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Techniques for library-centric application design have already proven to be very useful
in the past. The current gain in computer performance is shifted towards the utilisation
of multi-core processors which extends the importance of this type of application
design in the field of scientific computing, which also poses new difficulties. A parallel
generic scientific simulation environment has been developed to ease this transition
from single-core to multi-core systems without additional development activity.
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1. Introduction

The growing complexity of physical models leads to an increase of the amount of source

code, thereby significantly increasing the importance of efficient code development and

maintenance. This issue can be addressed by providing modular building blocks which can

be tested and refined independently of each other and seamlessly integrated into the

desired applications. Hence, the concept of library-centric application design [13,16] and

the availability of a set of high performance libraries considerably eases the development

of highly scalable applications.

The evolution of complexity leads to a growing number of software packages for

different types of problems. Additionally, this multitude of packages is usually not

organised in a way that allows immediate algorithmic reusability. Different projects have

contributed components to the field of scientific computing, but up to now, no general set

of generic data structures or algorithms suitable for scientific computing in general has

been developed. Some works have developed modules, e.g. for generic grid components

[6], which was a major contribution to software components for scientific computing with

an in-depth analysis of the problem related to algorithms operating on computational grids.

This effort analysed the relationship between data and algorithms based on topological and

combinatorial concepts. A small set of kernel components was developed, which greatly

eases the specification of algorithms for grid applications.

The current trend, however, is to combine several programming languages, resulting in

multi-language applications [21]. Different languages are utilised, each within the field

where it performs best. Languages such as Python are used to connect different modules.

However, problems of interface specification and implementation arise with the combination
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of several programming languages, further complicating matters. The handling of different

languages on different platforms is even more difficult. In the field of scientific computing,

the performance aspects must be handled orthogonally to the development of applications.

Optimisations can thereby be treated separately. With the multi-language approach

performance aspects cannot be considered orthogonally because of the use of compiled

modules which require an interface layer in order to build applications.

To secure further gain in computing performance the semiconductor industry has shifted

the upcoming processor upgrades to multi-core systems, where the gain in processing power

is obtained by using an increased number of processing cores in the CPUs. Current single

desktop computer systems can already handle large scientific simulation problems locally.

Nevertheless, industrial problems and parameter settings often require large scale

simulations which have to be performed on supercomputers, where the individual nodes

of these supercomputers often do not differ in the execution speed from the desktop

computers anymore. Instead they are heavily parallelised with a large amount of shared

memory. Only for the final parameter setting, the application has to run on a supercomputer,

where the amount of CPUs is drastically increased, as is the amount of available memory.

This scaling also has to be reflected in current application design.

While scientific simulations have been among the first applications to embrace

parallelisation, still not all fields of scientific computing make use of it. Most related work

focuses on parallel toolkits within their frameworks [20]. Our approach is based on

providing modular blocks which can be used on top of existing libraries. Also, utmost

emphasis is placed on the issue that already tested and stable code has to be parallelised

without modification of existing source code. This is not only important to speed up the

development of parallelly executing applications, but also to preserve the already invested

time to develop, debug and calibrate an application.

We therefore present the library-centric application design approach by the generic

scientific simulation environment (GSSE [13,16])1, domain-specific embedded language

(DSEL) concepts and their realisation in Cþþ as well as two parallel approaches usable

by the GSSE:

. Various multi-threading libraries are used in conjunction with the topological

partitioning provided by the GSSE to subdivide the amount of topological objects.

Several discretisation schemes and the assembly times benefit greatly from this

approach.

. Recent developments towards parallel STL [33] techniques can easily be

incorporated, which require a recompilation step, where all STL algorithms and

the GSSE algorithms built on top of these algorithms are then executed in parallel.

These techniques are already on their way of being incorporated into the GCC [32].

These approaches enable the utilisation of several parallelisation techniques without

altering the developed, tested and calibrated applications by simple re-compilation

steps.

2. Related work

In the last decade, many approaches towards implementing a (parallel) simulation

environment for sub-parts of scientific computing, e.g. the solution of partial differential

equations has been taken. Most of the tools resulting from these attempts use topological

structures which are specialised to work with a particular discretisation scheme.

This reduces resource use but comes at the cost of greatly diminishing the flexibility
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of topological traversal. However, for some reasons it might be advantageous to

implement discretisation schemes based on a mixed finite element/finite volume scheme

which requires such traversal operations. The following brief overview shows some

significant steps towards a more flexible and generic application design:

. 1995: multi-paradigm language’s run-time performance (Cþþ ) equal to Fortran

[35]

. 1997: emergence of the generic programming paradigm by Cþþ ’s STL [3,25]

. 2002: generic data structure interface and generic traversal operations [7]

. 2002: generic graph library [31] with the introduction of the concept of a property

map

. 2003: concepts for separation of traversal and data access [2]

A major step towards a more flexible use of data structures was developed by the

Boost Graph Library (BGL [31]). This library implements a generic interface to enable

access to arbitrary graph structures but hides the details of the actual implementation.

The interfaces make it possible for any graph library based on these interfaces to be

interoperable with the BGL. The approach is similar to the one taken by the Cþþ STL to

ensure the interoperability of the various algorithms and containers. The property map

concept [31] was also introduced. Unfortunately, the BGL was designed for graphs only

and neither lower nor higher dimensional data structures can be handled.

The Computational Geometry Algorithm Library (CGAL [9]) is another important

collection of reusable components for a great number of geometrical algorithms and data

structures in a generic library-centred approach, such as two- and three-dimensional

modules for mesh generation, Voronoi diagrams and surface mesh simplification.

The main contribution of CGAL is the concept of an algebraically parametrised kernel

[24] related to the actual implementation robustness of mathematical operations.

The Grid Algorithms Library (GrAL [6]) was one of the first contributions to the

unification of data structures of arbitrary dimensions for the field of scientific computing.

A common interface for grids with dimensionally and topologically independent access

and traversal was designed. Mathematical concepts for topological spaces were introduced

and applied to grids. Applications for the field of solving PDEs were presented, but no

concrete implementation was given.

The Sophus Cþþ library [12] aims at coordinate-free formulations. This library

implements grid components for sequential and parallel high performance computing.

A field layer for numerical discretisation schemes, a tensor layer to handle various

quantities related to a coordinate systems, and finally an application layer with solver

interfaces were developed. However, this approach suffers from severe abstraction

penalties and requires a code transformation tool [4].

deal.II [5] provides a framework for finite element methods and adaptive refinement

for finite elements. It uses modern programming techniques of Cþþ and enables the

treatment of a variety of finite element schemes in one, two or three spatial dimensions and

of time-dependent problems. Modern finite element algorithms, using, among other

aspects, sophisticated error estimators, and adaptive meshes can be developed easily.

The FEniCS project [22], which is a unified framework for several tasks in the area

of scientific computing, is a great step towards generic modules for scientific computing.

Up to now most of the modules are in a prototype state.

The template numerical toolkit (TNT [26]) is a collection of interfaces and reference

implementations of numerical objects (matrices) in Cþþ . The toolkit defines interfaces
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for basic data structures, such as multidimensional arrays and sparse matrices, commonly

used in numerical applications.

These libraries are an important step towards library-centric application design. But

most of these libraries were not developed with interoperability as a necessary constraint.

As a consequence, additional code has to be introduced which slows the development

process down and impedes the execution speed of the final application.

3. Library-centric software design

Libraries have become a central part of all major programming efforts connected to

scientific computing. As a consequence the possible library-centric software design can be

regarded as a methodology for designing applications as an assembly of single

components with a low degree of coherence and a high degree of orthogonality, where the

following basic principles are essential for successful generic components [23]:

. Functions should not depend on the global status but only on the arguments.

. Every function is either general or application-specific.

. Every function that could be made general should be made general.

. The global state should be documented by describing both the semantics of

individual variables and the global invariants.

An important step towards library design is the definition of interfaces based only on

concept requirements [11,30] in order to avoid monolithic application development which

always leads to redevelopment of parts or complete applications. Instead already existing

concepts and modules which have already proven successful can be used. Essential

requirements related to an optimal library development can be summarised as follows:

. A set of libraries has to be complete and must provide a systematic taxonomy

[18,23] to guide the design of an application. Many different types of applications

can be written using these libraries and adaptors.

. Libraries should be generic which means that they are usable [3] for a broad range of

different applications. Each of the software components is not only written for a

very specific purpose, but for a manifold of problems.

. Constraints on performance are required for each of the libraries [11] to obtain an

overall high performance application.

. The interoperability of a library is not adversely affected by its completeness [30].

Even if a library is complete by itself, it provides standardised interfaces which

guarantee compatibility for data structures which have not been foreseen in its

initial design.

In the past, the main drawback related to library-centric design was the absence of

programming paradigms supporting this type of design. An example can be seen in one of

the features most used in programming: loops. The imperative style of using loops offers a

great degree of flexibility during the development process, with regard to maintainability

and side-effects. Nevertheless, simple loops require local variables to maintain a state, and

only the imperative style of data access is available. These issues result in codes that lack

maintainability, scalability and lead to unnecessarily error-prone implementation bodies.

Another issue which also does not support the concept of component reuse by itself is the

object-oriented programming paradigm, which complicates the interoperability of its

software modules. An advantage of imperative and object-oriented programming is that no

sophisticated programming techniques have to be taught and learned to be able
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to understand or extend the code. But it also results in an additional drawback, which

directly stems from the missing expressiveness of the code. Highly optimised code

sections can barely be extended by other developers.

Reusability, orthogonality, enhancement capabilities and performance are all issues

which can be eased by using paradigms other than imperative and object-oriented

programming. The most important issues related to library-centric application design are

the transitions from these programming paradigms to generic programming and the

efficient implementation in programming languages which then offer generality and

specialisation at the same time.

The combination of different programming paradigms fits the scenario of scientific

computing exceptionally well. The generic programming paradigm establishes

homogeneous interfaces between algorithms and data structures without sub-typing

polymorphism. Functional programming eases the specification of equations and offers

extendable expressions while retaining the functional dependence of formulae by higher

order functions. Also, this type of specification of access, algebraic manipulation and

traversal enable to circumvent the problems of an imperative implementation. The features

of meta-programming offer the embedding of domain-specific terms and mechanisms

directly into the host language as well as compile-time algorithms to obtain optimal

run-time. Developments toward an alternative compilation model and active library

design are also an important step [36,39]. However, reusability of traditional libraries is

often extremely limited due to the following issues:

. Numerical data types. There are numerous well-known numerical data types which

also are often optimised for special applications in order to yield high performance.

Only with generic interfaces can these performance-enhancing measures be used in

different kinds of applications.

. Topologies. Numerical schemes often require different underlying topological data

structures. While some applications perform well using structured grids, other

applications require unstructured meshes with varying local feature sizes. Although

the nature of these topologies is totally different, standardised interfaces for all

topological data types have to be provided.

. Different dimensions. Special symmetries that are encountered in many problems

of scientific computing can be used to reduce the effective dimension of a

calculation. Even though all problems can be treated in their full dimension, an

enormous gain in performance by using lower dimensional data structures cannot

be neglected.

. Equation system assembly. Most of the solver mechanisms require an initialisation

of the values of their own interfaces. Therefore, an interface which abstracts these

specialties and makes the solvers accessible in a general manner is required. With

such an interface the governing equations can be formulated independently of the

actual data structures of the solver.

. Solution of large equation systems. A lot of problems result in large equation

systems which have to be solved. There are solvers available for various special

cases, which perform well under certain circumstances but fail to converge

sometimes. Therefore, interface design has to guarantee that different solvers can

be used.

To circumvent the stated issues, a set of requirements for library-centric application design

in the field of scientific computing is given in the following to allow the transformation of

the concepts for scientific computing into generically applicable and efficient software
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components. The achieved library-centric design is facilitated, as the following criteria are

met:

. The environment is complete, so all applications can be written exclusively using its

libraries (as well as standard libraries). Indeed, completeness increases usability

enormously, because no components have to be added while existing components

can be adapted.

. The components of the environment are usable for a broad range of different

applications.

. The interoperability of the environment is not affected by its completeness. Even

though all the libraries can be used by themselves, they provide standardised

interfaces, which guarantees compatibility for data structures which have not been

foreseen in the initial design.

An additional requirement for application design is related to an efficient use of

programming paradigms. A basic layer can be identified, which has to implement a formal

topological interface for container properties as well as for traversal, thereby establishing a

consistent interface for data structures and quantity storage. The object-oriented and

generic programming paradigms are best suited to accomplish this. On top of this layer,

functional expression specification facilities are required, which can be modelled best by

the functional programming paradigm. The concept of a DSEL in Cþþ requires the

additional concept of meta-programming resulting in an active library concept to

implement and guarantee an overall high performance, as described next.

4. Domain-specific embedded languages

Closely related to the development approaches which have been discussed above is an

important concept for high-level languages, such as Cþþ , DSELs. First, a domain-

specific language (DSL) is defined by a set of symbols as well as by a well-defined set of

rules specifying how the symbols are used to build well-formed compositions [1].

The domain-specific part of a DSL can then be employed by a simplified grammar and an

increased expressiveness. The possibility of writing code in terms close to the level of

abstraction of the initial problem domain is the characteristic property of DSLs.

The next relevant issue regarding a DSL is interoperability. A possible way of dealing with

interoperability is to integrate the DSL into a host language, finally obtaining a DSEL, e.g.

YACC [19]. All software engineering tasks, such as designing, implementing and maintaining

the DSL, are reduced to implementing and maintaining a library of the host language. More

importantly, the interoperability can be enhanced to the highest level, due to the fact that both

concepts are now available in one host language. All the libraries already developed and their

functionality are available at the same time. To summarise, the advantages of DSELs are:

. Abstracting the underlying language/system/compiler in the direction of the

user/domain expert.

. The overhead of learning or adopting a new language is greatly reduced.

. Reduction of documentation due to expressive names and self-documentation.

. Validation of semantics, e.g. by a compiler.

The advent of having multiple paradigms available in a single programming language

creates new possibilities for DSLs. The advantages and disadvantages of several

programming paradigms and the reduction of specification and implementation effort

clearly suggest the use of DSELs. Maintenance and further development for an extra
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transformation tool is thereby greatly reduced, compared to, e.g. the transformation tool

for Sophus [4]. But up to now, the implementation of a DSEL for non-trivial areas is far

from simple or user-oriented. Also, DSLs require various mechanisms from the host

languages, where the following features are almost mandatory:

. operator overloading means that different operators, such as þ , 2 can be

overloaded.

. parametric polymorphism means that a kind of template system is available.

. functional mechanism means that higher order and lambda objects are available.

. time of evaluation means that program code can be specified for compile and for

run-time.

As can be seen from the brief comparison of languages provided in Table 1, only a few

languages are available which allow an efficient modelling of operators. Languages such

as Haskell were not developed with a focus on an overall high performance, but they still

offer the definition of new operators which extend the built-in language syntax. Based on

this overview, the only language offering the best support for DSELs with syntactic

expressiveness as well as run-time efficiency is Cþþ :

. static type system

. ability to achieve near-zero abstraction penalty [28,39]

. powerful optimisers

. template system that can be used to:

. generate new types and functions

. perform arbitrary computations at compile-time

. dissect existing program components

. set of built-in symbolic operators2 that can be overloaded.

This currently unique combination of features results in Cþþ being the only possible

language for the concepts given here.

In addition to using Cþþ as a host language for a DSEL, the multi-paradigm approach

offers a large degree of freedom in the implementation of high performance scientific code

and even applications [29,37].

An important issue of the generic programming paradigm realised in Cþþ is that

optimisation of a whole application generates a run-time performance for various tasks

without comparison. One major advantage is the technique of template meta-programming

of Cþþ , which means that a DSEL can function as an extension to the general-purpose host

language. Meta-programming and DSEL are also actively developed areas [38]. An example

is given next which illustrates the embedded nature of a grammar specification in Cþþ .

The first part yields the normal grammar specification used by YACC:

Table 1. Language comparison.

Language
Operator

overloading
Parametric

polymorphism
Functional
mechanisms

Time
of evaluation

C No Partial (macros) No Compile/run-time
D Partial Yes No Compile/run-time
Java No Partial (version) No Run-time
C# No Partial (version) No Run-time
Haskell Yes Partial (version) Yes Run-time
Cþþ Yes Yes Yes Compile/run-time
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Next, an example of Spirit [8] is given. Spirit is an object-oriented, recursive-descent

parser and output generation framework enabling target grammars written entirely in

Cþþ as a DSEL.

Another advantage of the DSEL concept is the continuous improvement of compiler

technology, which drastically increases the performance of high-level code. Recent

performance analyse have shown, that each compiler generation increases the overall run-

time performance [14].

In combination with an application library, any general-purpose programming

language can act as a DSL. DSLs were developed in the first place, because they can offer

domain-specificity in better ways:

. Appropriate or established domain-specific notations are usually beyond the limited

user-definable operator notation offered by general-purpose languages. A DSL

offers domain-specific notations from the start. Their importance cannot be

overestimated, as they are directly related to the suitability for end user

programming and, more generally, an improved programmer productivity can be

associated with the use of DSLs.

. Appropriate domain-specific constructs and abstractions cannot always be mapped

in a straightforward way to functions or objects that can be put in a library. This

means a general-purpose language using an application library can only express

these constructs indirectly. Again, a DSL would incorporate domain-specific

constructs from the start.

The following issues should be addressed when building a DSEL:

. Interoperability: One of the most important parts in a heterogeneous environment

such as scientific computing.

. Declarativeness and expressiveness: Scientists are used to a mathematical notation

and not to the constructs of a programming language. The distance from the

mathematical notation should be reduced as much as possible.

. Efficiency: A simple example within the DSEL should compile without any

overhead.

. Static type safety: The host compiler should catch as many problems as possible.

. Maintainability and scalability: Simple changes to the problem should only result in

simple changes to the model within the host language. If the environment does not

support a feature, it should be extensible easily.
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5. Generic scientific simulation environment

The required change in application design to cope with current requirements of high-

performance distributed computing already indicates the shift to library-centric

application design. This final change offers the possibility of DSEL techniques to suit

different groups of users by providing a layer of domain specific elements for scientific

computing. As has already been demonstrated [15,16], the goals of high run-time

performance and genericity do not have to be contradictory.

Our approach deals with the identification and implementation of building blocks for

multi-physic simulation with special consideration regarding easy specification of various

types of discretised differential equation as well as run-time performance. Several tasks in

scientific computing can be considerably eased by the utilisation of functional

programming. Unfortunately several tasks defy the nature of stateless description. All

different types of storage mechanisms as well as streaming processes cannot be easily

described by functions. Here, the actually stored elements are the important parts and not

their functional description.

Based on these components [13],3 the GSSE is specified by a direct implementation of

the concepts given. An overview is depicted in Figure 1 where the GTL represents the

traversal library whereas the GFL overviews the components of the functor library.

5.1 GSSE: Topological traversal

The Cþþ STL offers great mechanisms for sequential containers and the corresponding

algorithms, but for more complex data structures a common way of accessing data or

iteration is not available at the moment. Different developments, such as the BGL or

CGAL, offer their own mechanisms derived from the STL. The GSSE offers traversal

mechanisms for all different types of data structures, such as simple sequential containers

and meshes for any dimension. Topological traversal describes the iteration over elements

of a data structure. The incidence information for cells is stored in a connection matrix.

Figure 1. Building blocks of the GSSE.
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It is basically a two-dimensional data structure which stores different types of topological

objects, e.g. edges or cells, and their connection to other objects, e.g. vertices. Container

properties, such as dimension and type of cell, e.g. tetrahedral cell, are also stored.

The topological traversal library provides incidence and adjacence traversal operations

for various topological elements. Thereby enabling the necessary topological operations

for various tasks of scientific computing, e.g. traversal concepts required by discretisation

schemes. This traversal concept allows the formulation of algorithms based on this

interface independently of the actual implementation of the topological data structure or

the dimension considered. Such a consequent use of the topological interface leads to

dimensionally and topologically independent application design and is a key issue for

parallel application design.

Figure 2 provides examples of such traversal types and the possible relationships

between topological elements of different dimensions. The first row shows all edges, faces

and cells which are incident with the same base vertex (a)–(c), while the first column

shows vertices which are incident with one base edge, face or cell (d,g,j).

The connection matrix is the underlying data structure for these types of operations.

To specify these types of traversal efficiently, a concept called data-type map, where

each container specifies its traversal possibilities, is used. The following example

depicts a vertex on cell traversal, where the containers from boost::mpl are used.

Figure 2. Traversal methods of a three-dimensional tetrahedral cell complex. The rows illustrate
traversal schemes of the same base element, whereas columns depict traversal schemes of the same
traversal element.
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5.2 GSSE: Functional description

The approach of a generalised topological access to data structures makes a functional

description for algorithms possible which are a natural choice for reuse in the field of

scientific computing. The functional specification of algorithms thereby derived is used to

develop and implement a minimal base of generic functors for the DSEL.

The functor library built on top of the topological interface is then dimensionally and

topologically independent. An example of these two libraries is given next, where a finite

volume discretisation of a generic Laplace equation is discretised:

The functional body can be arbitrarily extended by other traversal operations,

calculations or assignments. This example is inherently fully parallelisable due to the

functional specification, where vx represents a vertex, an object from the traversal

space.

This implementation of this library is based on an adaptation layer for Boost::Phoenix

to read the data-type maps of the traversal part. Several new functors have been developed

to ease not only the traversal, but also the quantity access. The given functors, equ_pot,
area, dist, are all quantity access functors in the spirit of the Cþþ cursor and

property map concept [2]. In the given example, the functors sum , . specifies the

traversal part, where

represents a vertex on edge traversal, where the context of vertex on edge is created by the

data-type map and the corresponding meta-program. The final traversal sequence is then

started by using the actual vertex (vx) provided by any container which models the

concept of vertices and edges.

Due to the compile-time evaluation of the functional specification, an overall

high-performance is established for the application. In addition, the functional

specification of algorithms permits unrestricted parallel execution.

By using the comprehensive traversal capability of the GSSE and the capability to

describe algorithms functionally, scalability and parallelity of an application is simply

achieved by using either a partition of the traversal elements by GSSE or new approaches

such as the parallel STL.

International Journal of Parallel, Emergent and Distributed Systems 515



5.3 Parallel applications

The basic mechanism for parallelisation is given by STL’s separation of traversal of data

structures and algorithms, which can be briefly explained by:

The GSSE offers the same concept but in a more general way which separates the

discrete topological space (elements of a data structure) and the access to quantities.

The following example illustrates the calculation for all edge lengths of a more complex

container structure.

The implementations of these traversal mechanisms use the Cþþ STL algorithms

internally and are thereby automatically parallelised by utilising one of the parallel STL

approaches. A linear speed-up corresponding to the number of cores can be accomplished

by just a recompilation step and adjusting a run-time environment variable.

A manual partitioning of the traversal space can also be accomplished for

discretisation schemes and the required assembly steps. The following example illustrates

the parallelisation capabilities for a finite-volume discretisation scheme (ts respresents

the traversal space):

By simply using partitions of the vertex space, the whole application remains

unchanged and just a recompilation step is required to use the application parallely.

6. Examples

To present the application of the parallelisation techniques offered by the GSSE we choose

the area of technology computer aided design (TCAD), which serves as the semiconductor

industry’s branch of scientific computing.

Here we present a parallel combined Delaunay and advancing front mesh generation

and adaptation approach for TCAD’s process simulation. The complete hull is pre-

processed separately to comply with the Delaunay property [34]. This guarantees a volume

mesh generation approach, where each segment can be meshed concurrently.

The following snippet of code shows a central part of the mesh generation application:

A GSSE container is used as an interface for segments which are fed to a functional

meshing routine. Table 2 summarises two different meshing examples from TCAD on two

different computer systems: AMD’s X2 6000 and AMD X4 Phenom 9600 (quad-core).
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Furthermore, we present an example of TCAD’s device simulation application.

The most basic model, the drift-diffusion (DD) model, consists of a set of coupled partial

differential equations which need to be assembled and solved. In this case, the assembly

time is usually small compared to the time spent on the solution of the equation system.

More sophisticated and complex models, such as the here presented energy transport or

higher transport models, however, spend an increasing amount of time on equation

assembly.

Discretised using finite-volume schemes, it can be assembled in parallel by

partitioning the traversal space due to the line-wise entries into the matrix. Equation (1)

shows the energy flux equation for electrons, which is solved self-consistently with

Poisson’s equation and the current relations [27]. The following code snippet demonstrates

the actual Cþþ code for the electron temperature T_n determined by Equation (1) [10].

div an gradðnT2
nÞ þ gradw n Tn

� �
¼ 2gradw�Jn 2 bn nðTn 2 TLatticeÞ: ð1Þ

Each sum can be automatically parallelised by the parallel STL, where the full matrix

line is assembled in parallel by a vertex partitioning mechanism executed by spawned

threads:

Several existing multi-thread libraries can be used orthogonally due to the separate

partitioning of the vertex space (e.g. the Boost thread library [8]). This method can then be

used for all finite volume codes.

To present the results obtained by using different machines and not altering the actual

code parts, a benchmark4 is given for a simple DD and hydro-dynamic (HD) simulation for

a two-dimensional pn-diode with 4000 elements. The bias voltage is stepped from 20.03

to 1 V. An abstract matrix–solver interface enables the application of various solver

packages, such as Trilinos [17], which is also available to the GSSE. For the actual

benchmarks, a sequential implementation of the Trilinos linear solver, a variant of a

BiCGStab algorithm, was used, whereas the non-linear solver part is implemented by the

GSSE.

Table 2. Comparisons of the mesh generation and included mesh adaptation times (in s) on AMD’s
X2 6000 and AMD X4 Phenom 9600 (quad-core).

Example Sequential mesh (s) Dual-core (s) Quad-core (s) No. of points

MOSFET 172 101 46 1.7e6
Levelset 20 13 11 3.6e5
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Table 3 reviews the benchmark results from four AMD 4 £ Dual-Core Opteron

Cluster 8222 SE 3 GHz with 2 £ 32 GB and 2 £ 16 GB RAM.

7. Conclusion

Library-centric design does not only ease the development of applications significantly by

providing building blocks centralised in a generic environment, the GSSE, but also greatly

facilitates the evolution of single-processing applications into parallel applications

suitable for multi-core processors by parallel components, thereby simplifying

development, scalability, stabilisation, further support and parallelisation. Only applying

the concepts of parallelism in everyday programming can unlock the full power of the new

multi-core processors.
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Notes

1. The GSSE uses an open source license (Boost [8]) and is available at http://www.gsse.at
2. In Cþþ there are currently 48 operators which can be overloaded.
3. A detailed overview of the GSSE is available at: http://www.reneheinzl.net/gsse/
4. GCC 4.2, -O3 -march¼k8 -mtune¼k8.
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