

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 31** 1 (2013): 145–152. ISSN-00378712 IN PRESS doi:10.5269/bspm.v31i1.15406

On the Gauss Map of Ruled Surfaces of Type II in 3-Dimensional Pseudo-Galilean Space

Alper Osman Öğrenmiş and Mahmut Ergüt

ABSTRACT: In this paper, ruled surfaces of type II in a three-dimensional Pseudo-Galilean space are given. By studying its Gauss map and Laplacian operator, we obtain a classification of ruled surfaces of type II in a three-dimensional Pseudo-Galilean space.

Key Words: Pseudo-Galilean Space, Ruled Surfaces, Gauss Map.

Contents

L	Introduction	140
2	Ruled Surfaces	146
3	Cylindrical Ruled Surfaces	148

1. Introduction

The classification of submanifold in Euclidean or Non-Euclidean spaces has been of particular interest for Geometers. In 1983, the authors classified spacelike ruled surfaces in a three-dimensional Minkowski space \mathbb{R}^3_1 [13], and De Woestijne [11] extended it to the Lorentz version in 1998. In late 1970s Chen [4,5] introduced the notion of Euclidean immersions of finite type. In a framework of theory of finite type, Chen and Piccinni [6] characterized the submanifold satisfying the condition $\Delta G = \lambda G$ ($\lambda \in \mathbb{R}$), where Δ in the Laplacian of the induced metric and G the Gauss map for submanifold. Submanifold of Euclidean and pseudo-Euclidean spaces with finite type Gauss map also studied by following geometers. (cf. [7,9,12,15,16], etc.) On the otherhand, for the Gauss map of a surface in a three-dimensional Euclidean space \mathbb{R}^3 the following theorem is proved by Boikoussis and Blair [8].

Theorem 1.1. The only ruled surfaces in \mathbb{R}^3 whose Gauss map ξ satisfies

$$\Delta \xi = A\xi, \quad A \in Mat(3, \mathbb{R})$$
 (1.1)

are locally the plane and the circular cylinder.

Also, for the Lorentz version Choi [15] investigated ruled surfaces with non-null base curve satisfying the condition (1.1) in a three-dimensional Minkowski space \mathbb{R}^3_1 .

2000 Mathematics Subject Classification: 53B30,53A35

It seems to be interesting to investigate the Pseudo-Galilean version of the above theorem. Now, let G_3^1 be a three-dimensional Pseudo-Galilean space with standard coordinate system $\{\mathbf{X}_A\}$. Let S_m^1 (resp. H_m) be an m-dimensional de Sitter space (resp. a hyperbolic space) in a m+1-dimensional Pseudo-Galilean space G_{m+1}^1 . We denote by $\mathbf{X}_m(\varepsilon)$ a de Sitter space $S_m^1(1)$ or a hyperbolic space $H_m(-1)$, according as $\varepsilon=1$ or $\varepsilon=-1$. Let \mathbf{X} be a surface in G_3^1 and ξ be a unit vector field normal to \mathbf{X} . Then, for any point ρ in \mathbf{X} , we can regard $\xi(\rho)$ as a point in $H_2(-1)$ or $S_2^1(1)$ by translating parallelly to the origin in ambient space G_3^1 , according as $\varepsilon=\mp 1$. The map ξ of \mathbf{X} into $\mathbf{X}_2(\varepsilon)$ is called a Gauss map of \mathbf{X} in G_3^1 . Then we prove the following

Theorem 1.2. The only ruled surfaces of type II in G_3^1 whose Gauss map ξ : $\mathbf{X} \to \mathbf{X}_2(\varepsilon)$ satisfies (1.1) are locally the following spaces:

- 1. G_2^1 and $S_1^1 \times \mathbb{R}$ if $\varepsilon = -1$
- 2. G_2^1 and $H_1 \times \mathbb{R}$ if $\varepsilon = -1$.

The theorem is proved in section 3.

2. Ruled Surfaces

First of all, we recall fundamental properties in three-dimensional Pseudo-Galilean space.

Differential geometry of the Galilean space G_3 has been largely developed in O. Röschel's paper [14].

The Pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective signature (0,0,+,-), explained in [10]. The absolute of the Pseudo-Galilean geometry is an ordered triple $\{w,f,I\}$ where w is the ideal (absolute) plane, f is line in w and I is the fixed hyperbolic involution of points of f.

The group of motions of G_3^1 is a six-parameter group given (in affine coordinates) by

$$\overline{x} = a + x$$

$$\overline{y} = b + cx + ych\varphi + zsh\varphi$$

$$\overline{z} = d + ex + ysh\varphi + zch\varphi.$$

As in [1], Pseudo-Galilean scalar product g can be written as

$$g(v_1, v_2) = \begin{cases} x_1 x_2 & \text{if } x_1 \neq 0 \lor x_2 \neq 0 \\ y_1 y_2 - z_1 z_2 & \text{if } x_1 = 0 \land x_2 = 0 \end{cases}$$
 (2.1)

where $v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2).$

It leaves invariant the Pseudo-Galilean norm of the vector v=(x,y,z) defined by

$$||v|| = \begin{cases} x, & x \neq 0\\ \sqrt{|y^2 - z^2|}, & x = 0 \text{ [2]}. \end{cases}$$
 (2.2)

A vector v=(x,y,z) is said to be non-isotropic if $x \neq 0$. All unit non-isotropic vectors are the form (1,y,z). For isotropic vectors x=0 holds. There are four types of isotropic vectors: spacelike $(y^2-z^2>0)$, timelike $(y^2-z^2<0)$ and two types of lightlike $(y=\pm z)$ vectors. A non-lightlike isotropic vector is a unit vector if $y^2-z^2=\pm 1$ [3].

A trihedron $(T_0; e_1, e_2, e_3)$, with a proper origin

$$T_0(x_0, y_0, z_0) \sim (1: x_0: y_0: z_0),$$

is orthonormal in Pseudo-Galilean sense if the vectors e_1, e_2, e_3 are of the following form:

$$e_1 = (1, y_1, z_1), e_2 = (0, y_2, z_2), e_3 = (0, \varepsilon z_2, \varepsilon y_2),$$

with $y_2^2 - z_2^2 = \delta$, where ε, δ is +1 or -1 [3].

Such trihedron $(T_0; e_1, e_2, e_3)$ is called positively oriented if for its vectors $\det(e_1, e_2, e_3) = 1$ holds, i.e. if $y_2^2 - z_2^2 = \varepsilon$ [3].

Let **X** be a ruled surface, $r \geq 1$, in G_3^1 given by its parametrization

$$\mathbf{X}(u,v) = r(u) + v\mathbf{a}(u), \quad v \in \mathbb{R}$$
(2.3)

where r is the directrix (parametrized by the Pseudo-Galilean arc length) and \mathbf{a} is a unit generator vector field. according to the position of the striction curve with respect to the absolute figure, we have three types of skew ruled surfaces in G_3^1 .

Throughout this paper, we assume that all objects are smooth unless otherwise mentioned. Now, we define a ruled surface of type II in G_3^1 .

A ruled surface of type II in G_3^1 is a surface parametrized by

$$\mathbf{X}(u,v) = \mathbf{r}(u) + v\mathbf{a}(u)
y, z, a_2, a_3 \in C^2, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R}
|y'^2 - z'^2| = 1, \quad y'a'_2 - z'a'_3 = 0.$$
(2.4)

It is a surface whose striction curve r(u) = (0, y(u), z(u)) lies in pseudo-Euclidean plane, u is the arc-length on the striction curve, and whose generators $\mathbf{a}(u) = (1, a_2(u), a_3(u))$ are non-isotropic. In particular, if $\mathbf{a}(u)$ is constant, then it said to be cylindrical, and if it is not so, then the surface is said to be non-cylindrical. Since our discussion is local, we may assume that we always have $\mathbf{a}'(u) \neq 0$ in the non-cylindrical case. That is, the direction of the rulings is always changing. [3]

The natural basis $\{\mathbf{X}_u, \mathbf{X}_v\}$ along the coordinate curves are given by

$$\mathbf{X}_{u} = dx(\frac{\partial}{\partial u}) = \mathbf{r}' + v\mathbf{a}'$$

$$\mathbf{X}_{v} = dx(\frac{\partial}{\partial v}) = \mathbf{a}.$$

Accordingly we see

$$g(\mathbf{X}_{u}, \mathbf{X}_{u}) = g(\mathbf{r}', \mathbf{r}') + 2vg(\mathbf{r}', \mathbf{a}') + v^{2}g(\mathbf{a}', \mathbf{a}')$$

$$g(\mathbf{X}_{u}, \mathbf{X}_{v}) = 0$$

$$g(\mathbf{X}_{v}, \mathbf{X}_{v}) = g(\mathbf{a}, \mathbf{a}).$$

For the components g_{ij} of the Pseudo-Galilean metric g we denote (g^{ij}) (resp. g) the inverse matrix (resp. the determinant) of matrix (g_{ij}) . Then the Laplacian Δ is given by

$$\Delta = -\frac{1}{\sqrt{|g|}} \sum \frac{\partial}{\partial x^i} (\sqrt{|g|} g^{ij} \frac{\partial}{\partial x^j}). \tag{2.5}$$

3. Cylindrical Ruled Surfaces

In this section we are concerned with cylindrical ruled surfaces. Let \mathbf{X} be a cylindrical ruled surface swept out by the vector field \mathbf{a} along the base curve r in G_3^1 . That is, r = r(u) is isotropic curve and $\mathbf{a} = \mathbf{a}(u)$ is a non-isotropic unit constant vector along orthogonal to r. Then the cylindrical ruled surface \mathbf{X} is only or type II. And \mathbf{X} is parametrized by

$$\mathbf{X}(u, v) = \mathbf{r}(u) + v\mathbf{a}(u), \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R}.$$

Then we get $g(\xi,\xi)=\varepsilon$ (= ∓ 1). Let $\mathbf{X}_2(\varepsilon)$ be a two-dimensional space form as follows:

$$\mathbf{X}_2(\varepsilon) = \left\{ \begin{array}{l} S_2(1) \text{ in } G_3^1 \text{ if } \varepsilon = -1 \\ H_2(-1) \text{ in } G_3^1 \text{ if } \varepsilon = 1. \end{array} \right.$$

Then, for any point x in \mathbf{X} , $\xi(x)$ can be regarded as a point in $\mathbf{X}_2(\varepsilon)$ and the map $\xi: \mathbf{X} \to \mathbf{X}_2(\varepsilon)$ is the Gauss map of \mathbf{X} into $\mathbf{X}_2(\varepsilon)$.

We give here theorem of ruled surface of type II whose Gauss map satisfies

$$\Delta \xi = A\xi, \quad A \in Mat(3, \mathbb{R}). \tag{3.1}$$

Theorem 3.1. The only cylindrical ruled surface of type II in G_3^1 whose Gauss map satisfies the condition (3.1) are locally the plane and the hyperbolic cylinder (resp. the Pseudo-Galilean plane and Pseudo-Galilean circular cylinder).

Proof: Let X be a cylindrical ruled surface of type II in G_3^1 parametrized by

$$\mathbf{X}(u,v) = \mathbf{r}(u) + v\mathbf{a}(u) y, z, a_2, a_3 \in C^2, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R} \left| y^{'2} - z^{'2} \right| = 1, \quad y'a_2' - z'a_3' = 0$$
 (3.2)

where **a** is a unit constant vector along the curve r orthogonal to it. That is, it satisfies $g(r', \mathbf{a}) = 0$, $g(\mathbf{a}, \mathbf{a}) = 1$. Acting a Pseudo-Galilean transformation, we may assume that $\mathbf{a} = (1, 0, 0)$ without loss of generality. Then r may be regarded as the plane curve r(u) = (0, y(u), z(u)) parametrized by arc length:

$$g(\mathbf{r}', \mathbf{r}') = y^{'2} - z^{'2} = \varepsilon \quad (\varepsilon = \mp 1).$$
 (3.3)

The Gauss map ξ is given by $\xi = (0, \varepsilon z'(u), \varepsilon y'(u))$. It is unit normal to **X**. Since the induced Pseudo-Galilean metric g is given by $g_{11} = \varepsilon$, $g_{12} = 0$ and $g_{22} = 1$, the Laplacian of ξ is given by $\Delta \xi = (0, \varepsilon z''', \varepsilon y''')$ from (2.5). Thus, from the condition (3.1) we have the following system of differential equation:

$$\begin{array}{rcl}
0 & = & a_{12}z^{'} + a_{13}y^{'} \\
\varepsilon z^{'''} & = & a_{22}z^{'} + a_{23}y^{'} \\
\varepsilon y^{'''} & = & a_{32}z^{'} + a_{33}y^{'}.
\end{array} (3.4)$$

where $A = (a_{ij})$ is the constant matrix.

Now, in order to prove this theorem we may solve this equation and obtain the solution y and z. First we consider that $\varepsilon = -1$. So we get $g(\mathbf{r}', \mathbf{r}') = y'^2 - z'^2 = -1$. Accordingly we can parametrize as follows:

$$y' = \sinh \theta, \quad z' = \cosh \theta \tag{3.5}$$

where $\theta = \theta(u)$. Differentiating (3.5), we obtain

$$y'' = \theta' \cosh \theta, \quad y''' = \theta'' \cosh \theta + (\theta')^2 \sinh \theta$$

$$z'' = \theta' \sinh \theta, \quad z''' = \theta'' \sinh \theta + (\theta')^2 \cosh \theta$$
(3.6)

By (3.4), (3.5) and (3.6) we have

$$-\theta'' \sinh \theta - (\theta')^2 \cosh \theta = a_{22} \cosh \theta + a_{23} \sinh \theta$$

$$-\theta'' \cosh \theta - (\theta')^2 \sinh \theta = a_{32} \cosh \theta + a_{33} \sinh \theta,$$

which give

$$\theta'' = (a_{22} - a_{33}) \cosh \theta \sinh \theta + a_{23} \sinh^2 \theta - a_{32} \cosh^2 \theta$$
 (3.7)

$$(\theta')^{2} = (a_{32} - a_{23})\cosh\theta \sinh\theta + a_{33}\sinh^{2}\theta - a_{22}\cosh^{2}\theta.$$
 (3.8)

Differentiating (3.8), we get

$$2\theta^{'}\theta^{''} = \theta^{'}\left\{(a_{22} - a_{33})(\cosh^{2}\theta + \sinh^{2}\theta) + 2(a_{33} - a_{22})\sinh\theta\cosh\theta\right\}.$$

Substituting (3.7) into this equation, we get

$$\theta' \left\{ 4(a_{22} - a_{33}) \cosh \theta \sinh \theta + (a_{23} - 3a_{32}) \cosh^2 \theta + (3a_{23} - a_{32}) \sinh^2 \theta \right\} = 0.$$
(3.9)

We suppose that $\theta' \neq 0$. By (3.4) and (3.9) we get

$$a_{22} = a_{33} \text{ and } a_{12} = a_{13} = a_{23} = a_{32} = 0,$$
 (3.10)

because $\sinh \theta \cosh \theta$, $\sinh^2 \theta$ and $\cosh^2 \theta$ are linearly independent functions of $\theta = \theta(u)$. Combining the above equations with (3.8) gives

$$\theta = \mp \frac{1}{r}u + c_0, \quad r \rangle 0, \quad c_0 \in \mathbb{R}$$

where $-\frac{1}{r^2} = a_{22} = a_{33}$. Accordingly we have

$$y = \mp r \cosh \theta + c_1, \quad c_1 \in \mathbb{R}$$

$$z = \mp r \sinh \theta + c_2, \quad c_2 \in \mathbb{R}.$$

This representation gives us to

$$(y-c_1)^2 - (z-c_2)^2 = r^2, \quad r \rangle 0.$$

We denote by S_1^1 $(r,(c_1,c_2))$ the pseudo-circle centered at (c_1,c_2) with radius r in the Pseudo-Galilean plane G_2^1 (the yz-plane). By the above equation the curve r is contained in S_1^1 $(r,(c_1,c_2))$ and hence the ruled surface \mathbf{X} is contained in the Pseudo-Galilean circular cylinder $S_1^1 \times \mathbb{R}$.

Now, we consider that $\varepsilon = 1$. So we get $g(\mathbf{r}', \mathbf{r}') = y'^2 - z'^2 = 1$. Accordingly we can parametrize as follows:

$$y' = \cosh \theta, \quad z' = \sinh \theta$$

where $\theta = \theta(u)$. By similar discussion to that of the above $\varepsilon = -1$ we can get

$$\theta' \left\{ 4(a_{22} - a_{33}) \cosh \theta \sinh \theta + (3a_{23} - a_{32}) \cosh^2 \theta + (a_{23} - 3a_{32}) \sinh^2 \theta \right\} = 0. \quad (3.11)$$

We suppose that $\theta' \neq 0$. By (3.4) and (3.11) we get

$$a_{22} = a_{33}$$
 and $a_{12} = a_{13} = a_{23} = a_{32} = 0$,

which yields that

$$\theta = \mp \frac{1}{r}u + c_0, \quad r \rangle 0, \quad c_0 \in \mathbb{R}$$

where $\frac{1}{r^2} = a_{22} = a_{33}$. Accordingly we have

$$y = \mp r \sinh \theta + c_1, \quad c_1 \in \mathbb{R}$$

 $z = \mp r \cosh \theta + c_2, \quad c_2 \in \mathbb{R}.$

This representation gives us to

$$(y-c_1)^2 - (z-c_2)^2 = -r^2, \quad r > 0.$$

We denote by H_1 $(r,(c_1,c_2))$ the hyperbolic circle centered at (c_1,c_2) with radius r in the Pseudo-Galilean plane G_2^1 (the yz-plane). By the above equation the curve r is contained in H_1 $(r,(c_1,c_2))$ and hence the ruled surface \mathbf{X} is contained in the hyperbolic cylinder $H_1 \times \mathbb{R}$.

Example 3.2. A Pseudo-Galilean circular cylinder

$$S_1^1 \times \mathbb{R} = \{(x, y, z) \in G_3^1 : y^2 - z^2 = r^2, r \geq 0\}$$

is a cylindrical ruled surface of type II with base curve $\mathbf{r}(u) = (0, r \sinh \frac{u}{r}, r \cosh \frac{u}{r})$ and director curve $\mathbf{a}(u) = (1, 0, 0)$. The Gauss map is given by

$$\xi = (0, \cosh \frac{u}{r}, \sinh \frac{u}{r})$$

and the Laplacian $\Delta \xi$ of the Gauss map ξ can be expressed as

$$\Delta \xi = -\frac{1}{r^2} \xi.$$

Hence the Pseudo-Galilean circular cylinder satisfies (3.1) with

$$A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & -\frac{1}{r^2} & 0 \\ a_{31} & 0 & -\frac{1}{r^2} \end{bmatrix}.$$

Example 3.3. A hyperbolic cylinder

$$H_1 \times \mathbb{R} = \{(x, y, z) \in G_3^1 : y^2 - z^2 = -r^2, r \geq 0\}$$

is a cylindrical ruled surface of type II with base curve $\mathbf{r}(u) = (0, r \sinh \frac{u}{r}, r \cosh \frac{u}{r})$ and director curve $\mathbf{a}(u) = (1, 0, 0)$. The Gauss map is given by

$$\xi = (0, \sinh\frac{u}{r}, \cosh\frac{u}{r})$$

and the Laplacian $\Delta \xi$ of the Gauss map ξ can be expressed as

$$\Delta \xi = \frac{1}{r^2} \xi.$$

Hence the hyperbolic cylinder satisfies (3.1) with

$$A = \left[\begin{array}{ccc} a_{11} & 0 & 0 \\ a_{21} & \frac{1}{r^2} & 0 \\ a_{31} & 0 & \frac{1}{r^2} \end{array} \right].$$

References

- B. Divjak, Curves in pseudo-Galilean geometry, Annales Univ. Sci. Budapest. 41(1998), 117-128.
- 2. B. Divjak and Z.M. Sipus, Minding isometries of ruled surfaces in pseudo-Galilean space, $Journal\ of\ Geometry\ 77(2003), 35-47.$
- 3. B. Divjak and Z.M.Sipus, Special curves on ruled surfaces in Galilean and pseudo-Galilean spaces, *Acta Math. Hungar.* 98(3) (2003),203-215.
- 4. B.-Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983) 65-81.
- B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Singapore, 1984.
- B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161-186.
- C. Baikoussis, B.-Y. Chen, L. Verstraelen, Surfaces with Finite Type Gauss Map, Geometry of Topology of Submanifolds: IV, World Scientific Singapore, 1992, pp.214-216.
- 8. C. Baikoussis and D.E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992) 355-359.
- 9. C. Baikoussis, B.-Y. Chen, L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, *Tokyo J. Math.* 16 (1993) 341-348.
- 10. E.Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom. 38 (1987),261-288.
- I.V. de Woestijne, Minimal surfaces in the 3-dimensional Minkowski space, Geometry of Topology of Submanifolds: II, World Scientific Singapore, 1990, pp.344-369.
- 12. L.J. Alías, A. Ferrández, P. Lucas, M.A. Mcrono, On the Gauss map of *B*-scrolls, *Tsukuba J. Math.* 22 (1998) 371-377.
- 13. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L^3 , Tokyo J. Math. 6 (1983) 297-309.
- 14. O. Röschel, Die Geometrie Des Galileischen Raumes, Berichte der Math.-Stat. Sektion im Forschungszentrum Graz Ber. 256, 1986, 1-20.
- 15. S.M. Choi, On The Gauss map ruled surfaces in a three-dimensional Minkowski space, $Tsukuba\ J.\ Math.\ 19\ (1995)\ 285-304.$
- Y.H. Kim, D.W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000) 85-96.

Alper Osman Öğrenmiş
Fırat University,
Faculty of Science,
Department of Mathematics,
23119 Elazığ, Turkey
E-mail address: ogrenmisalper@gmail.com

and

Mahmut Ergüt Fırat University, Faculty of Science, Department of Mathematics, 23119 Elazığ, Turkey E-mail address: mergut@firat.edu.tr