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Probabilistic Collision Checking with Chance Constraints
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Abstract—Obstacle avoidance, and by extension collision checking, is
a basic requirement for robot autonomy. Most classical approaches to
collision checking ignore the uncertainties associated with the robot and
obstacle’s geometry and position. It is natural to use a probabilistic
description of the uncertainties. However, constraint satisfaction cannot
be guaranteed in this case and collision constraints must instead be
converted to chance constraints. Standard results for linear probabilis-
tic constraint evaluation have been applied to probabilistic collision
evaluation, but this approach ignores the uncertainty associated with
the sensed obstacle. An alternative formulation of probabilistic collision
checking that accounts for robot and obstacle uncertainty is presented
which allows for dependent object distributions (e.g., interactive robot-
obstacle models). In order to efficiently enforce the resulting collision
chance constraints, an approximation is proposed and the validity of this
approximation is evaluated. The results presented here have been applied
to robot motion planning in dynamic, uncertain environments.

Index Terms—Chance Constraints, Probabilistic Collision Checking,
Collision Avoidance

I. INTRODUCTION

Obstacle avoidance is a basic requirement for robots operating in
practical environments. This is especially true for robots operating
in Dynamic, Uncertain Environments (DUEs). In such environments,
robots must work in close proximity to many other moving agents
whose future actions and reactions are often not well known. The
robot is plagued by noise in its own state measurements and in
the sensing of static and moving obstacles. An example of a DUE
application is a service robot which must move through a swarm of
humans in a cafeteria during a busy lunch hour in order to deliver
food items. This paper presents an obstacle-robot collision checking
method that accounts for the probabilistic uncertainties associated
with the robot and obstacle position states.

Classical approaches to obstacle avoidance react locally to the
obstacles, but often ignore state uncertainty [1], [2], [3]. Approaches
include the Velocity Obstacle approach [4], the Dynamic Window
approach [5], and Inevitable Collision States (ICS) [6]. ICS differs
from collision checking in that the goal of ICS is to identify robot
configurations for which no sequence of actions exist that allows the
robot to avoid a collision. Recent extensions of the ICS problem to
the uncertain case have been proposed [7], [8].

In this work, the collision checking problem is considered as
part of a robot motion planning implementation [9], [10]. Obstacle
avoidance is obtained by recursively solving the planning problem
while enforcing collision constraints along the trajectory. The specific
problem considered in this work is probabilistic collision checking
between uncertain configurations for two objects, referred to as
collision chance constraints. Blackmore et al. [11] extended results
for linear chance constraints to the problem of polygonal obstacle
avoidance, but the uncertainty associated with the obstacle is ignored.
The main contribution of this paper is an alternative formulation of
the probability of collision which accounts for both robot and obstacle
uncertainty. The resulting formulation is a generalization of the
formulation presented by Lambert et al. [12]. Finally, the motion plan-
ning problem in dynamic, uncertain environments is inherently non-
convex. Computational considerations for this optimization problem
motivate the development of efficient constraint evaluation routines.
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Fig. 1. (a) The robot’s position (blue) is propagated, resulting in an uncertain
state (represented by multiple transparent robots). The static obstacle (green)
is to be avoided. (b) The constraint is tightened (dashed blue) by some amount
that accounts for the level of confidence and the predicted state covariance.

An approximation scheme is presented to efficiently enforce the
collision chance constraints and the validity of the approximation
is investigated.

The layout of the paper is as follows: previous results on proba-
bilistic linear constraints and the application of these results to prob-
abilistic collision checking is discussed in Section II. An alternative
formulation of the problem is given in Section III. An approximation
is introduced and specialized for systems with normally distributed
states (for independent and dependent object distributions). The
validity of the approximation is investigated for disk objects with
Gaussian distributed position states in Section IV. The application
of the results in this paper to the robot motion planning problem in
dynamic, uncertain environments [9], [10] is discussed in Section V.

II. CHANCE CONSTRAINTS

It is often desirable to impose constraints on the states of a robotic
system when solving a motion planning problem (e.g., velocity
constraints, and collision constraints between the robot and other
objects). In general, these constraints are described as inequality
functions, c(x) ≤ 0, of the system state, x ∈ X ⊂ Rnx . The system
state may refer to the robot state, obstacle state, or the augmented
state (robot and obstacle). However, in a probabilistic formulation,
the system states are represented by unbounded distributions (e.g.,
normal distributions) and constraint satisfaction can not guaranteed
for all realizations of the states. It is instead necessary to introduce
chance constraints, or probabilistic state constraints, which are of the
form:

P (x /∈ Xfree) ≤ δ or P (x ∈ Xfree) ≥ α. (1)

The probability of constraint violation is bounded. α and δ are levels
of confidence and Xfree denotes the set of states where the exact,
deterministic constraints are satisfied (e.g., Xfree = {x : c(x) ≤ 0}).

Chance constraints have been commonly applied in Stochastic
Control and Stochastic Receding Horizon Control (SRHC) (e.g.,
[13], [14], [15], [16], [17]). To date, two approaches have been
proposed to evaluate chance constraints: (i) assume linear constraints
on Gaussian-distributed state variables and convert the chance con-
straints into constraints on the means of the states (e.g., [11],
[16]) and (ii) evaluate the constraints by Monte Carlo simulation
(e.g., [18]). Approach (i) is restrictive, whereas approach (ii) can
handle non-Guassian distributions and non-linear constraints, but it
is computationally intensive. Standard results for linear constraints on
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Gaussian-distributed system states (approach (i)) are reviewed next
to give intuition about the effects of chance constraints.

A. Individual Linear Chance Constraints

For Gaussian-distributed state variables, linear chance constraints
on state space X ⊂ Rnx take the form P (aTx ≤ b) ≥ α, where
aTx ∈ R, x ∈ X, b ∈ R. Let x̂ , E[x] be the mean of the state,
and let the covariance matrix of x be Σ , E[(x− x̂)(x− x̂)T ].

The chance constraint P (aTx ≤ b) ≥ α is satisfied iff

aT x̂+ F−1(α)×
√
aTΣa ≤ b (2)

where F−1(α) is the inverse of the cumulative distribution function
for a standard scalar Gaussian variable (zero mean and unit standard
deviation [19]). The chance constraint is converted into a constraint
on the mean of the robot state. The constraint is tightened1 by some
amount that is a function of the level of confidence and covariance
(illustrated in Figure 1).

B. Using Linear Chance Constraints for Collision Checking

When using linear chance constraints to impose collision con-
straints between the robot and polygonal objects, sets of linear
constraints must be satisfied simultaneously (or jointly) [11]. Two ap-
proaches for imposing joint constraints have emerged: (i) probability
mass is allocated to the different components of the joint constraints,
each of which is then implemented using the individual constraint
results, and (ii) use an ellipsoidal approximation (for Gaussian-
distributed variables).

1) Probability Mass Allocation: To impose the set of constraints,
it is convenient to formulate the problem in terms of the probability
of not being in free space: P (x /∈ Xfree) = 1 − P (x ∈ Xfree) ≤
1−α , δ. A part of the confidence, δ, is then assigned to each of m
individual constraints that are to be satisfied [11], [16], [20]. Define
the constraint violation event as Aj , then x ∈ Xfree ⇔

⋂m
j=1 Aj

where negation is represented by the overbar. The negation of this
expression is given by De Morgan’s law:

m⋂
j=1

Aj =

m⋃
j=1

Aj . (3)

From Boole’s inequality, the probability of any constraint violation
is bounded by:

P (

m⋃
j=1

Aj) ≤
m∑
j=1

P (Aj). (4)

Thus, if a portion, εj , of δ is assigned to each component of the
constraint (P (Aj) ≤ εj), then:

m∑
j=1

εj = δ =⇒ P (x ∈ Xfree) ≥ α. (5)

It is necessary to specify the level of certainty, εi, for each of
the constraint components. A naive approach is to assign a constant
value, εi = δ

m
, but this has been shown to be very conservative [20].

Ono and Williams [21] and Blackmore [20] introduced the notion of
risk allocation, where more probability mass is assigned to parts of
the trajectory where collisions are more likely.

2) Ellipsoidal Approximation: The probability mass contained in
the free space can be approximated by the probability mass con-
tained in the uncertainty ellipse associated with the jointly Gaussian
distributed states. Then, the uncertainty ellipse is confined to the free
space [19]. Again, the ellipsoidal approximation is very conservative
[20].

1Constraint tightening refers to growing the constraint to account for
uncertainty.

C. Discussion

These standard results for linear constraints have been applied to
probabilistic collision checking, but uncertainty in obstacle position
or shape is ignored. However, it is desirable to evaluate collision
chance constraints when both the obstacle and robot locations are
uncertain. An alternative formulation of the probability of collision
is presented next.

III. PROBABILISTIC COLLISION CHECKING

Probabilistic collision checking can be formulated as a chance
constraint of the form P (C) ≤ δ, where C is the collision condition
(defined below). Let W ⊂ Rnx be the workspace of the robot.
Assume a rigid-body2 robot. Assign a body-fixed reference frame
to the robot, located at xR in the global reference frame. Let
XR(xR) ⊂W be the set of points occupied by the robot. In a similar
manner, assume a rigid-body obstacle (the obstacle might be moving)
with a body-fixed reference frame located at xA in the global frame.
Let XA(xA) ⊂W be the set of points occupied by the obstacle. The
collision condition is defined as C(xR, xA) : XR(xR) ∩ XA(xA) 6=
{∅}. The probability of collision is defined as:

P (C) =

∫
xR

∫
xA

IC(xA, xR)p(xR, xA)dxRdxA (6)

where IC is the indicator function, defined as:

IC(xA, xR) =

{
1 if XR(xR) ∩ XA(xA) 6= {∅}
0 otherwise.

(7)

For obstacle avoidance, collision chance constraints must be si-
multaneously enforced over the trajectory. The results from Section
II-B1 can be applied directly where the individual collision constraint
violations are the events Aj . A fraction of the total level of confidence
is assigned at each stage to the individual collision constraints.

The resulting formulation is a generalization of the result3 from
Lambert et al. [12] to account for dependence between the robot and
obstacle distributions (e.g., when the object and robot motions are
dependent, such as in interactive scenarios). This integral function
is difficult to evaluate for general robot and obstacle geometries.
One strategy is to use Monte-Carlo Simulation, but that method can
be computationally intensive [12] (see also Section IV-A). As an
alternative, an approximate solution to the probability of collision is
presented next.

A. Approximate Probability of Collision

For simplicity, assume a spherical robot of radius ε (XR ,
S(xR, ε)) and a point obstacle4. The collision condition is defined
as C : xA ∈ S(xR, ε). Let VS be the volume of this sphere. The
probability of collision, eq. (6), is rewritten as:

P (C) =

∫
xR

[∫
xA∈S(xR,ε)

p(xA|xR)dxA

]
p(xR)dxR. (8)

Assuming that the robot has a small radius (ε � 1), the inner
integral can be approximated with a constant value of the conditional

2An idealized collection of points with a fixed relative position
3The motivating formulation of the probability of collision in Section III,

eq. (5) of [12] is incorrect: the probability of collision requires a double
integral over the space and the obtained result does not account for object
sizes, as noted by the authors. Also, the resulting function is not a probability
density function since there is no uncertain parameter. Instead, it is simply
a deterministic function in the form of a Gaussian distribution. Later results
(e.g., eq. (10) in Section IV of [12]) are correct.

4This analysis can readily be extended to the case where both the robot and
obstacle have spherical geometries by considering the configuration space.
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distribution of the obstacle evaluated at the robot location, multiplied
by the volume occupied by the robot, VS :∫

xA∈S(xR,ε)

p(xA|xR)dxA ≈ VS × p(xA = xR|xR). (9)

The approximate probability of collision for small objects is
therefore:

P (C) ≈ VS ×
∫
xR

p(xA = xR|xR)p(xR)dxR. (10)

This integral can be evaluated in closed form for systems where the
robot and obstacles have Gaussian-distributed position states which
are (i) independent and (ii) dependent.

B. Objects with Independent, Gaussian-distributed States

Lemma 1: Assume that the robot’s and object’s position uncer-
tainties are described with independent Gaussian distributions: xR ∼
N(x̂R,ΣR) and xA ∼ N(x̂A,ΣA), then:∫

xR

p(xA = xR|xR)p(xR)dxR =

1√
det (2πΣC)

exp

[
−1

2
(x̂R − x̂A)T Σ−1

C (x̂R − x̂A)

]
(11)

where ΣC , ΣR + ΣA is the combined position covariance.
Proof: Using the independence assumption:∫
xR

p(xA = xR|xR)p(xR)dxR =∫
xR

NxR(x̂A,ΣA)NxR(x̂R,ΣR)dxR. (12)

It is known that the product of independent Gaussian distributions is
a weighted Gaussian (e.g., [22]):

NxR(x̂A,ΣA)NxR(x̂R,ΣR) = β NxR(mc,Σc) (13)

where

β ,
1√

det (2πΣC)
exp

[
−1

2

(
x̂R − x̂A

)T
Σ−1
C

(
x̂R − x̂A

)]
(14)

and

mc = Σc
(
Σ−1
R x̂R + Σ−1

A x̂A
)

Σc =
(
Σ−1
R + Σ−1

A

)−1
.

(15)

ΣC , ΣR + ΣA is the combined position covariance. Eq. (12)
becomes:∫

xR

p(xA = xR|xR)p(xR)dxR = β

∫
xR

NxR(mc,Σc)dxR (16)

and since the integral evaluates to one, the result is obtained.

This analysis provides intuition about the appropriate combination
of the covariances of the two distributions. The probability of
collision is approximately given by:

P (C) ≈ VS×
1√

det (2πΣC)
exp

[
−1

2
(x̂R − x̂A)T Σ−1

C (x̂R − x̂A)

]
. (17)

The objective is to convert the constraint P (C) ≤ δ into a
constraint on the robot mean state in terms of the obstacle mean
state. From (17), the equivalent constraint is:

(x̂R − x̂A)TΣ−1
C (x̂R − x̂A) ≥ −2 ln

(√
det (2πΣC)

δ

VS

)
, κ (18)

where κ is a function of the level of certainty, the sizes of the robot
and obstacle, and the combined covariance of the position states. This
constraint is in the form of an ellipsoid around the obstacle that the
robot has to avoid to ensure that the chance collision constraint is
satisfied.

C. Objects with Dependent, Gaussian-distributed States

Lemma 2: Assume that the robot and agent state (augmented state)
are jointly Gaussian (e.g., when modeling interaction between the
robot and the agent [9]):

p(x) = N

([
x̂R
x̂A

]
,

[
ΣR ΣM
ΣTM ΣA

])
. (19)

then∫
xR

p(xA = xR|xR)p(xR)dxR =

1√
det (2πΣC)

exp

[
−1

2
(x̂R − x̂A)T Σ−1

C (x̂R − x̂A)

]
(20)

where ΣC , ΣR + ΣA − ΣM − ΣTM .
Proof: The dependence condition implies that ΣM 6= 0. Then,

the marginal distribution of the robot state is p(xR) = N(x̂R,ΣR)
and the conditional distribution of the agent state is p(xA|xR) =
N
(
x̄A(xR),ΣA

)
, where x̄A(xR) = x̂A + ΣTMΣ−1

R (xR − x̂R) and
ΣA = ΣA − ΣTMΣ−1

R ΣM .
The product of the two Gaussian distributions has the functional

form:

N(x̂R,ΣR)×N
(
x̄A(xR),ΣA

)
= η exp (−L(xR, x̂R, x̂A)) (21)

where
η =

1√
det (2πΣR)

1√
det
(
2πΣA

) (22)

and

L(xR, x̂R, x̂A) =
1

2
(xR − x̂R)T Σ−1

R (xR − x̂R) +

1

2
(xA − x̄A(xR))T Σ

−1
A (xA − x̄A(xR)) . (23)

Partition this function as L(xR, x̂R, x̂A) = L1(xR, x̂R, x̂A) +
L2(x̂R, x̂A) so that the integral can be evaluated efficiently. With
this partition we obtain:∫

xR

p(xA = xR|xR)p(xR)dxR = η×[∫
xR

exp(−L1(xR, x̂R, x̂A)dxR

]
exp(−L2(x̂R, x̂A)). (24)

By evaluating the first and second partial derivatives5 with respect to
xR, L1(xR, x̂R, x̂A) can be written as a normal distribution in terms

5For a generic normal distribution of random variable z, the mean, µ, and
the covariance, Γ, of the distribution can be recovered from the first and
second derivatives of the function L(z) [23]:

N(z;µ,Γ) =
1√

det(2πΓ)
exp(−L(z))

L(z) =
1

2
(z − µ)TΓ−1(z − µ)

then

∂L(z)

∂z
= Γ−1(z − µ) and

∂L(z)

∂z
= 0 ⇒ z̄ = µ

∂2L(z)

∂z2
= Γ−1.
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of xR:
∂L(xR, x̂R, x̂A)

∂xR
= 0 ⇒ x̃R = Ψx̄R (25)

where

x̄R ,
(

Σ−1
R − Σ

−1
A ΣTMΣ−1

R + Σ−1
R ΣMΣ

−1
A ΣTMΣ−1

R

)
x̂R+(

Σ
−1
A − Σ−1

R ΣMΣ
−1
A

)
x̂A (26)

and

Ψ ,

(
∂2L(xR, x̂R, x̂A)

∂x2
R

)−1

= ΣR−

(ΣR − ΣM )
(

ΣR + ΣA − ΣM − ΣTM

)(
ΣR − ΣTM

)
. (27)

Define L1(xR, x̂R, x̂A) , 1
2
(xR − x̄R)TΨ−1(xR − x̄R), and note

that ∫
xR

exp (−L1(xR, x̂R, x̂A)) dxR =
√

det(2πΨ) (28)

so that (24) becomes:∫
xR

p(xA = xR|xR)p(xR)dxR =

η
√

det(2πΨ) exp(−L2(x̂R, x̂A)). (29)

Recall that L2(x̂R, x̂A) = L(xR, x̂R, x̂A)−L1(xR, x̂R, x̂A), which
is quadratic in x̂R and x̂A. A similar strategy is used to show that (29)
is in the form of a normal distribution, Nx̂R (m,Φ), where m = x̂A
and Φ = ΣR+ΣA−ΣM −ΣTM . Since η

√
det(2πΨ) = 1√

det(2πΦ)
,

and L2(x̂R, x̂A) = 1
2

(x̂R −m)T Φ−1 (x̂R −m), the result is ob-
tained.

Again, the objective is to convert the constraint P (C) ≤ δ into a
constraint on the robot mean state in terms of the obstacle mean state,
resulting in (18), with the exception that ΣC , ΣR+ΣA−ΣM−ΣTM .

IV. APPROXIMATION VALIDATION

The approximation introduced in Section III-A assumes a constant
probability of collision over the volume occupied by the robot. This
approximation is only valid for a small robot, and it is of interest to
evaluate the validity of this approximation as the size of the robot is
increased. A scheme to evaluate the true probability of collision is
presented before a comparison with the approximation is performed
by investigating the effect of the relative size of the robot and the
spread of the distribution, as well as the shape of the distribution on
the accuracy of the approximation.

A. True Probability of Collision Evaluation

Consider the integral in eq. (6). By introducing the augmented
state, x , [xR xA]T , the equation is rewritten:

P (C) =

∫
x

IC(x)p(x)dx (30)

Using the Central Limit Theorem, this integral can be approximated
by drawing N iid samples from the joint distribution p(xR, xA) and
then evaluating the function IC(xR, xA):

P (C) ≈ 1

N

N∑
i=1

IC(x̃i) (31)

where x̃i is the sample drawn from p(xR, xA). This approach is
known as Monte-Carlo Simulation (MCS). By writing the integral in
terms of the joint distribution and augmented state, a generalization

of the algorithm introduced by Lambert et al. [12] to dependent distri-
butions is obtained. By assuming independent distributions, Lambert
et al. formulate the collision probability in terms of the individual
distributions. Using this formulation, a naive MCS approach with
a double summation is obtained6. In contrast, by formulating the
probability of collision in terms of the joint distribution between
the robot and the obstacle position states, dependent distributions
can be handled and the resulting algorithm requires evaluation of a
single summation. The accuracy of the estimate of the true probability
of collision as a function of number of samples is investigated in
simulation in [12]. For small probabilities of collision, it is concluded
that 1000 samples are sufficient. A more formal analysis is presented
here, based on the expected accuracy of the estimate in terms of the
coefficient of variation. The coefficient of variation is a normalized
measure of the dispersion. For the estimate of the probability of
collision, and noting that I2

C(x) = IC(x), it is defined as:

δ ,
σ√
Nµ

(32)

where
µ =

∫
x

IC(x)p(x)dx (33)

and

σ =

∫
x

I2
C(x)p(x)dx− µ2 (34)

= µ(1− µ). (35)

The coefficient of variation simplifies to:

δ =

√
1− µ
Nµ

(36)

Assuming that a coefficient of variation of 0.1 (i.e., the standard
deviation of the estimate is 10% of the mean) and a target probability
of collision of 1% (µ = 0.01), then at least N = 9900 samples
are required. For a C++ implementation7 of the MCS algorithm and
using N = 10000 samples, the average runtime is 4.56 milli seconds,
which is on the same order as presented by Lambert et al. [12].

B. Validity of Approximation

When considering the validity of the approximation presented in
Section III-A, the shape and spread of the distribution (which is
governed by the covariance) and the size of the object are relevant.
The approximation assumes a constant valued joint probability den-
sity function over the space occupied by the robot, multiplied by
the volume of the object. If the object is large relative to the spread
of the distribution, then the approximation will be inaccurate. As a
result, the effects of the spread and robot size are connected. Two
cases are considered in 2D state space: the covariance is fixed (with
covariances resulting in circular and oblong uncertainty ellipsoids,
respectively), and the size of the robot is varied.

1) Effect of Relative Scaling: The covariance for both the robot
and obstacle are fixed at Σ = diag(1, 1). The radius of the disk
robot, r, is varied from 0.3 to 1 m. The robot position is fixed at
the origin, and the obstacle position is varied over the space x ∈
[−5, 5] and y ∈ [−5, 5]. The true (eq. (6)) and approximate (eq.
(17)) probabilities of collision are calculated (e.g., the values of the
calculated probabilities of collision are plotted in Figure 2 for a robot
of radius 0.4m).

6In an attempt to increase computational efficiency, the algorithm is
modified to use a single summation without justification.

72.66 GHz Intel Core 2 Duo processor, 4GB RAM, and using GSL for
random number generation
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(a) (b)

Fig. 2. Values of the probability of collision at different obstacle locations
for a robot of radius 0.4m as calculated from the true (a) and approximated
(b) results.

(a) (b)

Fig. 3. The collision chance constraint is evaluated for a robot of radius 0.4
m, using the true probability of collision (a) and the scaling of an equivalent
elliptical constraint, κt, is determined, as illustrated in (b), together with a
contour plot of the data in (a).

TABLE I
ELLIPSOIDAL SCALINGS TO ENFORCE COLLISION CHANCE CONSTRAINTS

FOR VARYING ROBOT SIZES.

Radius κa κt

√
det(ΣC)

πr2
Area error

0.3 1.62 1.67 7.07 3.0%
0.4 2.77 2.92 3.98 5.1%
0.5 3.67 3.87 2.55 5.2%
0.6 4.39 4.39 1.77 6.4%
0.7 5.01 5.41 1.30 7.4%
0.8 5.55 6.05 0.99 8.3%
1.0 6.44 7.14 0.64 9.8%

In order to compare the validity of the approximation, the chance
constraint is evaluated (P (C) > δ for δ = 0.01). From eq. (18), an
ellipsoidal constraint is expected where the size of the ellipsoid scales
with

√
det(ΣC)/πr2. By plotting the collision chance constraint, as

evaluated from the true probability of collision, the scaling, κt, of the
ellipsoid required to enforce the true constraint can be obtained (see
Figure 3). These values are compared to the approximation value,
κa, in Table I.

The threshold for the validity of the approximation is hard to
quantify. The areas of the resulting ellipses from the true and
approximate results are compared. For r = 0.7m, the error is
7.4%, which is deemed as the maximum allowable (from visual
inspection, Figure 4). For larger robot radii, the approximation is
not accurate and it is concluded that the approximation is valid for√

det(ΣC)/πr2 > 1.3.
2) Effect of Distribution Shape: In the previous section it was

determined that the approximation is valid for
√

det(ΣC)/πr2 >
1.3. However, the shape of the distribution is expected to affect the
accuracy of the approximation since the size of the robot relative to
the major/minor axes of the resulting uncertainty ellipse is different.
To evaluate the effect of shape, the covariance matrices of the robot
and obstacle are fixed at Σ = diag(1, 0.1). The size of the robot
is chosen to yield

√
det(ΣC)/πr2 ≈ 1.3, giving r = 0.4m. From

Figure 5 it is concluded that the effect of the shape is small for the

Fig. 4. Graphical comparison of the elliptical constraints obtained from the
true (black) and approximate (red) probabilities of collision for a robot of
radius 0.7m.

Fig. 5. The collision chance constraint for a robot of radius 0.4 m is plotted
for the true probability of collision (contour plot).

region where the approximation is valid. For larger robot sizes, the
effect of the shape is more pronounced.

V. APPLICATION TO ROBOT MOTION PLANNING

The results presented in this paper can be used to evaluate
collision chance constraints as they arise in the robot motion planning
problem in dynamic, uncertain environments [9], [10]. This type of
motion planning problem can be posed in a receding horizon (RH)
framework where an approximate problem is solved over a finite
planning horizon and a small part of the plan is executed before new
information is incorporated and the problem is re-solved. In this RH
framework, the above results can be used to model the constraints
posed by dynamic and static obstacles.

One requirement of the RH approach is real-time solution of
the approximate planning problem. In Section IV-A it was noted
that the MCS implementation can evaluate constraints in a few
milliseconds. However, the general optimal motion planning problem
formulation results in a non-convex optimization problem [9]. These
problems are notoriously hard to solve efficiently, regardless of
the constraint checking implementation. General approaches to non-
convex optimization problems can require thousands of constraint
evaluations per planning stage. As a result, the MCS implementation
of probabilistic collision checking (as presented in Section IV-A) can
be insufficient for real-time implementation when combined with a
naive non-convex optimization algorithm. This motivates the need for
approximate probabilistic collision constraint evaluation.

The approximation presented in this work offers a viable method
for efficient constraints enforcement , noting that small errors arising
from approximations are compensated by the information feedback
when the problem is re-solved in the RH framework. The range
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of covariances where the approximation is valid can be extended
in certain applications (e.g., the motion planning problem with disk
objects and random walk models [9], [10]). This extension is possible
when the dynamic- and measurement models for the robot and
dynamic obstacles do not alter the shape of the uncertainty as
it is propagated through the system. The functional form of the
constraints, as obtained from the approximation, can be applied
directly by adjusting the scaling factor to account for the non-point
geometry. A look-up table of scaling factors can be constructed
offline for different covariances by recording the required scaling
from the true probability of collision, κt, as obtained from MCS
in Section IV-A. By using the look-up table, the constraints can be
evaluated very efficiently. Additionally, since the constraints are based
on the true probability of collision, the enforced constraints lack the
conservatism that plagued previous approaches.

VI. CONCLUSIONS

Probabilistic collision checking is a basic requirement for a robot
operating in an a priori unknown environment. Standard approaches
ignore uncertainty entirely, or account only for robot state uncertainty.
In this work, the state uncertainties of both the robot and object
are accounted for. Probabilistic collision checking is formulated for
robots and obstacles of arbitrary geometry with arbitrary probability
distributions for the robot and obstacle position states. Evaluation of
the resulting formula is cumbersome, but intuition is gained when
using a ‘small objects’ approximation. Closed-form solutions are ob-
tained for this approximate problem for the cases where the robot and
obstacle states are described by independent and dependent Gaussian-
distributed variables, respectively. The validity of the approximation
is analyzed in terms of the relative scale of object size and distribution
spread, and the shape of the distribution. The result has been applied
to the robot motion planning problem in [9], [10]).
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