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Abstract 
Regardless of the supremacy of relational database management 
systems (RDBMS) in the databases, object-oriented database 
management systems (OODBMS) continue to play crucial role 
in the management of data. Generally, the complex data are often 
found in telecommunications, business, engineering and web 
based applications. The most common approach of accessing 
such data is navigation. However, the approach of navigational 
access of data has the potential of generating excessive disk IO 
because objects in the path of navigation may be placed in 
different disk pages. Excessive disk IO is becoming increasingly 
undesirable because disk IO performance improves at only 5-8% 
per year whereas CPU performance doubles approximately every 
18 months. Thus disk IO is likely to be a bottleneck in an 
increasing number of OODB applications. This paper focuses on 
reducing disk IO effects to improve OODBMS performance. In 
database environment effective buffer management of the main 
memory is the key in increasing efficiency through reducing the 
disk IO bottleneck in OODBMSs. There has been much existing 
work, namely in the areas of: static clustering; dynamic 
clustering; buffer replacement; and pre-fetching. All of these 
techniques can be used together in a complimentary manner. 
Most existing research has focused on finding the best solution 
for each area with little regard on how solutions from the 
different areas affect each other. We believe synergy exists 
between the areas, and that exploiting the synergy leads to the 
best overall solution. This paper focuses on exploring whether 
synergistic techniques are both feasible to implement and 
outperform their non-synergistic counterparts. 
Key words: 
Temporary Memory Management, Databases, Object Oriented 
System 

1 Introduction 

Continuous growth in the size of the databases and 
requirement of accessing data residing at different places 
in different tables, one of the most effective techniques for 
performance enhancement is considered to be clustering 
[Gerlhof et al. 1996]. The reason behind this is the 
navigational object accesses in an object oriented database. 
Consequently, related objects are often accessed 
consecutively. By grouping related objects onto the same 
disk page in an object oriented database environment disk 
IOs can be reduced. In addition to reduced IO, clustering 

also uses cache space more efficiently by reducing the 
number of unused objects that occupy the cache. 
Periodical re-clustering allows the physical organization 
of objects on disk to more closely reflect the prevailing 
pattern of object access. The majority of existing 
clustering algorithms are static [Tsangaris 1992; 
Banerjeeet al. 1988; Gerlhof et al. 1993; Drew et al. 1990]. 
Static clustering algorithms require that re-clustering take 
place when the database is not in operation, thus 
prohibiting seamless and uninterrupted accessibility of 
databases. In contrast, dynamic clustering algorithms re-
cluster the database while database applications are in 
operation. Applications that require round the clock access 
of Object oriented database and involve frequent updates 
in data access patterns may benefit from the use of 
dynamic clustering. 
Generally from the study it is revealed that, following 
three properties are generally missing from most existing 
dynamic clustering algorithms. These properties include: 
 

• The re-use of existing work on static clustering 
algorithms; 

• The use of opportunism to minimize the IO path 
for re-organization; and 

• A prioritization of re-clustering so the worst 
clustered pages are re-clustered first. 

 
In spite of the works by many of the prominent 
researchers that exists on static clustering [Tsangaris 
1992; Banerjee et al. 1988; Gerlhof et al. 1993; Drew et al. 
1990], there has been little transfer of ideas into the 
dynamic clustering literature. In this paper we try to 
explore this omission which transforms existing static 
clustering algorithms into dynamic algorithms. The goal 
of dynamic clustering is to generate the minimum number 
of disk IOs for a given set of database application access 
patterns. As pointed out by the cost models, the clustering 
process itself may generate IO, loading data pages for the 
sole purpose of object base re-organization. However, 
most researchers have chosen to ignore these sources of 
IO generation and instead concentrate on developing the 
dynamic clustering algorithm that minimizes the number 
of transaction read IOs generated by the client processes. 
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Opportunism eliminates clustering read IO by choosing 
in-memory pages for re-clustering. 

2 Related Works 

The re-organization phase of dynamic clustering can incur 
considerable operating cost. Two of the key overheads are 
increased write contention and IO. To reduce write 
contention, most dynamic clustering algorithms are 
designed to be incremental and thus limit the scope of re-
organization. However, DROD [Wietrzyk and Orgun 
1999] is the only algorithm that we are aware of that limits 
the scopes of reorganization so that only in-memory 
objects are re-clustered. Wietrzyk and Orgun [1999] 
accomplish this by calculating a new placement when the 
object graph is modified, either by a link (reference) 
modification or object insertion. The algorithm then re-
clusters the objects that are affected by the modification or 
insertion. Once the new placement is determined, only the 
objects in memory are re-organized and the remaining 
objects are only re-arranged as they are loaded into 
memory. However, the statistical data required by DROD 
has global scope (statistics about any object in the store 
may be needed). In contrast, OPCF has local scope in 
terms of statistical requirements (only statistics of in-
memory objects are required). 
The incremental nature of dynamic clustering requires that 
only a small portion of the entire database be re-clustered 
after each iteration. However, the choice as to which 
portion to re-cluster is where many existing algorithms 
differ. McIver and King [1994] suggest targeting the 
portion that was accessed after the previous re-
organization. However, this may involve a very large 
portion of the database if the re-clustering is not triggered 
frequently. Wietrzyk and Orgun [1999] re-cluster affected 
objects as soon as an object graph modification occurs. 
They use a threshold mechanism2 to determine when re-
clustering is worthwhile. However, this approach may still 
be too disruptive. An example of when its disruptiveness 
is likely to be felt is when the system is in peak usage and 
frequent object graph modifications are occurring. In such 
a scenario the object graph would be continuously re-
clustered during peak database usage. The algorithm thus 
lacks a means of controlling when the re-clustering takes 
place. In contrast, the dynamic algorithms developed with 
OPCF can be easily made adaptive to changing system 
loads. This is due to the fact that re-clustering can be 
triggered by an asynchronous dynamic load-balancing 
thread rather than an object graph modification. 
The dynamic clustering algorithms StatClust [Gay and 
Gruenwald 1997] and DRO [Darmont et al. 2000] identify 
and re-cluster all pages containing objects that have a 
quality of clustering lower than a threshold amount. If the 
number of poorly clustered pages (pages below clustering 

quality threshold) is very high, then these approaches 
would re-cluster a large number of pages within the same 
re-organization iteration. In contrast, OPCF ranks pages in 
terms of quality of clustering and then only re-clusters a 
bounded number of the worst clustered pages. This allows 
OPCF to bound the number of pages involved in each re-
organization iteration to a user defined number of pages 
(the user can decide the maximum amount of interruption 
he or she tolerates). 
The DSTC dynamic clustering algorithm identifies and re-
clusters all pages that can be improved by clustering 
[Bullat and Schneider 1996]. Therefore, even if the 
improvement is very small, a re-clustering of those pages 
that can be improved is triggered. This leads to over 
vigorous re-clustering which produces poor overall 
performance. However, DSTC does take care to limit the 
number of pages involved in each re-organization iteration 
by breaking the re-organization workload into re-
clustering units and only re-organization one unit in each 
iteration. 
A large body of work exists on static clustering algorithms 
[Tsangaris 1992; Banerjee et al. 1988; Gerlhof et al. 1993; 
Drew et al. 1990]. However, only relatively few static 
algorithms have been transformed into dynamic 
algorithms. McIver and King [1994] combined the 
existing static clustering algorithms, Cactis [Hudson and 
King 1989] and DAG [Banerjee et al. 1988], to create a 
new dynamic clustering algorithm. However Cactis and 
DAG are only sequence-based clustering algorithms 
which have been found to be inferior when compared to 
graph partitioning algorithms [Tsangaris 1992]. Wietrzyk 
and Orgun [1999] develop a new dynamic graph 
partitioning clustering algorithm. However, they do not 
compare their dynamic graph partitioning algorithm with 
any existing dynamic clustering algorithm. 

3 Preliminaries 

In this section we first provide a formal definition of the 
problem we are attempting to explore, then outline the 
problem constraints and possible assumptions. 

3.1 Problem Definition 

Using the integrated cost model we now formally define 
the problem. The threads that we have are: 

• This client thread (TC) 
• Other client threads (OC) 
• Dynamic clustering thread (DC) 

 
Given a trace ti, an initial object to page mapping (initial 
clustering), a buffer replacement algorithm and an 
interleaving xi(Tn) , we seek the dynamic clustering 
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algorithm that minimizes the execution time ET(xi (Tn) 
ti ) of of ti under xi (Tn). This is formulated as: 

      Eq. - 1 
Dynamic clustering has negligible effect on the amount of 
CPU time used by the client threads. The dynamic 
clustering thread is able to change the object-to-page 
mapping and thus has the potential to reduce the number 
of future read and write IOs. In addition, the dynamic 
clustering algorithm may slow down the system by 
generating read and write IO and consuming CPU 
resources. 
 
Equation 1 can be further decomposed into: 

 
Eq. - 2 

We do not aim to produce dynamic clustering algorithms 
that reduce IOBW(r) by re-organizing objects in such a 
way that dirty objects are likely to be placed into the same 
page. This is because our focus is on read IO. However, 
we do aim to produce dynamic clustering algorithms that 
impose a small write IO footprint. 

3.2 Constraints 

This section lists two constraints placed on the dynamic 
clustering thread. The constraints limit the duration and 
frequency of re-clustering. 

3.2.1 Limited Duration 

This constraint limits the duration of each re-clustering 
iteration. A re-clustering iteration is defined as a period of 
continuous re-clustering activity. This is done by limiting 
continuous re clustering time to be shorter than a user 
defined Tc threshold of time units as follows: 
 
LetCCR(i,j) be a period of time with continuous clustering 
related requests, where ith  and jth references delimit the 
start and end of a clustering iteration. 
�

 
     Eq. - 3 

3.2.2 Limited Frequency 

This constraint ensures a minimum time for a client thread 
to work before it is interrupted by limiting the frequency 
of re-clustering. This is done by ensuring that client 

threads are not interrupted for at least a user defined 
threshold of Tt  time units as follows: 
 
Let CTR(i, j) be the time between successive re-clustering 
iterations, the ith  and jth references delimit the start and 
end of a session which is not interrupted by clustering. 
 

 
     Eq. - 4 

Constraints 3 and 4 combine to limit the frequency and 
duration of re-clustering iterations. 

3.3 Assumptions 

The work in this paper makes the following assumptions: 
1. The object to page mapping can be changed from 

one consistent state to another without ever 
exposing client threads to inconsistent mappings. 

2. All objects are smaller than one page in size. 
Since large objects3 do not benefit from 
clustering, we choose to focus our study on 
objects smaller than a page in size. 

3. The patterns of object access after and before 
each re-organising iteration bare some degree of 
similarity. 

4 Opportunistic Prioritized Clustering 
Framework (OPCF) 

In this section we outline in detail the possible framework 
to solve the above problems, the Opportunistic Prioritized 
Clustering Framework (OPCF) (Zhen He, 2004); OPCF 
transforms static clustering algorithms into dynamic 
algorithms and provides them with the attributes of 
opportunism, incrementality, and prioritization. We begin 
by describing how OPCF achieves these attributes. We 
then define the steps of the OPCF framework. 

4.1 Opportunism 

OPCF introduces the opportunism property to minimize 
read IO overheads caused by the dynamic clustering 
thread. Thus opportunism attempts to achieve the 
following minimization: 

 
    Eq. - 5 

OPCF achieves opportunism by restricting clustering to 
in-memory pages only. 
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4.2 Incrementality 

OPCF limits the disruption caused by the dynamic 
clustering thread by incrementally re-organizing the 
database. This property of OPCF allows the dynamic 
clustering algorithm to meet the constraints of equations 3 
and 4. OPCF achieves constraint 3 by placing a fixed 
bound on the number of pages re-clustered in each re-
clustering iteration. Constraint 4 is accomplished by 
allowing users to control the frequency with which re-
clustering is triggered.  

4.3 Prioritization 

Incrementality specifies that re-organization should be 
partitioned and only one portion of the database should be 
re-organized in each iteration. Prioritization specifies that 
the worst clustered portion should be targeted for re-
organization in each iteration. We now explain the aim of 
prioritization by using equation-1. Prioritization aims to 
achieve large reductions of IOTCR(r) and IOOCR(r)costs 
while incurring only small IODCR(r) and CPUDC(r) 
costs. OPCF performs Prioritization by ranking pages in 
terms of quality of clustering and then limiting re-
organization to a user-specified set of the worst clustered 
pages. 

4.4 Framework Definition 

OPCF works at the page grain, instead of cluster grain. 
This means all objects in pages selected for re-clustering 
are re-clustered. In contrast, cluster grain algorithms like 
DSTC [Bullat and Schneider 1996] remove selected 
objects that are determined to need re-clustering from 
existing pages and place them into new pages. In order to 
create OPCF algorithms, a series of steps must be applied. 
 
Define Incremental Re-organization Algorithm: In this 
step, a strategy is developed by which the existing static 
clustering algorithm is adapted to work in an incremental 
way. That is, at each iteration of re-organization, the 
algorithm must be able to operate within a limited scope. 
Define Clustering Badness Metric: OPCF Prioritizes re-
clustering by re-clustering the worst clustered pages first. 
This means that there must be a way of defining the 
quality of clustering at a page grain. We term this the 
clustering badness metric. The way in which clustering 
badness is to be defined for a particular static clustering 
algorithm depends on the goal of the clustering algorithm.  
 
For instance, the PRP clustering algorithm has the goal of 
grouping hot4 objects together and therefore it may have a 
clustering badness metric that includes a measure of the 
concentration of cold objects in pages that contain hot 
objects.  
 

At each clustering analysis iteration,5 a user-defined 
number of pages (NPA) have their clustering badness 
calculated. Once a page's clustering badness is calculated, 
it is compared against a user-defined clustering badness 
threshold (CBT). If the page has a higher clustering 
badness value than the threshold, then the page is placed 
in a priority queue sorted on clustering badness. At each 
reorganization iteration a page is removed from the top of 
the priority queue and used to determine the scope of re-
organization for that re-organization iteration. A user-
defined number (NRI) of reorganization iterations are 
performed at the end of each clustering analysis iteration. 
Define Scope of Re-organization: To limit the work done 
in each re-organization iteration of the dynamic clustering 
algorithm, a limited number of pages must be chosen to 
form the scope of re-organization. The scope of re-
organization should be chosen in such a way that re 
organization of those pages will produce the maximum 
amount of improvement in clustering quality while 
preserving the property of incrementality. 
The way the scope of re-organization is chosen dictates 
whether the clustering algorithm is opportunistic or non-
opportunistic. To achieve opportunism, only in-memory 
pages are included in the scope of re-organization. Define 
Cluster Placement Policy: Because OPCF works at a page 
rather than cluster grain, the initial stages of each re-
organization iteration target a limited number of pages and 
so will, in general, identify multiple clusters, some of 
which may be small.6 The existence of clusters which are 
smaller than a page size raises the important issue of how 
best to pack clusters into pages. A simple way in which 
cluster analysis can be triggered in OPCF is by triggering 
cluster analysis when a user-specified number of objects 
(N) has been accessed. This is similar to the technique 
used in DSTC [Bullat and Schneider 1996]. However, 
any other triggering method may be used, including 
triggering via an asynchronous thread (eg. for load 
balancing reasons). 

5 Algorithms Generated Using OPCF 

In this section we present two dynamic clustering 
algorithms generated using OPCF. We first describe two 
existing metrics that can be used to measure the quality of 
clustering. We then describe the static clustering 
algorithms from which our dynamic clustering algorithms 
are derived. Lastly, we describe in detail how OPCF is 
used to transform the static clustering algorithms into 
dynamic algorithms. 
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5.1 Two Metrics Used to Measure Quality of 
Clustering 

Tsangaris and Naughton [1991, 1992] proposed two 
metrics for measuring the quality of an object clustering. 
working set size and long term expansion factor. Working 
set size (WSS(M)) [Tsangaris and Naughton 1991] is a 
metric for locality that is cache replacement policy 
independent. WSS(M) is evaluated by taking Mframe 
requests, eliminating duplicates and computing the 
cardinality of the resulting set. Therefore, the larger the 
cardinality the fewer the duplicates and hence the lower 
the locality. A clustering algorithm that achieves a lower 
value for this metric will perform well on workloads that 
traverse a small portion of the database starting with a 
cold cache.  
 
Long term expansion factor EF [Tsangaris and 　　
Naughton 1992] is an indicator of the steady state 
performance of an object clustering algorithm when the 
cache size is large. EF is the ratio of pages accessed in 　　
the steady state (N ) to the number of pages　  that would 
be required ideally to pack all active objects (n ).　   It is 
important to remember that these metrics are independent 
of buffer replacement algorithms and thus do not 
accurately predict algorithm performance. They are 
included in this paper to serve as a tool for discussing the 
relative merits of existing static clustering algorithms. 

5.2 Static Probability Ranking Principle 

The static probability ranking principle (PRP) algorithm 
[Tsangaris 1992] is the simplest sequence-based clustering 
algorithm. Sequence-based clustering [Banerjee et al. 
1988; Drew et al. 1990; Tsangaris 1992] algorithms have 
two phases: presort; and traversal. In the presort phase 
objects are sorted and placed in a sorted list. Some 
examples of sorting order are: by class; by decreasing heat 
(where `heat' is simply a measure of access frequency), etc. 
During the traversal phase the clustering graph7 is 
traversed according to a traversal method specified by the 
clustering algorithm. The roots of the traversals are 
selected in sorted order from the sorted list. This process 
produces a linear sequence of objects which are then 
mapped onto pages. In static PRP, the objects are 
presorted according to decreasing heat. Then the objects 
are just placed into pages in this presorted order. This 
surprisingly simple algorithm yields near optimal long 
term expansion factor. 
The reason that PRP achieves a near optimal expansion 
factor is that it groups together those objects that 
constitute the active portion of the database. Therefore, 
when the size of the active portion of the database is small 
relative to the available cache size and the steady state 
performance of the database is of interest, this algorithm 

yields a near optimal solution. However, when a small 
traversal is conducted on a cold cache, PRP tends to 
perform poorly for working set size, since it does not take 
object relationships into consideration [Tsangaris 1992]. 
The simplicity of the PRP algorithm (minimal statistical 
requirements and low time complexity) makes it 
particularly suitable for dynamic clustering. PRP uses only 
heat statistics. PRP's time complexity is determined by the 
sorting of objects in terms of heat and thus has a time 
complexity of O (n log n), where n is the number of 
objects in the database. However, to our knowledge, no 
dynamic version of PRP has been suggested before in the 
literature. 

5.3 Dynamic Probability Ranking Principle 

In this section we describe the application of OPCF to the 
PRP clustering algorithm to transform it into a dynamic 
clustering algorithm. 
Incremental Re-organization Algorithm: In order to make 
PRP work in an incremental fashion, a logical ordering 
based on heat is placed on the pages of the store. The 
clustering algorithm incrementally re-arranges the objects 
so as to slowly migrate cold objects to cold pages and hot 
objects to hot pages. At each re-organization iteration, the 
algorithm reorders the set of objects that lie within the 
pages targeted for that iteration according to heat order, 
the hottest objects moving to the hottest page, the coldest 
to the coldest page, etc. 
Clustering Badness Metric: The goal of the PRP clustering 
algorithm is to map the active portion of the database into 
as few pages as possible. It accomplishes this by migrating 
hot objects towards one portion of the store while 
migrating cold objects in the other direction. In order to 
achieve this objective, we have defined a clustering metric 
which says a page is worse clustered if it contains both hot 
objects and waste. We define waste to mean space 
consumed by cold objects. The intuition behind this 
definition of clustering badness is that pages which 
contain hot objects but also a lot of waste are both very 
likely to be in the cache and also wasting a lot of cache 
space, and thus unnecessarily displacing other hot objects. 
 
The definition of clustering badness of page p is as 
follows: 

 
Eq. - 6 
The second term in the equation is a measure of the waste 
in the page. Therefore a larger and colder object in a page 
will contribute more waste. 
Scope of Re-organization: The scope of each re-
organization is defined as three pages which are adjacent 
in heat-order, where the middle page is the target page for 
that iteration and the target page is chosen to be the page 
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which is currently worst clustered. When opportunism is 
used, the two in-memory pages closest to the target are 
selected (as the adjacent pages may be on disk). See 
following figure-1 for an example. 
This definition of scope of re-organization gives the 
clustering algorithm a high degree of incrementality. In 
addition, this gives the clustering algorithm an opportunity 
to improve the quality of clustering by placing the colder 
objects in the logically colder page and hotter objects in 
the logically hotter page. 
 
Cluster Placement Policy: Since PRP does not produce 
clusters of objects, it does not have a cluster placement 
policy. The time complexity of this algorithm per re-
organization iteration is O(ns log ns), where ns is the 
number of objects within the scope of reorganization. The 
time complexity is determined by the sorting of objects 
within the scope of re-organization. 
 

 
Figure 1: In this example the currently worst clustered page is 8, so the 
scope of reorganization for opportunistic dynamic PRP is pages 6, 8 and 
10 (where page numbers reflect heat-order). If opportunism is not used, 

the scope would be pages 7, 8 and 9. 

5.4 Static Greedy Graph Partitioning 

Partition-based clustering algorithms consider the object 
placement problem as a graph partitioning problem in 
which the min-cut criteria is to be satisfied for page 
boundaries. The vertices and edges of the graph are 
labeled with weights. Vertex weights represent object size. 
Edge weights represent either the frequency of strucutural 
reference traversal or the transition probabilities (ˆP (x, y)) 
of the SMC metric. 
There are two types of partition-based static clustering 
algorithms: iterative improvement and constructive 
partitioning. Iterative improvement algorithms such as the 
Kernighan-Lin Heuristic (KL) [Kernighan and Lin 1970], 
iteratively improve partitions by swapping objects 
between partitions in an attempt to satisfy the min-cut 
criteria. Since KL swaps objects between partitions it 
requires objects to be relatively uniform in size which 
makes it inappropriate for many real world OODBs. 
Constructive algorithms such as greedy graph partitioning 
(GGP)[Gerlhof et al. 1993] attempt to satisfy the min-cut 
criteria by first assigning only one object to a partition and 

then combining partitions in a greedy manner. GGP does 
not require objects to be relatively uniform in size and also 
places no restrictions on the configuration of the clustering 
graph (eg. graph must be acyclic). The study carried out 
by Tsangaris and Naughton [Tsangaris 1992] indicates 
that graph partitioning algorithms perform best for both 
the working set size metric and long term expansion factor 
metric. However, they are generally more expensive in 
terms of CPU usage and statistic collection (tension 
statistics) than sequence-based algorithms. The time 
complexity of the KL graph partitioning algorithm is 
O( n2..4) and O( e log e) for GGP, where n is the number of 
vertices and e is the number of edges. 

5.5 Dynamic Graph Partitioning 

This section outlines how we use OPCF to transform static 
graph partitioning algorithms into dynamic algorithms. 
 
Incremental Re-organization Algorithm: At each re-
organization iteration, the graph partitioning algorithm is 
applied to the pages in the scope of re-organization as if 
these pages represent the entire database. 
Clustering Badness Metric: The static graph partitioning 
algorithms attempt to satisfy the min-cut criteria. This 
means that they minimise the sum of edge weights that 
cross page boundaries. In order to include this criteria into 
our clustering badness metric we have included external 
tension in the metric. We define external tension as the 
sum of edge weights of the clustering graph which cross 
page boundaries. A page with higher external tension is 
worse clustered. 
 
In addition, heat is included in the metric to give priority 
for re-organising hotter pages. Below is a definition of 
clustering badness for page p:  

 
 
The calculation of external tension differs between the 
opportunistic version of the dynamic graph partitioning 
algorithm and the non-opportunistic version. In the 
opportunistic version, the external tension is calculated 
from only the weights of edges that cross the boundary of 
the page under consideration to other in-memory pages. 
By contrast, the non-opportunistic algorithm also counts 
edge weights that crosses page boundaries onto disk pages. 
 
Scope of Re-organization: The scope of re-organization is 
the worst clustered page and its related pages. A page is 
only considered related if it occupies an external tension 
threshold (ETT) fraction of the worst clustered page's 
external tension. This reduces the scope of re-organization 
to the pages that will benefit the most from the re-
organization. ETT acts as a means of trading off clustering 
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quality with clustering overhead. If the dynamic clustering 
algorithm is to be run opportunistically then only in-
memory related pages are in the scope of re-organization. 
See figure 2 for an example: 
 

 
Figure 2: In this example the worst clustered page is 5 and the scope of 
re-organization for opportunistic dynamic graph partitioning are pages 2, 
4, 5 and 6. The scope of re-organization for non-opportunistic dynamic 

graph partitioning are pages 2, 4, 5, 6 and 7. 
 
Cluster Placement Policy: For this application of OPCF, 
we have chosen to place clusters into pages in order of 
heat. The reason for this choice is that cold clusters will be 
placed away from hot clusters and thus pages containing 
hot clusters which are more likely to be in memory will 
have less wasted space occupied by cold clusters.. 
GGP first places all objects in a separate partition and then 
iterates through a list of edges in descending edge weight. 
If the two objects on the ends of the currently selected 
edge are in different partitions and the total size of the two 
partitions is smaller than a page, then the partitions are 
joined. GGP uses sequence tension to model access 
dependencies between objects. The time complexity of our 
dynamic GGP algorithm is O(es log es + ps log ps), where 
es is the number of edges in the scope of re-organization 
and ps is the average number of initial partitions generated 
after the first three steps. The time complexity is 
determined by the sorting of clustering graph edge weights 
and the sorting of the initial partitions generated according 
to heat. In most cases es is much larger than ps and 
therefore in most cases the time complexity is O(es log es). 

6 Existing Dynamic Clustering Algorithms 

In this section we describe in detail two existing dynamic 
clustering algorithms that are used in our performance 
study. 
 

6.1 Dynamic Statistical and Tunable Clustering 
(DSTC) 

DSTC is an existing dynamic clustering algorithm [Bullat 
and Schneider 1996] designed to achieve dynamicity 
without adding high overhead or an excessive volume of 
statistics. The algorithm is comprised of five phases: 
 
Observation Phase: In order to minimize disruptiveness of 
statistics collection, DSTC only collects statistics at 
predefined observation periods and the information is 
stored in a transient observation matrix. 
Selection Phase: In order to reduce the volume of statistics 
stored, at the selection phase the transient observation 
matrix is scanned and only significant statistics are saved. 
Consolidation Phase: The results of the selection phase 
are combined with statistics gathered in previous 
observation phases and saved in a persistent consolidated 
matrix. 
Dynamic Cluster Re-organization: Using the information 
in the updated consolidated matrix, new clusters are 
discovered or existing ones are updated. In order to 
achieve incremental result the re-organization work is 
broken up into small fragments called clustering units. 
Physical Clustering Organization: The clustering units are 
finally applied to the database in an incremental way (that 
is, one clustering unit at a time). This phase is triggered 
when the system is idle. 
 
DSTC uses sequence tension information to model access 
dependencies between objects. DSTC is not an 
opportunistic clustering algorithm since its scope of re-
organization can be objects that are currently residing on 
disk. DSTC exhibits a small degree of Prioritization since 
it breaks the database into objects that can be improved 
from clustering (worse clustered) and ones that cannot 
(better clustered). Even if an object can only potentially 
get a very small clustering improvement, it is re-clustered. 
This approach generates a lot of clustering overhead 
which often cannot be justified by the relatively small 
clustering quality improvements. 

6.2 Detection & Re-clustering of Objects (DRO)  

Learning from the experiences of DSTC and StatClust 
[Gay and Gruenwald 1997], DRO [Darmont et al. 2000] is 
designed to produce less clustering IO overhead and use 
less statistics. In order to limit statistics collection 
overhead, DRO only uses object frequency (heat) and 
page usage rate information. In contrast, DSTC keeps 
sequence tension information which is much more costly. 
DRO is a page grained dynamic clustering algorithm. 
Therefore it re-clusters all objects in pages that are 
selected for re-clustering. The DRO clustering algorithm 
is comprised of 4 steps: 
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1. Determination of Objects to Cluster: In this step various 
thresholds are used to limit the pages involved in re-
clustering to only those pages that are most in need of re-
clustering. For a page to require re-clustering the 
following conditions need to be met: the fraction of 
unused objects must be lower than the MinUR threshold; 
and the amount of IO that the page generated must be 
greater than theMinLT threshold. To proceed to step 2 the 
ratio between the number of pages needing re-clustering 
and number of pages actually used must be greater than a 
threshold rate PCRate 
2. Clustering Setup: This step takes the objects in the 
pages in need of re-clustering and then generates a new 
placement order of objects on disk. The placement 
algorithm runs as follows: objects of similar heat and with 
structural links are placed closer together in the new 
placement order. Then the new placement order is 
compared against the old and the algorithm only proceeds 
to the next step if there is enough difference MAXRR 
between the two placement orders. 
3. Physical Object Clustering: This operation physically 
clusters objects identified in the previous steps, but must 
also re-organise the database in order to free space made 
available by the deletion or movement of objects. 
4. Statistics Update: This step resets clustering statistics. 
Depending on the update indicator SUInd parameter, all 
pages or just the pages involved in the re-clustering are 
reset. 
 
DRO is not opportunistic since disk resident pages can be 
involved in re-clustering. DRO has only limited 
incrementality since at each iteration it re-organises all 
pages that are clustered worse than a threshold amount. If 
the number of pages in need of clustering is high, DRO 
will become less incremental. In contrast, in the discussed 
approach ranks all pages in terms of quality of clustering 
and then re-clusters only a user-defined number of the 
worst clustered pages. Our approach allows the user to 
limit the amount of re-clustering that he or she is willing 
to accept in each re-organization iteration, whereas DRO 
has no such limit. DRO Prioritizes clustering by breaking 
up the database into pages that need re-clustering 
(according to thresholds) and pages that do not. This 
method of Prioritization has the benefit that when database 
clustering quality is very low, fewer pages are re-clustered 
and the reverse when clustering quality is high. This more 
flexible behaviour of DRO when compared to OPCF is at 
the cost of good incrementality (the ability to ensure only 
a bounded portion of database is involved in each re-
organization iteration). 

Conclusion 

The main conclusion of this paper is that simple 
synergistic frameworks can produce algorithms that 
provide significant performance gains when compared to 
existing non-synergistic algorithms. Furthermore the 
performance gains are across a wide variety of different 
situations with our guiding principles of synergy; 
generality; and simplicity. The preliminary results of this 
paper show that there is much potential in the synergistic 
approach to buffer management and suggests that perhaps 
the next big breakthrough in reducing the disk IO 
bottleneck in OODBMSs lies in synergistic buffer 
management techniques. 
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