
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

158

Manuscript received October 5, 2010
Manuscript revised October 20, 2010

An Alternative approach to Temporary Memory Management in
Databases using Object Oriented Systems

*Sunil Kr Pandey, Dr. G.P.Singh**, Dr. Vineet Kansal***
*, ***Institute of Technology & Science, Mohan Nagar, Ghaziabad

**Govt. Dungar College, Bikaner, Rajasthan

Abstract
Regardless of the supremacy of relational database management
systems (RDBMS) in the databases, object-oriented database
management systems (OODBMS) continue to play crucial role
in the management of data. Generally, the complex data are often
found in telecommunications, business, engineering and web
based applications. The most common approach of accessing
such data is navigation. However, the approach of navigational
access of data has the potential of generating excessive disk IO
because objects in the path of navigation may be placed in
different disk pages. Excessive disk IO is becoming increasingly
undesirable because disk IO performance improves at only 5-8%
per year whereas CPU performance doubles approximately every
18 months. Thus disk IO is likely to be a bottleneck in an
increasing number of OODB applications. This paper focuses on
reducing disk IO effects to improve OODBMS performance. In
database environment effective buffer management of the main
memory is the key in increasing efficiency through reducing the
disk IO bottleneck in OODBMSs. There has been much existing
work, namely in the areas of: static clustering; dynamic
clustering; buffer replacement; and pre-fetching. All of these
techniques can be used together in a complimentary manner.
Most existing research has focused on finding the best solution
for each area with little regard on how solutions from the
different areas affect each other. We believe synergy exists
between the areas, and that exploiting the synergy leads to the
best overall solution. This paper focuses on exploring whether
synergistic techniques are both feasible to implement and
outperform their non-synergistic counterparts.
Key words:
Temporary Memory Management, Databases, Object Oriented
System

1 Introduction

Continuous growth in the size of the databases and
requirement of accessing data residing at different places
in different tables, one of the most effective techniques for
performance enhancement is considered to be clustering
[Gerlhof et al. 1996]. The reason behind this is the
navigational object accesses in an object oriented database.
Consequently, related objects are often accessed
consecutively. By grouping related objects onto the same
disk page in an object oriented database environment disk
IOs can be reduced. In addition to reduced IO, clustering

also uses cache space more efficiently by reducing the
number of unused objects that occupy the cache.
Periodical re-clustering allows the physical organization
of objects on disk to more closely reflect the prevailing
pattern of object access. The majority of existing
clustering algorithms are static [Tsangaris 1992;
Banerjeeet al. 1988; Gerlhof et al. 1993; Drew et al. 1990].
Static clustering algorithms require that re-clustering take
place when the database is not in operation, thus
prohibiting seamless and uninterrupted accessibility of
databases. In contrast, dynamic clustering algorithms re-
cluster the database while database applications are in
operation. Applications that require round the clock access
of Object oriented database and involve frequent updates
in data access patterns may benefit from the use of
dynamic clustering.
Generally from the study it is revealed that, following
three properties are generally missing from most existing
dynamic clustering algorithms. These properties include:

• The re-use of existing work on static clustering
algorithms;

• The use of opportunism to minimize the IO path
for re-organization; and

• A prioritization of re-clustering so the worst
clustered pages are re-clustered first.

In spite of the works by many of the prominent
researchers that exists on static clustering [Tsangaris
1992; Banerjee et al. 1988; Gerlhof et al. 1993; Drew et al.
1990], there has been little transfer of ideas into the
dynamic clustering literature. In this paper we try to
explore this omission which transforms existing static
clustering algorithms into dynamic algorithms. The goal
of dynamic clustering is to generate the minimum number
of disk IOs for a given set of database application access
patterns. As pointed out by the cost models, the clustering
process itself may generate IO, loading data pages for the
sole purpose of object base re-organization. However,
most researchers have chosen to ignore these sources of
IO generation and instead concentrate on developing the
dynamic clustering algorithm that minimizes the number
of transaction read IOs generated by the client processes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357578489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

159

Opportunism eliminates clustering read IO by choosing
in-memory pages for re-clustering.

2 Related Works

The re-organization phase of dynamic clustering can incur
considerable operating cost. Two of the key overheads are
increased write contention and IO. To reduce write
contention, most dynamic clustering algorithms are
designed to be incremental and thus limit the scope of re-
organization. However, DROD [Wietrzyk and Orgun
1999] is the only algorithm that we are aware of that limits
the scopes of reorganization so that only in-memory
objects are re-clustered. Wietrzyk and Orgun [1999]
accomplish this by calculating a new placement when the
object graph is modified, either by a link (reference)
modification or object insertion. The algorithm then re-
clusters the objects that are affected by the modification or
insertion. Once the new placement is determined, only the
objects in memory are re-organized and the remaining
objects are only re-arranged as they are loaded into
memory. However, the statistical data required by DROD
has global scope (statistics about any object in the store
may be needed). In contrast, OPCF has local scope in
terms of statistical requirements (only statistics of in-
memory objects are required).
The incremental nature of dynamic clustering requires that
only a small portion of the entire database be re-clustered
after each iteration. However, the choice as to which
portion to re-cluster is where many existing algorithms
differ. McIver and King [1994] suggest targeting the
portion that was accessed after the previous re-
organization. However, this may involve a very large
portion of the database if the re-clustering is not triggered
frequently. Wietrzyk and Orgun [1999] re-cluster affected
objects as soon as an object graph modification occurs.
They use a threshold mechanism2 to determine when re-
clustering is worthwhile. However, this approach may still
be too disruptive. An example of when its disruptiveness
is likely to be felt is when the system is in peak usage and
frequent object graph modifications are occurring. In such
a scenario the object graph would be continuously re-
clustered during peak database usage. The algorithm thus
lacks a means of controlling when the re-clustering takes
place. In contrast, the dynamic algorithms developed with
OPCF can be easily made adaptive to changing system
loads. This is due to the fact that re-clustering can be
triggered by an asynchronous dynamic load-balancing
thread rather than an object graph modification.
The dynamic clustering algorithms StatClust [Gay and
Gruenwald 1997] and DRO [Darmont et al. 2000] identify
and re-cluster all pages containing objects that have a
quality of clustering lower than a threshold amount. If the
number of poorly clustered pages (pages below clustering

quality threshold) is very high, then these approaches
would re-cluster a large number of pages within the same
re-organization iteration. In contrast, OPCF ranks pages in
terms of quality of clustering and then only re-clusters a
bounded number of the worst clustered pages. This allows
OPCF to bound the number of pages involved in each re-
organization iteration to a user defined number of pages
(the user can decide the maximum amount of interruption
he or she tolerates).
The DSTC dynamic clustering algorithm identifies and re-
clusters all pages that can be improved by clustering
[Bullat and Schneider 1996]. Therefore, even if the
improvement is very small, a re-clustering of those pages
that can be improved is triggered. This leads to over
vigorous re-clustering which produces poor overall
performance. However, DSTC does take care to limit the
number of pages involved in each re-organization iteration
by breaking the re-organization workload into re-
clustering units and only re-organization one unit in each
iteration.
A large body of work exists on static clustering algorithms
[Tsangaris 1992; Banerjee et al. 1988; Gerlhof et al. 1993;
Drew et al. 1990]. However, only relatively few static
algorithms have been transformed into dynamic
algorithms. McIver and King [1994] combined the
existing static clustering algorithms, Cactis [Hudson and
King 1989] and DAG [Banerjee et al. 1988], to create a
new dynamic clustering algorithm. However Cactis and
DAG are only sequence-based clustering algorithms
which have been found to be inferior when compared to
graph partitioning algorithms [Tsangaris 1992]. Wietrzyk
and Orgun [1999] develop a new dynamic graph
partitioning clustering algorithm. However, they do not
compare their dynamic graph partitioning algorithm with
any existing dynamic clustering algorithm.

3 Preliminaries

In this section we first provide a formal definition of the
problem we are attempting to explore, then outline the
problem constraints and possible assumptions.

3.1 Problem Definition

Using the integrated cost model we now formally define
the problem. The threads that we have are:

• This client thread (TC)
• Other client threads (OC)
• Dynamic clustering thread (DC)

Given a trace ti, an initial object to page mapping (initial
clustering), a buffer replacement algorithm and an
interleaving xi(Tn) , we seek the dynamic clustering

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

160

algorithm that minimizes the execution time ET(xi (Tn)
ti) of of ti under xi (Tn). This is formulated as:

 Eq. - 1
Dynamic clustering has negligible effect on the amount of
CPU time used by the client threads. The dynamic
clustering thread is able to change the object-to-page
mapping and thus has the potential to reduce the number
of future read and write IOs. In addition, the dynamic
clustering algorithm may slow down the system by
generating read and write IO and consuming CPU
resources.

Equation 1 can be further decomposed into:

Eq. - 2

We do not aim to produce dynamic clustering algorithms
that reduce IOBW(r) by re-organizing objects in such a
way that dirty objects are likely to be placed into the same
page. This is because our focus is on read IO. However,
we do aim to produce dynamic clustering algorithms that
impose a small write IO footprint.

3.2 Constraints

This section lists two constraints placed on the dynamic
clustering thread. The constraints limit the duration and
frequency of re-clustering.

3.2.1 Limited Duration

This constraint limits the duration of each re-clustering
iteration. A re-clustering iteration is defined as a period of
continuous re-clustering activity. This is done by limiting
continuous re clustering time to be shorter than a user
defined Tc threshold of time units as follows:

LetCCR(i,j) be a period of time with continuous clustering
related requests, where ith and jth references delimit the
start and end of a clustering iteration.
�

 Eq. - 3

3.2.2 Limited Frequency

This constraint ensures a minimum time for a client thread
to work before it is interrupted by limiting the frequency
of re-clustering. This is done by ensuring that client

threads are not interrupted for at least a user defined
threshold of Tt time units as follows:

Let CTR(i, j) be the time between successive re-clustering
iterations, the ith and jth references delimit the start and
end of a session which is not interrupted by clustering.

 Eq. - 4

Constraints 3 and 4 combine to limit the frequency and
duration of re-clustering iterations.

3.3 Assumptions

The work in this paper makes the following assumptions:
1. The object to page mapping can be changed from

one consistent state to another without ever
exposing client threads to inconsistent mappings.

2. All objects are smaller than one page in size.
Since large objects3 do not benefit from
clustering, we choose to focus our study on
objects smaller than a page in size.

3. The patterns of object access after and before
each re-organising iteration bare some degree of
similarity.

4 Opportunistic Prioritized Clustering
Framework (OPCF)

In this section we outline in detail the possible framework
to solve the above problems, the Opportunistic Prioritized
Clustering Framework (OPCF) (Zhen He, 2004); OPCF
transforms static clustering algorithms into dynamic
algorithms and provides them with the attributes of
opportunism, incrementality, and prioritization. We begin
by describing how OPCF achieves these attributes. We
then define the steps of the OPCF framework.

4.1 Opportunism

OPCF introduces the opportunism property to minimize
read IO overheads caused by the dynamic clustering
thread. Thus opportunism attempts to achieve the
following minimization:

 Eq. - 5

OPCF achieves opportunism by restricting clustering to
in-memory pages only.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

161

4.2 Incrementality

OPCF limits the disruption caused by the dynamic
clustering thread by incrementally re-organizing the
database. This property of OPCF allows the dynamic
clustering algorithm to meet the constraints of equations 3
and 4. OPCF achieves constraint 3 by placing a fixed
bound on the number of pages re-clustered in each re-
clustering iteration. Constraint 4 is accomplished by
allowing users to control the frequency with which re-
clustering is triggered.

4.3 Prioritization

Incrementality specifies that re-organization should be
partitioned and only one portion of the database should be
re-organized in each iteration. Prioritization specifies that
the worst clustered portion should be targeted for re-
organization in each iteration. We now explain the aim of
prioritization by using equation-1. Prioritization aims to
achieve large reductions of IOTCR(r) and IOOCR(r)costs
while incurring only small IODCR(r) and CPUDC(r)
costs. OPCF performs Prioritization by ranking pages in
terms of quality of clustering and then limiting re-
organization to a user-specified set of the worst clustered
pages.

4.4 Framework Definition

OPCF works at the page grain, instead of cluster grain.
This means all objects in pages selected for re-clustering
are re-clustered. In contrast, cluster grain algorithms like
DSTC [Bullat and Schneider 1996] remove selected
objects that are determined to need re-clustering from
existing pages and place them into new pages. In order to
create OPCF algorithms, a series of steps must be applied.

Define Incremental Re-organization Algorithm: In this
step, a strategy is developed by which the existing static
clustering algorithm is adapted to work in an incremental
way. That is, at each iteration of re-organization, the
algorithm must be able to operate within a limited scope.
Define Clustering Badness Metric: OPCF Prioritizes re-
clustering by re-clustering the worst clustered pages first.
This means that there must be a way of defining the
quality of clustering at a page grain. We term this the
clustering badness metric. The way in which clustering
badness is to be defined for a particular static clustering
algorithm depends on the goal of the clustering algorithm.

For instance, the PRP clustering algorithm has the goal of
grouping hot4 objects together and therefore it may have a
clustering badness metric that includes a measure of the
concentration of cold objects in pages that contain hot
objects.

At each clustering analysis iteration,5 a user-defined
number of pages (NPA) have their clustering badness
calculated. Once a page's clustering badness is calculated,
it is compared against a user-defined clustering badness
threshold (CBT). If the page has a higher clustering
badness value than the threshold, then the page is placed
in a priority queue sorted on clustering badness. At each
reorganization iteration a page is removed from the top of
the priority queue and used to determine the scope of re-
organization for that re-organization iteration. A user-
defined number (NRI) of reorganization iterations are
performed at the end of each clustering analysis iteration.
Define Scope of Re-organization: To limit the work done
in each re-organization iteration of the dynamic clustering
algorithm, a limited number of pages must be chosen to
form the scope of re-organization. The scope of re-
organization should be chosen in such a way that re
organization of those pages will produce the maximum
amount of improvement in clustering quality while
preserving the property of incrementality.
The way the scope of re-organization is chosen dictates
whether the clustering algorithm is opportunistic or non-
opportunistic. To achieve opportunism, only in-memory
pages are included in the scope of re-organization. Define
Cluster Placement Policy: Because OPCF works at a page
rather than cluster grain, the initial stages of each re-
organization iteration target a limited number of pages and
so will, in general, identify multiple clusters, some of
which may be small.6 The existence of clusters which are
smaller than a page size raises the important issue of how
best to pack clusters into pages. A simple way in which
cluster analysis can be triggered in OPCF is by triggering
cluster analysis when a user-specified number of objects
(N) has been accessed. This is similar to the technique
used in DSTC [Bullat and Schneider 1996]. However,
any other triggering method may be used, including
triggering via an asynchronous thread (eg. for load
balancing reasons).

5 Algorithms Generated Using OPCF

In this section we present two dynamic clustering
algorithms generated using OPCF. We first describe two
existing metrics that can be used to measure the quality of
clustering. We then describe the static clustering
algorithms from which our dynamic clustering algorithms
are derived. Lastly, we describe in detail how OPCF is
used to transform the static clustering algorithms into
dynamic algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

162

5.1 Two Metrics Used to Measure Quality of
Clustering

Tsangaris and Naughton [1991, 1992] proposed two
metrics for measuring the quality of an object clustering.
working set size and long term expansion factor. Working
set size (WSS(M)) [Tsangaris and Naughton 1991] is a
metric for locality that is cache replacement policy
independent. WSS(M) is evaluated by taking Mframe
requests, eliminating duplicates and computing the
cardinality of the resulting set. Therefore, the larger the
cardinality the fewer the duplicates and hence the lower
the locality. A clustering algorithm that achieves a lower
value for this metric will perform well on workloads that
traverse a small portion of the database starting with a
cold cache.

Long term expansion factor EF [Tsangaris and 　　
Naughton 1992] is an indicator of the steady state
performance of an object clustering algorithm when the
cache size is large. EF is the ratio of pages accessed in 　　
the steady state (N) to the number of pages　 that would
be required ideally to pack all active objects (n).　 It is
important to remember that these metrics are independent
of buffer replacement algorithms and thus do not
accurately predict algorithm performance. They are
included in this paper to serve as a tool for discussing the
relative merits of existing static clustering algorithms.

5.2 Static Probability Ranking Principle

The static probability ranking principle (PRP) algorithm
[Tsangaris 1992] is the simplest sequence-based clustering
algorithm. Sequence-based clustering [Banerjee et al.
1988; Drew et al. 1990; Tsangaris 1992] algorithms have
two phases: presort; and traversal. In the presort phase
objects are sorted and placed in a sorted list. Some
examples of sorting order are: by class; by decreasing heat
(where `heat' is simply a measure of access frequency), etc.
During the traversal phase the clustering graph7 is
traversed according to a traversal method specified by the
clustering algorithm. The roots of the traversals are
selected in sorted order from the sorted list. This process
produces a linear sequence of objects which are then
mapped onto pages. In static PRP, the objects are
presorted according to decreasing heat. Then the objects
are just placed into pages in this presorted order. This
surprisingly simple algorithm yields near optimal long
term expansion factor.
The reason that PRP achieves a near optimal expansion
factor is that it groups together those objects that
constitute the active portion of the database. Therefore,
when the size of the active portion of the database is small
relative to the available cache size and the steady state
performance of the database is of interest, this algorithm

yields a near optimal solution. However, when a small
traversal is conducted on a cold cache, PRP tends to
perform poorly for working set size, since it does not take
object relationships into consideration [Tsangaris 1992].
The simplicity of the PRP algorithm (minimal statistical
requirements and low time complexity) makes it
particularly suitable for dynamic clustering. PRP uses only
heat statistics. PRP's time complexity is determined by the
sorting of objects in terms of heat and thus has a time
complexity of O (n log n), where n is the number of
objects in the database. However, to our knowledge, no
dynamic version of PRP has been suggested before in the
literature.

5.3 Dynamic Probability Ranking Principle

In this section we describe the application of OPCF to the
PRP clustering algorithm to transform it into a dynamic
clustering algorithm.
Incremental Re-organization Algorithm: In order to make
PRP work in an incremental fashion, a logical ordering
based on heat is placed on the pages of the store. The
clustering algorithm incrementally re-arranges the objects
so as to slowly migrate cold objects to cold pages and hot
objects to hot pages. At each re-organization iteration, the
algorithm reorders the set of objects that lie within the
pages targeted for that iteration according to heat order,
the hottest objects moving to the hottest page, the coldest
to the coldest page, etc.
Clustering Badness Metric: The goal of the PRP clustering
algorithm is to map the active portion of the database into
as few pages as possible. It accomplishes this by migrating
hot objects towards one portion of the store while
migrating cold objects in the other direction. In order to
achieve this objective, we have defined a clustering metric
which says a page is worse clustered if it contains both hot
objects and waste. We define waste to mean space
consumed by cold objects. The intuition behind this
definition of clustering badness is that pages which
contain hot objects but also a lot of waste are both very
likely to be in the cache and also wasting a lot of cache
space, and thus unnecessarily displacing other hot objects.

The definition of clustering badness of page p is as
follows:

Eq. - 6
The second term in the equation is a measure of the waste
in the page. Therefore a larger and colder object in a page
will contribute more waste.
Scope of Re-organization: The scope of each re-
organization is defined as three pages which are adjacent
in heat-order, where the middle page is the target page for
that iteration and the target page is chosen to be the page

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

163

which is currently worst clustered. When opportunism is
used, the two in-memory pages closest to the target are
selected (as the adjacent pages may be on disk). See
following figure-1 for an example.
This definition of scope of re-organization gives the
clustering algorithm a high degree of incrementality. In
addition, this gives the clustering algorithm an opportunity
to improve the quality of clustering by placing the colder
objects in the logically colder page and hotter objects in
the logically hotter page.

Cluster Placement Policy: Since PRP does not produce
clusters of objects, it does not have a cluster placement
policy. The time complexity of this algorithm per re-
organization iteration is O(ns log ns), where ns is the
number of objects within the scope of reorganization. The
time complexity is determined by the sorting of objects
within the scope of re-organization.

Figure 1: In this example the currently worst clustered page is 8, so the
scope of reorganization for opportunistic dynamic PRP is pages 6, 8 and
10 (where page numbers reflect heat-order). If opportunism is not used,

the scope would be pages 7, 8 and 9.

5.4 Static Greedy Graph Partitioning

Partition-based clustering algorithms consider the object
placement problem as a graph partitioning problem in
which the min-cut criteria is to be satisfied for page
boundaries. The vertices and edges of the graph are
labeled with weights. Vertex weights represent object size.
Edge weights represent either the frequency of strucutural
reference traversal or the transition probabilities (ˆP (x, y))
of the SMC metric.
There are two types of partition-based static clustering
algorithms: iterative improvement and constructive
partitioning. Iterative improvement algorithms such as the
Kernighan-Lin Heuristic (KL) [Kernighan and Lin 1970],
iteratively improve partitions by swapping objects
between partitions in an attempt to satisfy the min-cut
criteria. Since KL swaps objects between partitions it
requires objects to be relatively uniform in size which
makes it inappropriate for many real world OODBs.
Constructive algorithms such as greedy graph partitioning
(GGP)[Gerlhof et al. 1993] attempt to satisfy the min-cut
criteria by first assigning only one object to a partition and

then combining partitions in a greedy manner. GGP does
not require objects to be relatively uniform in size and also
places no restrictions on the configuration of the clustering
graph (eg. graph must be acyclic). The study carried out
by Tsangaris and Naughton [Tsangaris 1992] indicates
that graph partitioning algorithms perform best for both
the working set size metric and long term expansion factor
metric. However, they are generally more expensive in
terms of CPU usage and statistic collection (tension
statistics) than sequence-based algorithms. The time
complexity of the KL graph partitioning algorithm is
O(n2..4) and O(e log e) for GGP, where n is the number of
vertices and e is the number of edges.

5.5 Dynamic Graph Partitioning

This section outlines how we use OPCF to transform static
graph partitioning algorithms into dynamic algorithms.

Incremental Re-organization Algorithm: At each re-
organization iteration, the graph partitioning algorithm is
applied to the pages in the scope of re-organization as if
these pages represent the entire database.
Clustering Badness Metric: The static graph partitioning
algorithms attempt to satisfy the min-cut criteria. This
means that they minimise the sum of edge weights that
cross page boundaries. In order to include this criteria into
our clustering badness metric we have included external
tension in the metric. We define external tension as the
sum of edge weights of the clustering graph which cross
page boundaries. A page with higher external tension is
worse clustered.

In addition, heat is included in the metric to give priority
for re-organising hotter pages. Below is a definition of
clustering badness for page p:

The calculation of external tension differs between the
opportunistic version of the dynamic graph partitioning
algorithm and the non-opportunistic version. In the
opportunistic version, the external tension is calculated
from only the weights of edges that cross the boundary of
the page under consideration to other in-memory pages.
By contrast, the non-opportunistic algorithm also counts
edge weights that crosses page boundaries onto disk pages.

Scope of Re-organization: The scope of re-organization is
the worst clustered page and its related pages. A page is
only considered related if it occupies an external tension
threshold (ETT) fraction of the worst clustered page's
external tension. This reduces the scope of re-organization
to the pages that will benefit the most from the re-
organization. ETT acts as a means of trading off clustering

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

164

quality with clustering overhead. If the dynamic clustering
algorithm is to be run opportunistically then only in-
memory related pages are in the scope of re-organization.
See figure 2 for an example:

Figure 2: In this example the worst clustered page is 5 and the scope of
re-organization for opportunistic dynamic graph partitioning are pages 2,
4, 5 and 6. The scope of re-organization for non-opportunistic dynamic

graph partitioning are pages 2, 4, 5, 6 and 7.

Cluster Placement Policy: For this application of OPCF,
we have chosen to place clusters into pages in order of
heat. The reason for this choice is that cold clusters will be
placed away from hot clusters and thus pages containing
hot clusters which are more likely to be in memory will
have less wasted space occupied by cold clusters..
GGP first places all objects in a separate partition and then
iterates through a list of edges in descending edge weight.
If the two objects on the ends of the currently selected
edge are in different partitions and the total size of the two
partitions is smaller than a page, then the partitions are
joined. GGP uses sequence tension to model access
dependencies between objects. The time complexity of our
dynamic GGP algorithm is O(es log es + ps log ps), where
es is the number of edges in the scope of re-organization
and ps is the average number of initial partitions generated
after the first three steps. The time complexity is
determined by the sorting of clustering graph edge weights
and the sorting of the initial partitions generated according
to heat. In most cases es is much larger than ps and
therefore in most cases the time complexity is O(es log es).

6 Existing Dynamic Clustering Algorithms

In this section we describe in detail two existing dynamic
clustering algorithms that are used in our performance
study.

6.1 Dynamic Statistical and Tunable Clustering
(DSTC)

DSTC is an existing dynamic clustering algorithm [Bullat
and Schneider 1996] designed to achieve dynamicity
without adding high overhead or an excessive volume of
statistics. The algorithm is comprised of five phases:

Observation Phase: In order to minimize disruptiveness of
statistics collection, DSTC only collects statistics at
predefined observation periods and the information is
stored in a transient observation matrix.
Selection Phase: In order to reduce the volume of statistics
stored, at the selection phase the transient observation
matrix is scanned and only significant statistics are saved.
Consolidation Phase: The results of the selection phase
are combined with statistics gathered in previous
observation phases and saved in a persistent consolidated
matrix.
Dynamic Cluster Re-organization: Using the information
in the updated consolidated matrix, new clusters are
discovered or existing ones are updated. In order to
achieve incremental result the re-organization work is
broken up into small fragments called clustering units.
Physical Clustering Organization: The clustering units are
finally applied to the database in an incremental way (that
is, one clustering unit at a time). This phase is triggered
when the system is idle.

DSTC uses sequence tension information to model access
dependencies between objects. DSTC is not an
opportunistic clustering algorithm since its scope of re-
organization can be objects that are currently residing on
disk. DSTC exhibits a small degree of Prioritization since
it breaks the database into objects that can be improved
from clustering (worse clustered) and ones that cannot
(better clustered). Even if an object can only potentially
get a very small clustering improvement, it is re-clustered.
This approach generates a lot of clustering overhead
which often cannot be justified by the relatively small
clustering quality improvements.

6.2 Detection & Re-clustering of Objects (DRO)

Learning from the experiences of DSTC and StatClust
[Gay and Gruenwald 1997], DRO [Darmont et al. 2000] is
designed to produce less clustering IO overhead and use
less statistics. In order to limit statistics collection
overhead, DRO only uses object frequency (heat) and
page usage rate information. In contrast, DSTC keeps
sequence tension information which is much more costly.
DRO is a page grained dynamic clustering algorithm.
Therefore it re-clusters all objects in pages that are
selected for re-clustering. The DRO clustering algorithm
is comprised of 4 steps:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

165

1. Determination of Objects to Cluster: In this step various
thresholds are used to limit the pages involved in re-
clustering to only those pages that are most in need of re-
clustering. For a page to require re-clustering the
following conditions need to be met: the fraction of
unused objects must be lower than the MinUR threshold;
and the amount of IO that the page generated must be
greater than theMinLT threshold. To proceed to step 2 the
ratio between the number of pages needing re-clustering
and number of pages actually used must be greater than a
threshold rate PCRate
2. Clustering Setup: This step takes the objects in the
pages in need of re-clustering and then generates a new
placement order of objects on disk. The placement
algorithm runs as follows: objects of similar heat and with
structural links are placed closer together in the new
placement order. Then the new placement order is
compared against the old and the algorithm only proceeds
to the next step if there is enough difference MAXRR
between the two placement orders.
3. Physical Object Clustering: This operation physically
clusters objects identified in the previous steps, but must
also re-organise the database in order to free space made
available by the deletion or movement of objects.
4. Statistics Update: This step resets clustering statistics.
Depending on the update indicator SUInd parameter, all
pages or just the pages involved in the re-clustering are
reset.

DRO is not opportunistic since disk resident pages can be
involved in re-clustering. DRO has only limited
incrementality since at each iteration it re-organises all
pages that are clustered worse than a threshold amount. If
the number of pages in need of clustering is high, DRO
will become less incremental. In contrast, in the discussed
approach ranks all pages in terms of quality of clustering
and then re-clusters only a user-defined number of the
worst clustered pages. Our approach allows the user to
limit the amount of re-clustering that he or she is willing
to accept in each re-organization iteration, whereas DRO
has no such limit. DRO Prioritizes clustering by breaking
up the database into pages that need re-clustering
(according to thresholds) and pages that do not. This
method of Prioritization has the benefit that when database
clustering quality is very low, fewer pages are re-clustered
and the reverse when clustering quality is high. This more
flexible behaviour of DRO when compared to OPCF is at
the cost of good incrementality (the ability to ensure only
a bounded portion of database is involved in each re-
organization iteration).

Conclusion

The main conclusion of this paper is that simple
synergistic frameworks can produce algorithms that
provide significant performance gains when compared to
existing non-synergistic algorithms. Furthermore the
performance gains are across a wide variety of different
situations with our guiding principles of synergy;
generality; and simplicity. The preliminary results of this
paper show that there is much potential in the synergistic
approach to buffer management and suggests that perhaps
the next big breakthrough in reducing the disk IO
bottleneck in OODBMSs lies in synergistic buffer
management techniques.

References:
[1] AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND

WOOD, D. A. 1999. DBMSs on a modern processor:
Where does time go? In Proceedings of the International
Conference on Very Large Databases (VLDB 1999),
Edinburgh, Scotland (September 1999), pp. 266. 277. (p. 1)

[2] ARNOLD, A. O. 1978. Probability, Statistics, and Queuing
Theory, with Computer Scient Application, Academic Press
(pp. 21, 22)

[3] BANERJEE, J., KIM, W., KIM, S. J., AND GARZA, J. F.
1988. Clustering a DAG for CAD databases In IEEE
Transactions on Software Engineering, Volume 14
(November 1988), pp. 1684.1699. (pp. 25, 26, 28, 33, 53,
54)

[4] BELADY, L. A. 1966. A study of replacement algorithms
for a virtual-storage computer, IBM Systems Journal 5, 2
(pp. 54, 55, 63)

[5] BENZAKEN, V. AND DELOBEL, C. 1990. Enhaning
performance in a persistent object store: Clustering
strategies in o2. Technical Report 50-90 (August), Altair (p.
54)

[6] BERNSTEIN, P. A., PAL, S., AND SHUTT, D. 1999.
Context-based perfecting for implementing objects on
relations In Proceedings of the International Conference on
Very Large Databases (VLDB 1999) (Sept 1999), pp.
327.338, Morgan Kaufmann (pp. 70, 71, 72)

[7] BULLAT, F. AND SCHNEIDER, M. 1996. Dynamic
clustering in object databases exploiting effective use of
relationships between objects, Proceedings of the European
Conference on Object-Oriented Programming (ECOOP
1996), Linz, Austria (1996), pp. 344.365. Springer. (pp. 3,
27, 28, 31, 32, 37, 44)

[8] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K.
1995. A study of integrated perfecting and caching
strategies, Proceedings of the International Conference on
the Measurement and Modeling of Computer Systems,
(ACM SIGMETRICS 1995) pp. 188.197, (pp. 3, 72)

