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Abstract

In this paper, we study the existence of monotone positive solutions
for the following nonlinear m-point singular boundary value problem
with p-Laplacian operator. The main tool is the monotone iterative
technique. We obtain not only the existence of positive solutions for the
problem, but also establish iterative schemes for approximating solution.
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1 Introduction

In this paper, we study the existence of positive solutions for the following
nonlinear m-point singular boundary value problem with p-Laplacian operator

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(φp(u
′))′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1,

u′(0) =
∑m−2

i=1 aiu
′(ξi),

u(1) =
∑k

i=1 biu(ξi) −∑s
i=k+1 biu(ξi) −∑m−2

i=s+1 biu
′(ξi),

(1.1)

where φp(s) is p-Laplacian operator, i.e. φp(s) = |s|p−2s, p > 1, φq =

(φp)
−1,

1

p
+

1

q
= 1, 1 ≤ k ≤ s ≤ m − 2, ai, bi ∈ (0, +∞) with 0 <
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∑k
i=1 bi −∑s

i=k+1 bi < 1, 0 <
∑m−2

i=1 ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,
a(t) ∈ C((0, 1), [0,∞)).

The study of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by Il’in and Movisev [1,2]. Mo-
tivated by the study of [1,2], Gupta [3] studied certain three-point boundary
value problems for nonlinear ordinary differential equations. Since then, more
general nonlinear multi-point boundary value problems have been studied by
several authors. We refer the reader to [4,5,6] for some references along this
line. Multi-point boundary value problems describe many phenomena in the
applied mathematical sciences. For example, the vibrations of a guy wire of
a uniform cross-section and composed of N parts of different densities can be
set up as a multi-point boundary value problems (see Moshinsky [7]); many
problems in the theory of elastic stability can be handle by the method of
multi-point boundary value problems(see Timoshenko [8])

In 2001, Ma [6] studied m-point boundary value problem (BVP)

⎧⎪⎨
⎪⎩

u′′(t) + h(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi),

where αi > 0(i = 1, 2, · · ·), 0 <
m−2∑
i=1

αi < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,

and f ∈ C([0, +∞), [0, +∞)), h ∈ C([0, 1], [0, +∞)). Author established the
existence of positive solutions theorems under the condition that f is either
superlinear or sublinear.

In[4], Xu studied the following m-point boundary value problem (BVP)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(φp(u
′))′ + a(t)f(u(t)) = 0, 0 < t < 1,

u′(0) =
∑m−2

i=1 aiu
′(ξi),

u(1) =
∑k

i=1 biu(ξi) −∑s
i=k+1 biu(ξi) −∑m−2

i=s+1 biu
′(ξi),

They show the existence of positive solutions if f is either superlinear or sub-
linear by applying the fixed point theorem in cones.

Recently, Ma etal.[5] proved the existence of at least one positive solutions
for m-point boundary value problem (BVP)⎧⎨

⎩
(φp(u

′))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
∑m−2

i=1 aiu
′(ξi), u(1) =

∑m−2
i=1 biu(ξi),

where 0 <
∑m−2

i=1 bi < 1, 0 <
∑m−2

i=1 ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,
a(t) ∈ L1[0, 1], f ∈ C([0, 1] × [0, +∞), [0, +∞)). They obtained the existence
of monotone positive solutions by using the monotone iterative technique in
cones. But the nonlinear term f does not depend on the first-order derivative.
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Motivated by the results mentioned above, in this paper we study the ex-
istence of positive solutions of m-point boundary value problem (1.1). It is
worth stating that the first term of our iterative scheme is a constant function
or a simple function. Therefore, the iterative scheme is significant and feasible.
To our knowledge, this is the first paper to use the technique of monotone it-
erative to deal with multipoint boundary value problem with one-dimensional
p-Laplacian operator when nonlinear term f involves in the first-order deriva-
tive.

In the rest of the paper, we make the following assumptions:
(H1) ai, bi ∈ (0, +∞), 0 <

∑k
i=1 bi − ∑s

i=k+1 bi < 1, 0 <
∑m−2

i=1 ai < 1, 0 <
ξ1 < ξ2 < · · · < ξm−2 < 1;

(H2) f ∈ C([0, 1] × [0, +∞) × R, [0, +∞)), a ∈ C([0, 1], [0, +∞)) is not iden-
tically zero on any compact subinterval of (0, 1). In addition,

0 <
∫ 1

0
a(t)dt < 0.

We recall that a function u is said to be concave on [0,1], if

u(λt2 + (1 − λt1) ≥ λu(t2) + (1 − λ)u(t1), t1, t2, λ ∈ [0, 1],

and a function is said to be monotone on [0,1], if u(t) is nondecreasing or
nonincreasing.

2 Preliminary Notes

In this section , we present some lemmas that are important to our main
results.

Lemma 2.1. Let (H1) and (H2) hold. Then for x ∈ C+[0, 1], the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(φp(u
′))′ + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1,

u′(0) =
∑m−2

i=1 aiu
′(ξi),

u(1) =
∑k

i=1 biu(ξi) −∑s
i=k+1 biu(ξi) −∑m−2

i=s+1 biu
′(ξi)

(2.1)

has a unique solution

u(t) = Bx −
∫ 1

t
φ−1

p

(
Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr

)
ds,

where Ax, Bx satisfy

φ−1
p (Ax) =

m−2∑
i=1

aiφ
−1
p

(
Ax −

∫ ξi

0
a(s)f(s, x(s), x′(s))ds

)
, (2.2)



1180 Hongkui Li, Fuyi Xu, Wenling Zhao and Hongling Geng

Bx = − 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

( k∑
i=1

bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

−∑s
i=k+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

+
∑m−2

i=s+1 biφ
−1
p (Ax −

∫ ξi

0
a(s)f(s, x(s), x′(s))ds)

)
.

Define l =
φp

(∑m−2
i=1 ai

)
1 − φp

(∑m−2
i=1 ai

) , then there exists a unique

Ax ∈
[
−l
∫ 1

0
a(s)f(s, x(s), x′(s))ds, 0

]
satisfying (2.2).

Proof. The method of the proof is similar to Lemma 2.1[5], we omit the details.

Lemma 2.2. Let (H1) and (H2) hold. If x ∈ C+[0, 1], the unique solution of
the problem (2.1) satisfies u(t) ≥ 0.

Proof. The method of the proof is similar to Lemma 2.2[4], we omit the details.

Let E = C1[0, 1], then E is Banach space, with respect to the norm ‖u‖ =
max{supt∈[0,1] |u(t)|, supt∈[0,1] |u′(t)|}.

Now define an operator T : P → C[0, 1] by setting

(Tx)(t) = − 1
1 −∑k

i=1 bi +
∑s

i=k+1 bi

( k∑
i=1

bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

−∑s
i=k+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

+
∑m−2

i=s+1 biφ
−1
p (Ax −

∫ ξi

0
a(s)f(s, x(s), x′(s))ds)

)

−
∫ 1

t
φ−1

p

(
Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr

)
ds.

where P = {u ∈ E| u ≥ 0, u is concave function} is a cone in E.
Obviously, BVP (1.1) has a solution x = x(t) if and only if x is a fixed

point of the operator T .

Lemma 2.3. Let (H1) and (H2) hold. Then T : P → P is completely contin-
uous.

Proof. Clearly

u′(t) = φ−1
p

(
Ax −

∫ t

0
a(s)f(s, x(s), x′(s))ds

)

= −φ−1
p

(
−Ax +

∫ t

0
a(s)f(s, x(s), x′(s))ds

)

≤ 0.
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It is easy to see that u′(t2) ≤ u′(t1) for any t1, t2 ∈ [0, 1] with t1 ≤ t2. Hence
u′(t) is a nonincreasing function on [0,1]. This implies that

sup
t∈[0,1]

|u(t)| = u(0), sup
t∈[0,1]

|u′(t)| = |u′(1)|.

This means that the graph of u(t) is concave down on (0,1). So we have
TP ⊂ P . It is easy to see that T is continuous operator because f and a is
continuous. Now, we prove T is compact. Let Ω ⊂ P be an bounded set. Then,
there exists R, such that Ω ⊂ {x ∈ P | ||x|| ≤ R}. For any x ∈ Ω, we have
0 ≤ ∫ 1

0 a(s)f(s, x(s), x′(s))ds ≤ maxs∈[0,1],u∈[0,R],v∈[−R,R] f(s, u, v)
∫ 1
0 a(s)ds =

M . Then, we have

|Ax| ≤ lM,

|Tx| ≤ (1 +
∑s

i=k+1 bi +
∑m−2

i=s+1 bi)φ
−1
p [(l + 1)M ]

1 −∑k
i=1 bi +

∑s
i=k+1 bi

,

|(Tx)′| ≤ φ−1
p [(l + 1)M ],

|(φp(Tx)′)′| ≤ [(l + 1)M ].

The Arzela-Ascoli theorem guarantees that TΩ is relatively compact ,which
means T is compact. The proof of Lemma 2.3 is completed.

3 Main Results

For natational convenience, let

A = max

⎧⎪⎪⎨
⎪⎪⎩

(1 +
∑s

i=k+1 bi +
∑m−2

i=s+1 bi)φ−1
p ((l + 1)

∫ 1

0
a(s)ds)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

, φ−1
p ((l + 1)

∫ 1

0
a(s)ds)

⎫⎪⎪⎬
⎪⎪⎭ ,

Our main results are following theorems.
Theorem 3.1. Suppose conditions (H1) and (H2) hold. There exists a constant
a > 0 such that
(B1) f(t, x1, y1) ≤ f(t, x2, y2) for any t ∈ [0, 1], 0 ≤ x1 ≤ x2 ≤ a, 0 ≤ |y1| ≤
|y2| ≤ a;

(B2) maxt∈[0,1] f(t, a, a) ≤ φp(
a

A
);

(B3) f(t, 0, 0) is not identically zero on [0, 1].
Then the BVP (1.1) has two positive solutions ω∗, v∗ such that

0 < ω∗ ≤ a, 0 < |(ω∗)′| ≤ a,
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and

lim
n→∞ωn = lim

n→∞ T nω0 = ω∗,

lim
n→∞(ωn)

′ = lim
n→∞(T nω0)

′ = (ω∗)′,

where ω0(t) = a

(
(1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

− t

)
, t ∈ [0, 1],

0 < v∗ ≤ a, 0 < |(v∗)′| ≤ a

and

lim
n→∞ vn = lim

n→∞ T nv0 = v∗,

lim
n→∞(vn)′ = lim

n→∞(T nv0)
′ = (v∗)′,

where v0(t) = 0.

Proof. We denote Pa = {u ∈ P | ||u|| < a}, P a = {u ∈ P | ||u|| ≤ a}. In what
follows, we first prove T : P a → P a. If u ∈ P a, then ||u|| ≤ a, we have

0 ≤ u(t) ≤ max
t∈[0,1]

u(t) ≤ ||u|| ≤ a,

|u′(t)| ≤ max
t∈[0,1]

u′(t) ≤ ||u|| ≤ a.

So by conditions (B1) and (B3) we have

0 ≤ f(t, u(t), u′(t)) ≤ f(t, a, a) ≤ max
t∈[0,1]

f(t, a, a) ≤ φp(
a

A
), for 0 ≤ t ≤ 1.

In fact,

||Tu|| = max{Tu(0),−Tu′(1)}.
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So we have

(Tx)(0) =
−1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

( k∑
i=1

bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

−∑s
i=k+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

+
∑m−2

i=s+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr)ds

)

−
∫ 1

0
φ−1

p

(
Ax −

∫ s

0
a(r)f(r, x(r), x′(r))dr

)
ds

≤ 1
1 −∑k

i=1 bi +
∑s

i=k+1 bi

( k∑
i=1

bi

∫ 1

0
φ−1

p ((l + 1)
∫ 1

0
a(r)f(r, x(r), x′(r))dr)ds

+
∑m−2

i=s+1 bi

∫ 1

0
φ−1

p ((l + 1)
∫ 1

0
a(r)f(r, x(r), x′(r))dr)ds

)

+
∫ 1

0
φ−1

p

(
(l + 1)

∫ 1

0
a(r)f(r, x(r), x′(r))dr

)
ds

≤

(
1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi

)
φ−1

p

[
(l + 1)

∫ 1

0
a(s)ds

]
1 −∑k

i=1 bi +
∑s

i=k+1 bi

a

A
≤ a.

−(Tu)′(1) = −φ−1
p

(
Ax −

∫ 1

0
a(s)f(s, x(s), x′(s))ds

)

= φ−1
p

(
−Ax +

∫ 1

0
a(s)f(s, x(s), x′(s))ds

)

≤ φ−1
p

(
(l + 1)

∫ 1

0
a(s)f(s, x(s), x′(s))ds

)

≤ φ−1
p

(
(l + 1)

∫ 1

0
a(s)ds

)
a

A
≤ a.

Thus we have

||Tu|| ≤ a.

We have shown that

T : P a → P a.

Let

ω0(t) = a

(
(1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

− t

)
, for 0 ≤ t ≤ 1.

Let ω1(t) = Tω0(t), ω2(t) = Tω1(t) = T 2ω0(t), then denote ωn+1(t) = Tωn =
T nω0(t), n = 0, 1, 2, · · ·. Since T : P a → P a, we have ωn ∈ TP a ⊂ P a, n =
0, 1, 2, · · ·. Since T is completely continuous, {ωn}∞n=1 is a sequentially compact
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set. Since

ω1(t) = (Tω0)(t)

=
−1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

( k∑
i=1

bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, ω0(r), ω

′
0(r))dr)ds

−∑s
i=k+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, ω0(r), ω

′
0(r))dr)ds

+
∑m−2

i=s+1 bi

∫ 1

ξi

φ−1
p (Ax −

∫ s

0
a(r)f(r, ω0(r), ω

′
0(r))dr)ds

)

−
∫ 1

t
φ−1

p

(
Ax −

∫ s

0
a(r)f(r, ω0(r), ω

′
0(r))

)
ds

≤ 1
1 −∑k

i=1 bi +
∑s

i=k+1 bi

( k∑
i=1

bi

∫ 1

0
φ−1

p ((l + 1)
∫ 1

0
a(r)f(r, ω0(r), ω

′
0(r))dr)ds

+
∑m−2

i=s+1 bi

∫ 1

0
φ−1

p ((l + 1)
∫ 1

0
a(r)f(r, ω0(r), ω

′
0(r))dr)ds

)

+(1 − t)φ−1
p

(
(l + 1)

∫ 1

0
a(r)f(r, ω0(r), ω

′
0(r))dr

)
ds

≤
(

(1 +
∑s

i=k+1 bi +
∑m−2

i=s+1 bi)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

− t

)
φ−1

p ((l + 1)
∫ 1

0
a(s)ds)

a

A
≤ ω0(t).

|ω′
1(t)| = |Tω

′
0(t)|

= −φ−1
p

(
Ax −

∫ 1

0
a(s)f(s, ω0(s), ω

′
0(s))ds

)

= φ−1
p

(
−Ax +

∫ 1

0
a(s)f(s, ω0(s), ω

′
0(s))ds

)

≤ φ−1
p

(
(l + 1)

∫ 1

0
a(s)f(s, ω0(s), ω

′
0(s))ds

)

≤ φ−1
p

(
(l + 1)

∫ 1

0
a(s)ds

)
a
A ≤ a = |ω′

0(t)|.

Then we get

ω1(t) ≤ ω0(t), |ω′
1(t)| ≤ |ω′

0(t)|, 0 ≤ t ≤ 1.

So,

ω2(t) = Tω1(t) ≤ Tω0(t) = ω1(t) 0 ≤ t ≤ 1,

|ω′
2(t)| = |(Tω1)

′(t)| ≤ |(Tω0)
′(t)| = |ω′

1(t)| 0 ≤ t ≤ 1.

Hence by induction we have

ωn+1(t) ≤ ωn(t), |ω′
n+1(t)| ≤ |ω′

n(t)| 0 ≤ t ≤ 1, n = 1, 2, · · · .
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Thus, there exists ω∗ ∈ P a such that ωn → ω∗. Applying the continuity of T
and ωn+1 = Tωn, we get Tω∗ = ω∗.

Let v0(t) = 0, 0 ≤ t ≤ 1, then v0(t) ∈ P a. Set v1 = Tv0, v2 = Tv1 =
T tv0, then we denote vn+1 = Tvn = T nv0, n = 1, 2, · · ·. Since we have ωn ∈
TP a ⊂ P a, n = 0, 1, 2, · · ·. Since T : P a → P a, we have vn ∈ TP a ⊂
P a, n = 0, 1, 2, · · ·. Since T is completely continuous, we see that {vn}∞n=1 is
a sequentially compact set.

Since v1 = Tv0 = T0 ∈ P a, we have

v1(t) = Tv0(t) = (T0)(t) ≥ 0, 0 ≤ t ≤ 1,

v′
1(t) = (Tv)′0(t) = (T0)′(t) ≥ 0, 0 ≤ t ≤ 1.

So,
v2(t) = Tv1(t) ≥ (T0)(t) = v(t), 0 ≤ t ≤ 1,

v′
2(t) = (Tv)′1(t) ≥ |(T0)′(t)| = |v′

1(t)|, 0 ≤ t ≤ 1.

By an induction argument similar to the above we obtain

vn+1 ≥ vn, |v′
n+1| ≥ |v′

n|, 0 ≤ t ≤ 1, n = 1, 2, · · · .

Hence, there exists v∗ ∈ P a such that vn → v∗. Applying the continuity of T
and vn+1 = Tvn, we get Tv∗ = v∗.

If f(t, 0, 0) is not identically zero on [0, 1], then the zero function is not the
solution of BVP(1.1). Thus, max0≤t≤1 |v∗(t)| > 0, we have

v∗ ≥ min{t, 1 − t} max
0≤t≤1

|v∗(t)| > 0, 0 < t < 1.

It is well known that each fixed point of T in P is a solution of BVP(1.1).
Hence we have shown that ω∗ and v∗ are two positive, concave solutions of
BVP(1.1). The proof of Theorem 3.1 is completed.

The following corollaries follow easily.
Corollary 3.1. Suppose conditions (H1), (H2), (B1), (B3) hold. There exists
a constant a > 0 such that

(B4) liml→∞ maxt∈[0,1] f(t, l, a) ≤ φp(
1

A
), (particularly liml→∞ maxt∈[0,1] f(t, l, a) =

0).
Then the BVP (1.1) has two positive solutions ω∗, v∗ such that the conclusion
of Theorem3.1 hold.

Corollary 3.2. Suppose conditions (H1), (H2), (B1), (B3) hold. There exist
constants 0 < a1 < a2 < · · · < an such that

(B5) maxt∈[0,1] f(t, ak, ak) ≤ φp(
ak

A
), (particularly liml→∞ maxt∈[0,1] f(t, l, ak) =

0, k = 1, 2, · · ·).
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Then the BVP (1.1) has 2n positive solutions ω∗
k, v∗

k such that

0 < ω∗
k ≤ ak, 0 < |(ω∗

k)
′| ≤ ak,

and
lim

n→∞ωkn = lim
n→∞ T nωk0 = ω∗

k,

lim
n→∞(ωkn)′ = lim

n→∞(T nωk0)
′ = (ω∗

k)
′,

where ωk0(t) = ak

(
(1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

− t

)
, for 0 ≤ t ≤ 1,

0 < v∗
k ≤ a, 0 < |(v∗

k)
′| ≤ a,

and
lim

n→∞ vkn = lim
n→∞ T nvk0 = v∗

k,

lim
n→∞(vkn)′ = lim

n→∞(T nvk0)
′ = (v∗

k)
′,

where vk0(t) = 0, t ∈ [0, 1].

Corollary 3.3. Suppose conditions (H1), (H2), (B1), (B3) hold. There exist
constants 0 < a1 < a2 < · · · < an such that

(B6) liml→∞ maxt∈[0,1] f(t, l, ak) ≤ φp(
1

A
), (particularly liml→∞ maxt∈[0,1] f(t, l, ak) =

0, k = 1, 2, · · ·).
Then the BVP (1.1) has 2n positive solutions ω∗

k, v∗
k such that the conclusion

of Corollary 3.2.
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