processing times, demands and coefficients of 
variation for each type of product are shown in table 1. Figure 1 is the precedence graph for this example. 
 

Table 1. Performance data for the illustrative example 
 

Model (or product) 
Processing time (sec.) Task Immediate 

predecessor P1 P2 P3 

A - 30 25 35 
B A 15 10 10 
C A 5 7 5 
D A 40 40 45 
E D 50 45 45 
F D 30 40 40 
G B, C 15 15 20 
H E, G 65 60 65 
I H 25 25 0 
J F 50 50 60 
K I, J 45 40 40 
L K 5 5 5 
Demand per week 500 250 750 

Coefficient of variation 
(CV) 0.1 0.2 0.1 
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Figure 1. Precedence graph for the example. 
 
 
The mathematical program was implemented on a PC AMD ATLON XP (1500MHz) using the student 
version of Premium Solver release 3.5. Under these conditions, the mathematical program was solved in 8 
seconds. Results obtained for the minimization of the number of stations and the maximization of 
productivity, by using the proposed hierarchical solution procedure, are shown, respectively, in table 2 
and 3. 
 

Table 2. Results for minimum number of stations 
 

Station (k) Sk Ck (sec) Idle time (sec) 
1 {A,D} 94.552 1.448 
2 {B,C,F,G} 91.725 4.275 
3 {E} 59.826 36.174 
4 {H} 82.078 13.922 
5 {I,J} 88.852 7.418 
6 {K,L} 59.827 36.173 
  Total 99.409 

 
Table 3. Results for maximal productivity 

 
Station (k) Sk Ck (sec) Idle time (sec) 

1 {A,D} 94.552 1.448 
2 {C,E} 66.861 29.139 
3 {B,F,G} 84.690 1.31 
4 {J} 70.265 25.735 
5 {H} 82.078 13.922 
6 {I,K,L} 78.144 17.856 
  Total 99.409 

 
Looking at tables 2 and 3, we can see that the maximization of productivity allows us to minimize the 
number of stations (column Ck). The maximum idle time observed in table 2 corresponds to station 2 
with 29.14 seconds, while in table 1 the maximum idle time is for stations 3 and 6. Another important 
factor is that tasks are distributed in a different manner when solving the second objective. This is a factor 
that allows to a simultaneous optimization of both objectives. Finally, it is to notice that the total idle time 
of the system is independent of the distribution of tasks on stations, but depending on the number of 
stations for a given instance. 
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This illustrative example was also solved using the approximation for the capacity constraint explained in 
section 2.3. Results are shown in table 4. The number of stations remains the same, as well as the total 
idle time of the system. The bottleneck station is still the station number 1, but the mathematical program 
sets the shortest tasks within the same station, for instance station number 2, while this heuristic does not 
by needing the same number of stations. This justifies the appropriateness of the proposed approximation 
for the capacity constraint in the mathematical program presented in section 2.3. 
 

Table 4. Results using approximation procedure for capacity 
 

Station (k) Sk Ck (sec) Idle time (sec) 
1 {A,D} 94.552 1.448 
2 {E,B,C} 81.751 14.249 
3 {F,G} 69.8 26.2 
4 {H} 82.078 13.922 
5 {I,J} 88.582 7.418 
6 {K,L} 59.827 36.173 
  Total 99.409 

 
 
5. Conclusion 
 
This paper presented a mathematical formulation for the mixed-model assembly line balancing problem 
with stochastic processing times of tasks. The formulation is based on the definition an equivalent multi-
objective single-model. Experimental results at the implementation stage of the model illustrate the 
robustness of the proposed model, which suggests the practical applications of the model since 
simplifications allow for a short computation time while the solution value is near to the optimum. The 
proposed model serves a starting point for researchers in the field, and may be used as a validation tool 
for heuristic procedures solving multi-objective real-life line balancing problems. 
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