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The subiteration method, which forms the basic iterative procedure for solving fluid-
structure-interaction problems, is based on a partitioning of the fluid-structure system
into a fluidic part and a structural part. In fluid-structure interaction, on short time scales
the fluid appears as an added mass to the structural operator, and the stability and
convergence properties of the subiteration process depend significantly on the ratio of
this apparent added mass to the actual structural mass. In the present paper, we establish
that the added-mass effects corresponding to compressible and incompressible flows are
fundamentally different. For a model problem, we show that on increasingly small time
intervals, the added mass of a compressible flow is proportional to the length of the time
interval, whereas the added mass of an incompressible flow approaches a constant. We
then consider the implications of this difference in proportionality for the stability and
convergence properties of the subiteration process, and for the stability and accuracy of
loosely coupled staggered time-integration methods. �DOI: 10.1115/1.3059565�
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Introduction
The numerical simulation of the interaction of a flexible struc-

ure with a contiguous fluid flow is of critical importance to a
ultitude of applications, including the analysis of aero-elastic

nstabilities such as flutter in aerospace engineering �1,2� and the
nvestigation of cardiovascular disorders, such as vulnerable
laques and aneurysms in biomechanics �3,4�. The basic iterative
ethod for solving fluid-structure-interaction problems is subit-

ration. In the subiteration method, the fluid and solid subprob-
ems are solved alternatingly, subject to complementary partitions
f the interface conditions. In strongly coupled partitioned
chemes, the subiteration process is repeated until convergence to
prescribed tolerance. Alternatively, the subiteration method can

e used as a preconditioner, for instance to a Krylov-subspace
ethod �5,6� or as a smoother in multigrid �7�. In loosely coupled

or staggered� time-integration schemes, the subiteration proce-
ure is performed only once per time step �2,8,9�.

On short time scales, the effect of the fluid on the structure can
e represented as an added mass. The ratio of this apparent added
ass to the structural mass is critical to the convergence and

tability properties of the subiteration process. If the characteristic
ass ratio exceeds 1, then the subiteration process is unstable;

ee, e.g., Ref. �10�. The added-mass effect of incompressible flows
as recently been studied in Refs. �10–12�. Heuristic methods to
ccount for the added-mass effect in fluid-structure-interaction
omputations with very light structures, such as large cargo para-
hutes, have been proposed in Refs. �13,14�. However, improved
nderstanding of these effects in engineering computations would
e beneficial. The added-mass effect of compressible flows is not
ell known. Moreover, despite the fact that there is a general

oncensus that the behavior of subiteration is distinctly different
or compressible and incompressible flows, it appears that the
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precise distinction is not well understood. This incomplete under-
standing has been the source of many miscommunications with
regard to the stability properties of subiteration, and with regard to
the accuracy and stability of staggered time-integration schemes,
which depend strongly on the stability characteristics of the un-
derlying subiteration procedure.

In the present paper, we investigate the difference between the
added-mass effects pertaining to compressible and incompressible
flows, and we consider the implications for the stability and con-
vergence of the subiteration process, and for the stability and ac-
curacy of staggered time-integration methods. Based on a model
problem, viz., a fluid flow on a semi-infinite domain over a flex-
ible panel in 2D, we show that the added mass of a compressible
flow is proportional to the length of the time step in the time-
integration process, whereas the added mass of an incompressible
flow approaches a constant as the time step vanishes. Conse-
quently, regardless of the density of the fluid and the mass of the
structure, the subiteration process is stable and convergent for
compressible flows for sufficiently small time steps. For incom-
pressible flows, this is not the case, and the subiteration method
can remain unstable in the limit of vanishing time-step size. The
distinct difference in the added-mass effect of compressible and
incompressible flows and in the corresponding properties of the
subiteration method, is caused by the fact that for compressible
flows the displacement of the interface affects the fluid only in the
immediate vicinity of the interface, on account of the finite speed
of sound in compressible fluids, whereas for incompressible fluids
the displacement of the interface induces a global perturbation in
the fluid. This qualitative difference between compressible and
incompressible fluids applies identically to other fluid-structure-
interaction problems. It is therefore anticipated that the results of
this paper generalize mutatis mutandis to other more complicated
fluid-structure-interaction problems.

For incompressible flows, the model problem that we consider
is a generalization of that in Ref. �10�, in that we include convec-
tive and viscous effects. Our analysis conveys, however, that these

effects are subordinate in the short time-scale limit and, hence, in
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his limit we retrieve the results of Causin et al. �10� for incom-
ressible flow. The approach in this paper is based on formal
ourier analyses of linearized model problems, without regard for
onvergence of the Fourier series in the appropriate norms. The
esults can be provided with a rigorous footing, but this is beyond
he scope of the present paper.

The contents of this paper are organized as follows. Section 2
resents the problem statement. In Secs. 3 and 4 we derive the
elation between the structural displacement and the correspond-
ng pressure exerted by the fluid on the structure for the
ompressible-flow model and the incompressible-flow model, re-
pectively. Section 5 investigates the stability and convergence
roperties of subiteration for the two flow types. In Sec. 6 we
onsider the implications of the distinct properties of subiteration
or compressible and incompressible flows for the stability and
ccuracy of staggered time-integration methods. Section 7 con-
ains concluding remarks.

Problem Statement
To formulate the model problems, let x, y, and t designate a

orizontal spatial coordinate, a vertical spatial coordinate, and a
emporal coordinate, respectively. We consider an open space-
ime domain

Q� = ��x,y,t�:0 � t � T, 0 � x � L, ��x,t� � y � ��

ee the illustration in Fig. 1. The bottom boundary of Q�, which
epresents the interface between the compressible or incompress-
ble fluid flow in Q� and the structure, is given by

�� = ��x,y,t�:0 � t � T, 0 � x � L, y = ��x,t��
he fluid models are elaborated in Secs. 3 and 4.
The structural model that we consider pertains to the flexural

ibration of a beam

m
�2z

�t2 + �2 �4z

�x4 = p0 − ��x,t� �1�

ith m as the mass of the beam per unit length, z as the vertical
isplacement, � as the flexural rigidity, p0 as the prescribed exte-
ior pressure, and � as the force exerted by the fluid on the struc-
ure.

Denoting by p ���
the pressure in the fluid at the interface, the

uid and the structure are connected by the dynamic and kine-
atic interface conditions

��x,t� = p�� , ��x,t� = z�x,t� �2�

�
�
�
�

Qα

x

y
α(x, t)

z(x, t)

0

Fig. 1 Illustration of the panel p
expanded interface region
�
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The fluid-flow models associate a unique pressure field � with
each admissible interface displacement field �. We refer to map
P :��� as the displacement-to-pressure �dtp� operator corre-
sponding to a particular flow model. For the panel-model problem
that we consider, the customary subiteration approach for solving
fluid-structure-interaction problems can be condensed into the fol-
lowing iterative procedure. Given an initial approximation of the
structural displacement, z0, repeat for n=1,2 , . . .

m
�2zn

�t2 + �2�4zn

�x4 = p0 − P�zn−1� �3�

To elucidate the problem considered in this paper, let us con-
sider the particular case that Eq. �1� is provided with the homo-
geneous initial conditions

z�x,0� = 0, �tz�x,0� = 0 �4�

and, moreover, suppose that the flow problem is furnished with
initial and boundary conditions such that it admits a uniform flow
with pressure p0. The obvious solution to Eq. �1� is then z�x , t�
= z̄�x , t�=0, and the corresponding solution of the flow problem is
the uniform flow specified by the initial conditions. By adding a
suitable partition of zero to Eq. �3�, we obtain

m
�2�zn − z̄�

�t2 + �2�4�zn − z̄�
�x4 = − �P�zn−1� − P�z̄�� �5�

If we restrict our considerations to displacements that are small in
the appropriate norm, the right member in Eq. �5� can be linear-
ized, and we obtain the following recursion relation for the itera-
tion error �n=zn− z̄ in the subiteration process:

m
�2�n

�t2 + �2�4�n

�x4 = − P��n−1 �6�

where P� designates the linearized dtp operator. Moreover, under
the stipulation that the iterates zn comply with the initial condi-
tions, it follows that the iteration errors �n satisfy homogeneous
initial conditions

�n�x,0� = 0, �t�n�x,0� = 0 �7�

In the sequel of this paper, we derive the linearized dtp operators
for a compressible-flow and an incompressible-flow model, and
we examine the corresponding behavior of the subiteration error

�
�
�
�

p|Γα

p0

π(x, t)

Γα

Ωα \ Γα

L

lem: temporal cross section with
∂

rob
in compliance with Eqs. �6� and �7�.
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Compressible Flow Model
We consider a compressible flow governed by the Euler equa-

ions

�q

�t
+

�f�q�
�x

+
�g�q�

�y
= 0, �x,y,t� � Q� �8a�

ith

q ª �q1,q2,q3,q4�

f�q� ª �q2,
q2

2

q1
+ p�q�,

q2q3

q1
,
q2�p�q� + q4�

q1
	 �8b�

g�q� ª �q3,
q3

2

q1
+ p�q�,

q2q3

q1
,
q3�p�q� + q4�

q1
	

n Eq. �8b�, q1, q2, q3, and q4 denote the density, horizontal mo-
entum, vertical momentum, and total energy of the fluid, respec-

ively. The system �8� is closed by the equation of state

p�q� ª �� − 1��q4 − 1
2 �q2

2 + q3
2�/q1� �8c�

ith �=1.4.
At the interface, the fluid flow complies with the flow-tangency

ondition

��

�t
+

q2

q1

��

�x
−

q3

q1
= 0 �9�

he boundary conditions on the complement �	� \�� will not be
urther elaborated.

To derive the linearized dtp operator corresponding to Eq. �8�,
e consider small deflections

�
 = 0 + 
��, 
 → 0 �10�

ccordingly, we assume that the fluid solution can be formally
xpanded as q
=q0+
q�+O�
2�, where the generating solution q0
orresponds to a uniform horizontal flow with density �0�0, hori-
ontal velocity U0
0, and pressure p0

q0�x,y,t� = ��0,�0U0,0, 1
2�0U0

2 + p0/�� − 1�� �11�

ne easily verifies that Eq. �11� indeed satisfies Eqs. �8� and �9�
or �=0. In addition, we assume that q
 is isentropic and irrota-
ional. The first-order perturbation in the fluid solution can then be
ritten as q�= ��� ,��U0+�0�x�� ,�0�y�� ,E��, where the potential
� complies with the linearized full-potential equation

U0
2�2��

�x2 + 2U0
�2��

�x � t
+

�2��

�t2 − C0
2� �2��

�x2 +
�2��

�y2 	 = 0 �12�

ith C0ª

�p0 /�0 as the speed of sound corresponding to the

eference state. The energy perturbation E� is irrelevant in the
equel. The density perturbation �� it related to the potential by
�=−��0 /C0

2���t��+U0�x���. Moreover, upon expanding the pres-
ure according to p�q
�= p�q0�+
p�+O�
2�, it holds that p�
C0

2��. The flow-tangency condition �9� yields the first-order con-
ition

���

�t
+ U0

���

�x
−

���

�y
= 0 �13�

t is to be noted that Eqs. �12� and �13� hold in the unperturbed
omain Q0 and on the unperturbed interface �0, respectively.

Green’s function for the wave equation �see, for instance, Ref.
15�, p. 473 and Ref. �16�, p. 520� enables us to express the
ressure perturbation at �0 in accordance with Eqs. �12� and �13�
s p� ��0

= P���, with operator P� according to

P� = �−1�0C0��� �14a�
here

ournal of Applied Mechanics
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�����x,t� =�
0

t�
R

���,��

�
H�C0�t − �� − ��x − �� − U0�t − ����

C0

2�t − ��2 − ��x − �� − U0�t − ���2
d�d�

�14b�

with H�·� as the Heaviside function and

�� = ��t� + U0�x� if �x,t� � ��0,L � ��0,T � �
0 otherwise


 �14c�

It is noteworthy that the Heaviside function restricts the domain of
integration to the triangle

�� � t,x − �U0 + C0��t − �� � � � x − �U0 − C0��t − ��� �15�

which constitutes the projection of the domain of dependence as-
sociated with Eq. �12� for the space/time coordinate �x , t� onto �0.
Equation �14� represents the linearized dtp operator corresponding
to the considered compressible-flow model.

To facilitate the interpretation of the added-mass effect associ-
ated to Eq. �14�, we derive the Fourier symbol of the operator
�14�. To this end, we first derive the Fourier symbol of the integral
operator �. Let us consider an isolated Fourier mode

��x,t� = �̂��,��exp�i�x + i�t� �16�

Upon inserting Eq. �16� into Eq. �14b�, and restricting the domain
of integration in accordance with Eq. �15�, we obtain �����x , t�
=�̂�� ,� ,x , t��̂�� ,��exp�i�x+ i�t�, where the Fourier symbol �̂
is given by

�̂��,�,x,t� =�
0

t�
x−�U0+C0��t−��

x−�U0−C0��t−��

e−i���x−��+��t−���

� �C0
2�t − ��2 − ��x − �� − U0�t − ���2�−1/2d�d�

�17�

We introduce the transformations

��,�� � ��,�� = �x − �U0 − C0 sin ���,t − ��
�18�

�r,�� � ��,�� = r2t−1�C0
−1 cos �,sin ��

Note that the factor C0
−1 is a prerequisite in the second transfor-

mation in Eq. �18� to ensure dimensional consistency. By means
of Eq. �18� and the partition of unity 1=sin2 �+cos2 �, the inte-
gral �17� can be condensed into

�̂ = t�
−�/2

�/2
sin �

�
exp�− i��d� �19�

where ��r ,� ,��=r�M cos �+sin �−cos � sin ��, with M=U0 /C0
as the Mach number. Noting that ��−1 sin ���1 for all ��R, it
follows from the Cauchy–Schwartz inequality that the Fourier
symbol of � can be bounded as

��̂��,�,x,t�� � t��·�−1 sin�·��L2�−�/2,�/2� � �exp�− i�·���L2�−�/2,�/2�

� �t �20�

For the operator � according to Eq. �14c� we simply obtain

�����x , t�=�̂�� ,���̂�� ,��exp�i�x+ i�t�, with �̂= i��+U0��.
The Fourier symbol of the composite operator �14a� is the product
of the Fourier symbols of the operators in the composition. Hence,
we obtain the following upper bound for the Fourier symbol of the
linearized dtp operator �14� associated with the compressible-flow

problem
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�P̂� � �0C0t�� + U0��2 �21�

n particular, in the analysis of the added-mass effect, we shall be
nterested in short time intervals or, equivalently, high frequen-

ies. In this context, it is to be noted that Eq. �21� yields �P̂�
�0C0t�2 in the high-frequency limit �→�. The Fourier symbol

f this high-frequency limit can be associated with an added mass

�c = �0C0t �22�
ence, the added mass corresponding to the compressible flow is

ime dependent and, specifically, the added mass �c is propor-
ional to t.

Let us allude to the fact that the added mass �c in Eq. �22�
dmits an intuitive physical interpretation: because pressure per-
urbations travel at the speed of sound C0, the displacement of the
nterface has a local effect on the fluid, and only affects the fluid
n a region within distance C0t of the interface. The mass corre-
ponding to this region �per unit length� is precisely �c.

Incompressible Flow Model
We consider an incompressible flow governed by the Navier–

tokes equations

�tu + �xuu + �yuv + �xp − ��u = 0 �23a�

�tv + �xuv + �yvv + �yp − ��v = 0 �23b�

�xu + �yv = 0 �23c�

here u and v represent the horizontal and vertical velocity com-
onents, respectively, p denotes the pressure divided by the �ho-
ogeneous� fluid density �0, � is the dynamic viscosity, and �

esignates the Laplace operator.
At the interface, the flow is assumed to obey slip boundary

onditions. This implies that the flow complies with the tangency
ondition

��

�t
+ u

��

�x
− v = 0 �24�

nd, moreover, that the tangential component of the normal trac-
ion vanishes

n� · �u · t� + t� · �u · n� = 0 �25�

here n� and t� denote the unit normal vector and the unit tan-
ential vector to ��, respectively, �= ��x ,�y�, and u= �u ,v�. The
oundary conditions on �	� \�� will be elaborated in passing.

We are concerned with small deflections �
 conforming to Eq.
10� and, accordingly, we assume that the flow solution can be
ormally expanded as �u ,v , p�
= �u ,v , p�0+
�u ,v , p��+O�
2�,
here the generating solution �u ,v , p�0= �U0 ,0 , p0� again corre-

ponds to a uniform horizontal flow. Upon inserting the expansion
n Eq. �23a� and collecting terms of O�
�, we obtain the first-order
onditions

�tu� + U0�xu� + �xp� − ��u� = 0 �26a�

�tv� + U0�xv� + �yp� − ��v� = 0 �26b�

�xu� + �yv� = 0 �26c�

hese conditions hold on Q0. The boundary conditions �24� and
25� moreover imply that u� and v� comply with the following
rst-order conditions on �0:

���

�t
+ U0

���

�x
− v� = 0,

�u�

�y
+

�v�

�x
= 0 �27�

For notational convenience, we introduce the condensed nota-
ion q��x ,y , t�= �u� ,v� , p���x ,y , t�. Instead of deriving an explicit

xpression for the linearized dtp operator corresponding to Eqs.

21206-4 / Vol. 76, MARCH 2009
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�26� and �27�, we establish its Fourier symbol. To this end, we
regard an isolated Fourier component of the interface displace-
ment

���x,t� = �̂��,��exp�i�x + i�t� �28�

and a corresponding velocity/pressure perturbation

q��x,y,t� = q̂�k,��exp�i�x + i�t + sy� �29�

We stipulate that the velocity and pressure perturbations vanish as
y→�. This implies that the functions sªs�� ,�� must have
strictly negative real part. Upon inserting Eq. �29� into Eq. �26�,
we obtain N̂�k ,�� · q̂�k ,��exp�i�x+ i�t+sy�=0, where the Fourier

symbol N̂�k ,�� of system �26� is defined by

N̂�k,�� = �Ĥ�k,�� 0 i�

0 Ĥ�k,�� s

i� s 0
� �30�

with Ĥ�k ,��= i�+ iU0�+���2−s2�. Therefore, Eq. �29� complies

with Eq. �26� if and only if q̂�k ,���kernel�N̂�k ,���. This equa-
tion admits nontrivial solutions under the strict condition that

det�N̂�k ,���= ��2−s2�Ĥ�k ,��=0. It then follows that Eq. �29� sat-
isfies Eq. �26� provided that

q̂�k,�� � span��i�,− ���,− i�� + U0����, s = − ���, or
�31�

q̂�k,�� � span��s,− i�,0��, Ĥ�k,�� = 0

A solution to Eqs. �26� and �27� with �� specified by Eq. �28� can
be obtained by combining the modes �Eq. �31��

q� = �̂� �� + U0k���2 + �2�
�����2 − �2�

exp�− ���y�� − �

− i���
�� + U0��

�
+

2�� + U0k��
�2 − �2 exp��y��− �

i�

0
��exp�i�x + i�t� �32�

with ��� ,��=  
�2+ i��+U0�� /�, subject to the restriction that
the real part of � is negative. Recalling that the pressure divided
by the density corresponds to the third component in Eq. �32�, we
obtain the following Fourier symbol for the linearized dtp opera-
tor corresponding to the incompressible flow

P̂��,�� = �0�−
�� + U0k�2

���
+ i

2��2�� + U0��
��� 	 �33�

It is to be noted that the high-frequency limit of Eq. �33� yields

P̂�−�0���−1�2 as �→�. This symbol can be associated with an
added mass �0���−1. In fact, the wave number can only assume
values �=k� /L, k�N on account of the structural boundary con-
ditions ��0, t�=��L , t�=0. Hence, the largest-wavelength compo-

nent �k=1� is dominant, and for this component it holds that P̂
�−�i�

2 as �→�, where the added mass is defined by

�i = �0L/� �34�

Equation �34� conveys that the added mass corresponding to the
incompressible flow is independent of time. It is noteworthy that
added mass �34� is consistent with that derived in Ref. �10�, in the
appropriate limit.

To provide a physical explanation for the difference in the
added-mass effect for compressible and incompressible flows, we
note that mode �32� is global. Hence, whereas for compressible
flows the effect of the displacement of the interface on the fluid is

confined to a region within distance C0t of the interface �see Sec.
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�, for incompressible flows the fluid is affected throughout its
ntire domain.

Let us moreover note that the convective part and the viscous

art of P̂ according to Eq. �33� are proportional to �, whereas the
dded-mass part is proportional to �2. Hence, convective effects
nd viscous effects are subordinate to the added-mass effect in the
imit �→�.

Stability and Convergence of Subiteration
Equipped with the Fourier symbols of the linearized dtp opera-

ors, we can establish the behavior of the iteration error according
o Eq. �6� for the compressible and incompressible flows. Let us
onsider an isolated Fourier component of the iteration error:

n�x , t�= �̂n�� ,��exp�i�x+ i�t�. Upon inserting this component
nto Eq. �6�, we obtain the relation ��̂n�� ,���

��� ,����̂n−1�� ,���, where the contraction number � is defined
y

���,�� =
�P̂��,���

�− m�2 + �2�4�
�35�

gain restricting our consideration to high frequencies, it follows
hat the contraction number is bounded from above as ��� /m as
→�, where � refers to the added mass according to Eqs. �22�

nd �34� for the compressible flow and incompressible flow, re-
pectively, and equality holds in the incompressible case. Let us
ote that the following results extend without further modifica-
ions to other structural-stiffness operators, as for fixed � the con-
ribution corresponding to the structural-stiffness operator to Eq.
35� vanishes in the limit �→�. This argument has also been
sed in Ref. �12�. If ��1, the Fourier amplitudes �̂n form a non-
ncreasing sequence and, hence, the subiteration process is stable.

oreover, if ��1, the subiteration process is formally conver-
ent, and � determines the rate of convergence. For the compress-
ble and incompressible flows, Eqs. �22�, �34�, and �35� lead to the
ollowing estimates for the corresponding contraction numbers:

�c �
�0C0t

m
+ O��−1�, �i =

�−1�0L

m
+ O��−1� �36�

s �→�.
The estimates in Eq. �36� elucidate the fundamental difference

n the properties of the subiteration method for compressible and
ncompressible flows. In computational methods, the subiteration
rocedure is generally applied to resolve the aggregated fluid-
tructure system within each time step of a time-integration pro-
ess, i.e., iteration �3� is repeated within each time step until the
teration error is inferior to a certain prescribed tolerance. Hence,
ithin a time step, the sequence of iteration errors complies with
qs. �6� and �7�, and we implicitly restrict our consideration of the

teration error to the time interval 0� t�!t, where !t denotes the
ime step in the time-integration process. The upper bound �c in
q. �36� then yields �c��0C0!t /m. In particular, this implies that

or compressible flows the convergence behavior of the subitera-
ion process improves if the time step is reduced and, specifically,

c→0 as !t→0. Let us remark that this behavior has also been
stablished for the piston problem in Ref. �17�. Consequently, for
ll settings of the structural mass m and the fluid density �0, there
xists a strictly positive time step !t� such that the subiteration
rocess is stable for all !t� �0,!t��. Moreover, if the time-step
ize is reduced by a certain factor, then the convergence rate of the
ubiteration process improves by that same factor. For incom-
ressible flows, this is not the case. For increasingly small time
teps, i.e., in the limit !t→0, the contraction number converges

oward the strictly positive, time-step-independent high-frequency
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limit in Eq. �36�. Therefore, if the characteristic fluid-structure
mass ratio �i /m exceeds 1, the subiteration method is unstable,
regardless of the time step.1

The above results have been established on the basis of the
continuum problem. If a particular temporal discretization scheme
is considered, then the structure of the estimates in Eq. �36� re-
mains intact, although the precise values can be different. We refer
to Ref. �12� for an overview of the effects of temporal discretiza-
tion schemes on the stability of the subiteration procedure for
fluid-structure interaction with incompressible flow.

6 Staggered Time-Integration Methods
The aforementioned fundamental difference in the convergence

properties of the subiteration process for compressible and incom-
pressible flows also carries important consequences for the suit-
ability of staggered �also referred to as loosely coupled or parti-
tioned� time-integration procedures, i.e., time-integration methods
in which the subiteration step is performed only once per time
step; see, for instance, Refs. �2,8,9�. We regard a partition of the
time interval under consideration, 0� t�T, into time steps ti−1
� t� ti of uniform length !t= ti− ti−1 �i=1,2 , . . . ,T /!t�. Within
each time step, the aggregated fluid-structure system can be con-
densed into

Awi = Bwi−1 with wi = �qi

zi
	, A = �A11 A12

A21 A22
	,

B = �B11 0

0 B22
	 �37�

where qi and zi represent the variables pertaining to the discrete
approximation of the fluid and structure solutions on interval i,
and A11, A12, A21, and A22 denote the discretized fluid operator,
kinematic condition, dynamic condition, and structural operator,
respectively. The operators B11 and B22 extract the initial condi-
tions for the fluid and structure subsystems on interval i from the
approximation on the previous time interval. Of course, on the
first interval the right member in Eq. �37� is replaced with a vector
corresponding to the prescribed initial conditions. For simplicity,
we assume that the operators A and B are linear, which is appro-
priate for the ensuing error analysis.

Let us assume that system �37� has been solved inexactly on the
previous time interval, i−1. In particular, the result on interval
i−1 contains an error !wi−1. This error propagates to an error
!wp,i on interval i via the initial conditions. Hence, on account of
the inexact solution on interval i−1, Eq. �37� is replaced with

A�wi + !wp,i� = B�wi−1 + !wi−1� �38�

By virtue of the assumed linearity of Eq. �38�, the propagated
error can be expressed in terms of the error on interval i−1 as
!wp,i=L!wi−1 with L=A−1B. Note that the inverse operator A−1

is well defined under the standing assumption that the fluid-
structure problem is well posed.

Application of the subiteration procedure to Eq. �38� leads to
the following sequence of approximations. Given an initial esti-
mate wi,0, for n=1,2 , . . .

�A11 0

A21 A22
	�qi,n

zi,n
	 = �B11 0

0 B22
	�qi−1 + !qi−1

zi−1 + !zi−1
	

− �0 A12

0 0
	�qi,n−1

zi,n−1
	 �39�

Note that the fluid and structure approximations with index n, in
fact, depend exclusively on the structural approximation with in-

1In principle, this statement requires somewhat more care because it is not a priori
obvious that �i in Eq. �36� does not represent an upper bound attained in the limit

�→�. A more precise analysis of Eq. �35� with P̂ according to Eq. �33� reveals that

this is not the case.
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ex n−1. Hence, to initialize the procedure, it is sufficient to
rescribe zi,0. We define the local iteration error by !wi,n=wi,n
�wi+!wp,i�. Upon adding a suitable partition of zero to Eq. �39�,
e obtain the error-amplification relation

�A11 0

A21 A22
	�!qi,n

!zi,n
	 = − �0 A12

0 0
	�!qi,n−1

!zi,n−1
	 �40�

rom Eq. �40�, it follows that !wi,n=Q!wi,n−1 with

Q = �0 − A11
−1A12

0 A22
−1A21A11

−1A12
	 �41�

ence, by recursion, !wi,n=Qn!wi,0.
Suppose that the initial approximation on each time interval is

btained by means of prediction, i.e., by extrapolation of the ap-
roximation on the previous time interval. In particular

wi,0 = E�wi−1 + !wi−1� �42�

here E represents the extension operator: �Ewi−1��x , t�
wi−1�x , t+!t� for 0� t�!t. The extension is well defined for
nite-element approximations in time. For finite-difference ap-
roximations, it can be defined via interpolating polynomials. As-
uming that in each time step the subiteration process is termi-
ated after n̄ iterations, the cumulative iteration error !wi in the
nal result on interval i is composed of the propagated error and

he local iteration error at iteration n̄. From Eqs. �38�–�42�, we
hen obtain the sequence of identities

!wi = !wi,n̄ + !wp,i = Qn̄!wi,0 + !wp,i

= Qn̄�E�wi−1 + !wi−1� − �wi + !wp,i�� + !wp,i

= Qn̄�E − L�wi−1 + �Qn̄�E − L� + L�!wi−1 �43�

he final identity in Eq. �43� is a consequence of wi=Lwi−1 and
wp,i=L!wi−1.
From Eq. �43� it follows by recursion that

!wi = �
k=1

i

�Qn̄�E − L� + L�i−kQn̄�E − L�wk−1 �44�

nd, by the triangle inequality

�!wi� = �
k=1

i

�Qn̄�E − L� + L�i−k�Q�n̄�E − L��wk−1� �45�

ecalling that ti= i!t, we replace i−k in the exponent in Eq. �45�
ith �ti− tk� /!t. A necessary condition for boundedness of the

ight member in Eq. �45� in the limit !t→0 is

�Qn̄�E − L� + L� � 1 + "!t as !t → 0 �46�

or some positive constant ". The exponential term in Eq. �45�
an then be bounded as

�Qn̄�E − L� + L�i−k � �1 + "!t��ti−tk�/!t � e"�ti−tk� �47�

s !t→0. It is to be remarked that provision �46� does not hold for
=0 because any appropriate norm of the extrapolation operator
E� exceeds 1 as !t→0. In particular, this implies that the analysis
elow does not hold if only extension is applied, or if the subit-
ration process is nonconvergent or if convergence is too slow. In
uch circumstances, the right member in Eq. �45� becomes un-
ounded as !t→0.
Proceeding under assumption �46�, it follows from Eqs. �45�

nd �47� that

�!wi� � C!t−1e"ti�Q�n̄�E − L�sup
k

�wk� �48�

or some constant C independent of !t, as !t→0. Suppose that the
xtension operator corresponds to an mth order extrapolation.

m
hen for sufficiently smooth functions �E−L�=O�!t �. Moreover,
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on account of the fact that �wk� pertains to a time interval of
length !t, it holds that �wk�=O�!t1/2�. Therefore

�!wi� � C̄�ti��Q�n̄O�!tm−1/2� �49�

for some exponentially increasing function C̄�t�, independent of
!t.

The error !wi, which is induced by the inexact solution of the
aggregated fluid-structure system on the intervals with index �i,
is to be compared with the discretization error on interval, i.e., the
difference between the resolved �monolithic� discrete solution,
and the actual continuum solution. Suppose that the monolithic
discrete approximation corresponding to Eq. �37� yields an ap-
proximation to the solution of the fluid-structure system with for-
mal temporal order of accuracy m, i.e., for sufficiently smooth
solutions its holds that the approximation error on each time in-
terval conforms to

�wi − w̄� � C!tm�w̄� = O�!tm+1/2� �50�

as !t→0, where w̄ represents the continuum solution. The addi-
tional factor 1/2 in estimate �50� originates from the fact that the
measure of the considered time interval is proportional to !t.

The upper bound �49� enables us to clarify the distinctly differ-
ent properties of staggered time-integration procedures for com-
pressible and incompressible flows. For compressible flows, �Q�
is proportional to !t. In Sec. 5 this proportionality has been estab-
lished for the map !zi,n−1�!zi,n, cf. Eq. �36�. However, specifi-
cally, the norm of the map between the structure displacement and
the fluid state, !zi,n−1�!qi,n, is proportional to !t, and the norm
of the map between the fluid state and the structure displacement,
!qi,n�!zi,n, is proportional to 1 as !t→0. Upon inserting the
proportionality �Q�#!t into Eq. �49�, it follows that for a com-
pressible flow the iteration error on interval i, i.e., the error rela-
tive to the monolithic result, is bounded as: �!wi�
�Ca�ti�!tm+n̄−1/2 as !t→0, for some exponentially increasing
function Ca�t�, independent of !t. For a staggered time-integration
method, n̄=1 and, therefore, the cumulative iteration error is of
the same order as the discretization error in the monolithic result,
cf. Eq. �50�. Hence, the staggered procedure possesses the same
order of accuracy as the underlying monolithic method, but with a
different constant of proportionality. As a digression, we note that
for n̄=2, the cumulative iteration error is one order higher than the
discretization error. Consequently, in the limit !t→0, the result
obtained with two subiterations per time step is identical to the
monolithic results.

For incompressible flows, staggered time-integration methods
behave distinctly different. In the incompressible case, the norm
of �Q� converges to a positive constant in the limit !t→0. For
n=1, the global iteration error thus remains O�!tm−1/2� and, hence,
the order of accuracy of a result obtained by a staggered method is
one order lower than that of the underlying monolithic method. In
fact, assuming that the subiteration process is convergent, the
number of subiterations per time step must increase as n̄
# �log !t� as !t→0 to obtain a method, which yields the same
order of accuracy as a monolithic approach.

The distinct properties of �Q� for compressible and incompress-
ible flows is also pertinent in relation to condition �46�. For com-
pressible flows, �Q�#!t in the limit !t→0. Therefore, condition
�46� is fulfilled for n̄
1 under the solitary provision that �L�=1
+O�!t� as !t→0, independent of the extrapolation operator. This
implies that if this provision holds, then the solution of the stag-
gered scheme cannot grow unbounded in finite time, on account
of upper bound �47�. For incompressible flows, this is not the case
because �Q� does not vanish as !t→0.

7 Conclusion
To examine the difference between the added-mass effects of
compressible and incompressible flows, we considered the model
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roblem of flow in a semi-infinite domain over a flexible panel in
D. We derived the displacement-to-pressure operator, which re-
ates the pressure exerted by the fluid on the structure to the struc-
ural displacement for a compressible flow governed by the Euler
quations and for an incompressible flow governed by the Navier–
tokes equations. For the compressible flow, the displacement-to-
ressure operator assumes the form of an integrodifferential op-
rator. We derived the Fourier symbol of this operator, and we
howed that in the high-frequency limit corresponding to short
ime intervals, this Fourier symbol can be associated with an
dded mass proportional to the length of the considered time in-
erval. For the incompressible flow, the Fourier symbol represents
time-independent added mass in the high-frequency limit. More-
ver, we showed for the incompressible flow that the viscous and
onvective effects are subordinate to the added-mass effect in the
igh-frequency limit.

The distinct proportionalities of the added mass to the time step
or compressible and incompressible flows yield essentially differ-
nt behavior of the subiteration method for fluid-structure-
nteraction problems. For compressible flows, for any setting of
he density of the fluid and the mass of the structure, the subitera-
ion process is stable and convergent for sufficiently small time
teps. Furthermore, if the time step in the time-integration method
s reduced by a certain factor, then the convergence rate of the
ubiteration method improves by that same factor. For incom-
ressible flows this is not the case, and the subiteration method
an be unstable even in the limit of vanishing time-step size.

Finally, we considered the implications of the difference in the
onvergence behavior of the subiteration method for staggered
ime-integration methods. We showed that for compressible flows,
he order of accuracy of a staggered method is identical to that of
he underlying monolithic method, provided that a suitable predic-
or is used. If two subiterations per time step are applied instead of
ne, then the approximation provided by the staggered method
pproaches the monolithic result in the limit of vanishing time-
tep size. Moreover, we showed that for compressible flows, stag-
ered time-integration methods are stable in the limit of vanishing
ime-step size, in the sense that the solution remains bounded in
nite time. For incompressible flows, the order of accuracy of a
table staggered approximation with prediction is one order lower
han the corresponding monolithic result. Moreover, for incom-
ressible flows, time-integration schemes with a finite number of
ubiterations per time step can be unstable in the limit of vanish-
ng time-step size, in the sense that the approximation can grow
nbounded in finite time, if the subiteration process converges too
lowly. Staggered methods therefore appear appropriate for fluid-
ournal of Applied Mechanics
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structure-interaction problems with compressible flows, but for
fluid-structure-interaction problems with incompressible flows
their use should be dissuaded.
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