
Stabilizing through Poor Information∗

Gabriel Desgranges† and Stéphane Gauthier‡
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1 Introduction

The evidence suggests that there is considerable uncertainty regarding economic

fundamentals. In addition, it is likely that decision makers have a more precise

idea about fundamentals than the private sector. It is not clear whether decision

makers whose purpose is to stabilize fluctuations should be transparent, i.e., should

reveal their information about fundamentals. In the main strand of the literature,

the stabilization purpose has been applied to equilibrium fluctuations, thus a pri-

ori assuming rational expectations (see, e.g., Cukierman and Meltzer, 1986). An

alternative approach considers that agents are not a priori able to form rational

expectations, and that they have to learn first the equilibrium law of motion of the

economy. In this approach, the stabilization purpose can be understood as stabiliz-

ing the economy in an equilibrium situation (see, e.g., Bullard and Mitra, 2002, or

Evans and Honkapohja, 2001, 2008). This paper studies the effect of informational

asymmetries on equilibrium stability.

If the rational expectations hypothesis is relaxed, it becomes necessary to spec-

ify the forecasting behavior of economic agents. This paper focuses attention on

the so-called eductive learning scheme: an equilibrium is stable whenever it is the

only outcome surviving to the iterated process of elimination of non-best responses

predictions triggered by the two assumptions of common knowledge of individual

rationality and common knowledge of the model (Guesnerie, 2002).

In a class of self-referential linear models where the individual decision depends

on the expectations of both the fundamentals and the average of others’ forecasts,

which encompasses Heinemann (2004) and Morris and Shin (2006), stability is shown

to relate to (1) the sensitivity of the state of the economic system, interpreted as a

price, to the average others’ forecasts of this price, and (2) the proportion of agents

informed about the true underlying economic fundamentals.

First, in accordance with the literature about learning under symmetric infor-

mation in macroeconomic models, stability is favored whenever the influence of

expectations onto the actual state of the economy is small enough. Indeed, when

the actual price is not sensitive to individuals’ forecasts, past history reflects fun-

damentals rather than the noise caused by agents’ beliefs. The price then can be

used as a valuable guide in adaptive learning processes (Grandmont, 1998). In the

case of eductive learning, stability is favored since then it is no longer necessary to

know precisely others’ beliefs in order to predict the behavior of the economy (Gues-

nerie, 1992). Stabilizing policies should therefore be shaped so that the influence of
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forecasts is neutralized.

A specific feature of the paper with respect to the literature on learning in

macroeconomic models is the presence of asymmetric information. Our main result

shows that stability is negatively affected by the proportion of informed agents, i.e.,

there is a stabilizing effect of the lack of information. This effect is due to the

fact that an agent’s decision is more sensitive to his own price forecast when he is

informed. This implies that the sensitivity of the actual price increases with the

proportion of informed agents. Some inertia argument again prevails: it is easier

to predict the forecast behavior of an agent who is not informed since his behavior

does not sharply respond to his expectations. This suggests that stabilizing policies

should not disclose information to a large proportion of agents.

This last property is reminiscent of the recent literature concerned with the

stabilization problem from the equilibrium approach viewpoint (Woodford, 2003;

Morris and Shin, 2006; Hellwig, 2008; and Nimark, 2008). This literature actually

highlights that informational asymmetries may imply greater persistence of equilib-

rium fluctuations. In presence of informational asymmetries, an agent is not able to

assess exactly how shocks on fundamentals influence others’ decisions. Thus, as far

as his optimal decision depends on others, his Bayesian Nash equilibrium behavior

consists to adjust slowly to his private information. On the contrary, if all agents

share the same information about fundamentals, they revise their decisions quickly,

and the effects of a shock on the fundamentals is transitory (Woodford, 2003).

To summarize, informational asymmetries imply inertia, not only in the rational

expectations equilibrium, but also in the learning process. This suggests that there

is a close connection between stabilizing equilibrium fluctuations and stabilizing

learning of this equilibrium: an equilibrium which displays greater inertia should be

more learnable.

Such a connection is relevant only if fundamentals are not revealed by the ob-

served price in the very short run, however. This raises the question of informational

efficiency of the price (see Desgranges and Guesnerie (2000), Desgranges, Geoffard

and Guesnerie (2003), and Desgranges and Heinemann (2008), for studying informa-

tional efficiency from the eductive viewpoint). With finitely many states of nature,

the equilibrium price is fully revealing (Radner, 1979). If learning is taken into

account, some efficiency criterion is required. Our criterion hinges on the number

of steps of learning needed to assess with certainty that prices are fully revealing.

The argument hinges on the fact that every step of learning defines a set of possible
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prices in each state of nature. When these sets do not intersect, the observation

of the price allows agents to infer the true state of fundamentals. Our measure of

informational efficiency appeals to the minimal number of steps for these sets to

have no intersection: the smaller it is, the greater informational efficiency.

It is shown that informational efficiency improves whenever (1) the speed of

convergence of learning is high, and (2) there is a large spread between equilib-

rium prices. Since the equilibrium belongs to the set of rationalizable solutions,

a larger the spread between equilibrium prices makes more likely that the sets of

possible prices at any given step of learning do not intersect. It follows that stabi-

lizing equilibrium fluctuations, measured by the spread between equilibrium prices,

is detrimental to informational efficiency. Stabilizing equilibrium fluctuations thus

makes plausible that informational asymmetries persist over time, which improves

stability of learning.

The paper is organized as follows. Section 2 describes the framework and the

stability concept in the symmetric information case. Section 3 provides a character-

ization of stability in presence of asymmetric information. Section 4 examines the

issue of informational efficiency. Extensions to higher order uncertainty, individual

heterogeneity, and additional sunspot uncertainty are considered in Section 5.

2 Framework

There are Ω states of nature indexed by ω, ω = 1, . . . ,Ω. State ω occurs with

probability π(ω), 0 ≤ π(ω) ≤ 1. In state ω, the actual price p (ω) is determined by

p(ω) = φ (ω)

∫ 1

0

peidi+ η (ω) . (1)

In state ω, the economic fundamentals are summarized by (φ (ω) , η (ω)). The fore-

cast weight φ (ω) represents the sensitivity of the economy to agents’ forecasts and

η (ω) is a scale factor. Eq. (1) can be thought of as a situation in which there is a

continuum of infinitesimal agents i ∈ [0, 1] whose individual forecasts pei about the

price matter through the aggregate forecast

P e ≡
∫ 1

0

peidi. (2)

In the sequel, we assume that the model exhibits strategic complementarity:
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Hypothesis 1. For every ω = 1, . . . ,Ω, φ(ω) > 0.

Our analysis still applies when φ(ω) < 0 for every ω (i.e. there are strategic

substituability). It does not straightforwardly extend, however, to the case where

the signs of forecast weights differ across states of nature, i.e., the model exhibits

strategic complementarity in some states and strategic substituability in others. The

framework used by Morris and Shin (2006) fits (1), with φ(ω) independent of ω.

2.1 The complete information case

One gets preliminary insights into the stability issue by focusing on the simple case

where all the agents are perfectly informed of ω when they form their forecasts. A ra-

tional expectations equilibrium (REE) is then a vector of prices (p∗(ω), ω = 1, ...,Ω)

such that p∗(ω) = φ (ω) p∗(ω) + η (ω), i.e., p(ω) = p∗(ω) if pei (ω) = p∗(ω) for any i

in (1). This equilibrium is unique if φ (ω) 6= 1. It can be interpreted as the Nash

equilibrium of a strategic ‘guessing’ game. In this game, the strategies of agent i are

the vectors of price forecasts (pei (1), ..., pei (Ω)), and the ex-ante payoff of this agent

is the opposite of his forecast error

−
∑

1≤ω≤Ω

π(ω)(p(ω)− pei (ω))2,

where p(ω) is determined by (1).

In state ω, agent j’s best-response to a profile (pei (ω) , i ∈ [0, 1]) of others’ fore-

casts is

pej(ω) = φ (ω)P e (ω) + η (ω) , (3)

where P e (ω) is defined by (2), with pei = pei (ω). It is clear that the REE is the

only Nash equilibrium of this game. In this equilibrium, each agent expects p∗(ω)

because of the belief that all the others expect p∗(ω). Taking into account beliefs of

higher order further implies that each agent believes that all the others believe that

all the others expect p∗(ω). This process can be iterated ad infinitum, i.e., p∗(ω) is

the only price in state ω to be consistent with common knowledge (CK) of every

agent expecting it.

This observation suggests a stability criterion for the REE. To define it, we

do not assume that the price forecast of every agent is CK. We make instead the

weaker assumption of CK that pei (ω) ∈ P 0(ω) for all i and all ω, where P 0(ω) =

[P 0
inf(ω), P 0

sup(ω)] and p∗(ω) ∈ P 0(ω). This assumption triggers an iterative process.
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At the first step of this process, it implies P e (ω) ∈ P 0(ω). Then, by (3), pej(ω) ∈
P 1(ω) =

[
P 1

inf(ω), P 1
sup(ω)

]
, where

P 1
inf(ω) = φ(ω)P 0

inf(ω) + η(ω),

P 1
sup(ω) = φ(ω)P 0

sup(ω) + η(ω),

since φ(ω) > 0. Therefore, at the outcome of this first step, it is CK that every

price forecast pei (ω) of every agent i is in P 1(ω). More generally, at step τ ≥ 1,

if pei (ω) ∈ P τ (ω) for every i, then pei (ω) ∈ P τ+1(ω) for every i, with P τ+1(ω) =

φ(ω)P τ (ω) + η(ω).

The REE is stable when the sequence of intervals (P τ (ω), τ ≥ 0) converges to

{p∗(ω)} for every ω. It is then the only rationalizable outcome in the game, once

the strategy set of every agent has been initially restricted to (P 0(1), ..., P 0(Ω)).

Of course, the REE is stable if and only if |φ (ω)| < 1 for every ω. As advocated

by Guesnerie (1992), stability thus obtains when the economic system is not too

sensitive to forecasts in (1), or equivalently, agents’ forecasts are not too sensitive

to others’ forecasts in (3).

2.2 The symmetric incomplete information case

Suppose now that uncertainty about fundamentals is no longer resolved when agents

form their forecasts. The price forecast pei can no longer depend on ω. Agents still

know, however, that the actual price depends on ω. If agent i believes that the price

in state ω is pei (ω), his price forecast writes

pei =
Ω∑
w=1

π(w)pei (w).

In this setting, a REE is a vector (p∗(1), . . . , p∗(Ω)) such that, for any ω,

p∗(ω) = φ (ω)
Ω∑
w=1

π(w)p∗(w) + η(ω). (4)

It coincides with the Nash equilibrium of the guessing game where all agents are

uninformed of ω. In this game, the best-response of j to a profile (pei , i ∈ [0, 1]) of

others’ forecasts is

pej =
Ω∑
w=1

π(w) [φ (w)P e + η(w)] ≡ φ̄P e + η̄,
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where φ̄ and η̄ represent the average forecast weight and scale factor, and the ag-

gregate forecast is

P e ≡
Ω∑
w=1

π(w)

∫ 1

0

pei (w) di.

In the REE, therefore, it is CK that all the agents expect

p∗ =
Ω∑
w=1

π(w)p∗(w). (5)

The stability criterion introduced above can be applied. If, at step τ , it is CK

that pei ∈ P τ for every i (where P τ is an interval including p∗), then it is CK that

pei ∈ P τ+1 = φ̄P τ + η̄ for every i. The sequence of intervals (P τ , τ ≥ 0) converges to

{p∗} if and only if
∣∣φ̄∣∣ < 1, i.e., the average forecast weight is low enough.

3 Stability under Asymmetric Information

We now assume that there are α (0 < α < 1) informed agents who observe ω before

they form their forecasts, and the (1− α) remaining agents have no information

about ω at that time. The previous section suggests that stability should depend

on the Ω values of φ(ω) (because of the informed) and the value of φ̄ (because of

the uninformed). The new issue is that the stability properties of prices p∗ (ω) are

now interdependent. Namely, in a given state ω, uninformed agents figure out what

informed agents expect in every state. In order to form a correct forecast, informed

agents have to guess the behavior of uninformed agents, and so they must take into

account what uninformed believe about what they expect themselves in every state.

Stability of a REE price in a given state therefore depends on the fundamentals in

all the possible states.

The REE is a vector (p∗(1), . . . , p∗(Ω)) such that, for any ω,

p∗ (ω) = φ (ω)P ∗ (ω) + η (ω) , (6)

where

P ∗ (ω) = αp∗ (ω) + (1− α)
Ω∑
w=1

π(w)p∗(w). (7)

It can be again interpreted as the Nash equilibrium of a guessing game. The timing

of the game is:
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1. The informed agents i ∈ [0, α] observe ω.

2. All the agents form their forecasts. A strategy of a player i consists of a price

forecast, conditional to his information. It follows that, if i is informed, his

strategy is a vector of price forecasts (pei (1), ..., pei (Ω)), where pei (ω) is the price

expected by i to arise in state ω. If i is uninformed, then his strategy consists

of a unique price forecast pei .

3. In every state ω, the actual price p(ω) is determined by (1), p(ω) = φ (ω)P e(ω)+

η (ω), with the aggregate forecast

P e(ω) =

∫ α

0

pei (ω) di+

∫ 1

α

peidi.

In this game, each agent chooses a forecast by minimizing his own squared fore-

cast error. Hence, in state ω, when an informed agent i expects the aggregate

forecast to be P e(ω), his best-response is

pei (ω) = φ (ω)P e(ω) + η (ω) ≡ Rω (P e(ω)) . (8)

If i is uninformed and expects the aggregate forecast to be P e(w) in every state w,

then

pei =
Ω∑
w=1

π(w)Rw (P e(w)) . (9)

Equations (8) and (9) allow us to define the stability criterion. Assume initially

that the aggregate price forecast P e(ω) in state ω belongs to some interval P 0(ω) =

[P 0
inf(ω), P 0

sup(ω)], with P ∗(ω) ∈ P 0(ω). At the first step of the learning process, the

best-response pei (ω) of an informed agent i to an aggregate forecast P e(ω) in P 0(ω)

satisfies

pei (ω) ∈
[
Rω(P 0

inf(ω)), Rω(P 0
sup(ω))

]
. (10)

Similarly, for a uninformed agent,

pei ∈

[
Ω∑
w=1

π(w)Rw(P 0
inf(w)),

Ω∑
w=1

π(w)Rw(P 0
sup(w))

]
. (11)
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As a consequence, P e(ω) ∈ P 1(ω) =
[
P 1

inf(ω), P 1
sup(ω)

]
, with

P 1
inf(ω) = αRω(P 0

inf(ω)) + (1− α)
Ω∑
w=1

π(w)Rw(P 0
inf(w)),

P 1
sup(ω) = αRω(P 0

sup(ω)) + (1− α)
Ω∑
w=1

π(w)Rw(P 0
sup(w)).

More generally, if it is CK at step τ that P e(ω) ∈ P τ (ω) in state ω, then it is

CK at step (τ + 1) that P e(ω) ∈ P τ+1(ω) in state ω, with

P τ+1(ω) = αRω(P τ (ω)) + (1− α)
Ω∑
w=1

π(w)Rw(P τ (w)). (12)

This relation defines a sequence of intervals (P τ (ω), τ ≥ 0). The REE is stable

whenever this sequence converges toward {P ∗(ω)}, whatever ω is. The next result

gives a necessary and sufficient condition for stability.

Proposition 1. Assume that φ (ω) > 0 for any ω = 1, . . . ,Ω. Let 0 ≤ α ≤ 1. If

αφ (ω) > 1 for some ω, then the REE is unstable. If αφ (ω) < 1 for every ω, then

it is stable if and only if

Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
< 1. (13)

Proof. Consider, e.g., the Ω equations (12) corresponding to the lowest bounds

P τ
inf(ω) of P τ (ω). Given (8), they can be rewritten in matrix form pτ+1

inf = Mpτinf +

η, where pτinf is the Ω × 1 vector (P τ
inf (1) , . . . , P τ

inf (Ω)), η is the Ω × 1 vector

(η (1) , ..., η (Ω)), and M is the Ω × Ω matrix αΦ + (1− α) ΦΠ (with Φ the di-

agonal Ω×Ω matrix whose ωωth entry is φ(ω), and Π the Ω×Ω stochastic matrix

whose ωω′th entry is π(ω′)). The REE is stable if and only if the spectral radius

ρ(M) of M is less than 1. The proof now hinges on the fact that for any Ω × Ω

positive matrix M, and any Ω× 1 vector x = (xω) with every xω > 0, we have

min
ω

(Mx)ω
xω

≤ ρ(M) ≤ max
ω

(Mx)ω
xω

,
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where (Mx)ω stands for the ωth component of the Ω × 1 vector Mx (see Lemma

3.1.2. in Bapat and Raghavan (1997)). Let

Q (x, ω) =
(Mx)ω
xω

= φ (ω)

[
α + (1− α)

1

xω

Ω∑
w=1

π (w)xw

]
,

for any ω. Assume first that αφ (ω) > 1 for some ω, e.g. ω = Ω. Then, consider

the vector x = (ε, . . . , ε, 1)′ where ε > 0. When ε tends toward 0, Q (x, ω) tends to

(+∞) for every ω < Ω, and Q (x,Ω) ≥ αφ (Ω) > 1. Hence, minωQ (x, ω) > 1 for ε

small enough, and so ρ(M) > 1: the REE is unstable if αφ (ω) > 1 for some ω. If,

on the contrary, αφ (ω) < 1 for any ω, then define

E =
Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
.

Consider the Ω× 1 positive vector x whose ωth component is

xω =
1

E

(1− α)φ (ω)

1− αφ (ω)
.

If E ≥ 1, then Q (x, ω) > 1 for any ω, so that minωQ (x, ω) ≥ 1, and the REE

is unstable. If, on the contrary, E < 1, then Q (x, ω) < 1 for any ω, so that

maxωQ (x, ω) < 1, and the REE is stable.

When the REE is not stable, no price can be predicted. To see this, consider

a state ω where φ (ω) > 1, which always exists when the REE is not stable. Un-

informed agents cannot predict the price in such a state, and so they cannot select

a unique price forecast in this state. Since their behavior does not depend on the

actual state, this means that they cannot pick out a unique price forecast in any

other state. As a result, expectations coordination is impossible in any state.

From Proposition 1, a small sensitivity of actual prices to forecasts favors stabil-

ity, since the derivative of the LHS of (13) with respect to φ (ω) is positive. However,

the interaction between forecast weights and the information structure (summarized

by α) is not clear. The next corollary focuses on this issue.

Corollary 2. Assume that φ (ω) > 0 for any ω = 1, . . . ,Ω.

If φ (ω) < 1 for any ω = 1, . . . ,Ω, then the REE is stable.
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If infω φ (ω) < 1 < supω φ (ω), then provided that φ̄ < 1, there exists a threshold

proportion α∗, 0 < α∗ < 1, of informed agents such that stability of the REE obtains

if and only if α < α∗; the threshold α∗ is a decreasing function of each φ (ω). If

φ̄ ≥ 1, then stability never obtains.

If φ (ω) > 1 for any ω = 1, . . . ,Ω, then the REE is unstable.

Proof. Assume first that φ (ω) < 1 for any ω = 1, . . . ,Ω. Then, αφ (ω) < 1 and

(1− α)φ (ω) / (1− αφ (ω)) < 1 for any ω. By Proposition 1, the REE is stable.

Let now infω φ (ω) < 1 < supω φ (ω). If α > 1/ supω φ (ω), the REE is unstable,

by Proposition 1. If α ≤ 1/ supω φ (ω), then αφ (ω) < 1 for every ω, and the REE

is stable if and only if (13) is met. Let

F (α) =
Ω∑
w=1

π (w)
φ (w)

1− αφ (w)
− 1

(1− α)
(14)

Since F (·) is a continuous and increasing function of α on the interval [0, 1/ supω φ (ω)],

with F ′(α) > 0 whatever α is, there is at most one value α such that F (α) = 0 on

this interval. Observe now that F (0) = φ̄− 1, and F (α) tends to +∞ when α tends

to 1/ supω φ (ω) from below. If, on the one hand, φ̄ ≥ 1, then F (α) ≥ F (0) > 0

for any α ∈ [0, 1/ supω φ (ω)], and the stability condition (13) is never satisfied.

If, on the other hand, φ̄ < 1, then there exists a unique solution α∗ (α∗ > 0) to

F (α) = 0 in [0, 1/ supω φ (ω)]. The condition F (α) < 0, i.e. the stability condition

(13), is equivalent to α < α∗. Since F (α∗) = 0 implicitly defines α∗ as a function

(φ(1), . . . , φ(Ω)), and since F (·) increases in every φ (ω), α∗ decreases in every φ (ω).

Assume finally that φ (ω) > 1 for any ω. Then, φ̄ > 1, and we have already seen

that F (α) > 0 for any α ∈ [0, 1/ supω φ (ω)]. As a result, the stability condition (13)

is never satisfied.

If the REE is unstable, then an increase in the proportion of informed agents is

never stabilizing. Instead, a decrease in the proportion of informed agents sometimes

makes the equilibrium stable. In this sense, the presence of uninformed agents is

stabilizing. The intuition for this result is simple. It stems from the sensitivity of

individual forecasts to other’s behavior. Indeed, when an informed agent i expects

the aggregate forecast to undergo a change dP e (ω) > 0 in state ω, he will adjust

his forecast for an amount dpei (ω) = φ (ω) dP e (ω). In the same configuration, an

uninformed agent will revise his forecast by π (ω)φ (ω) dP e (ω) ≤ φ (ω) dP e (ω). The

forecasting behavior of an uninformed agent is thus less sensitive to others’ forecasts
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than the one of an informed agent. It is consequently easier to predict, which favors

stability.

4 Informational Efficiency

If the actual price, once made public, reveals the underlying fundamentals, informa-

tional asymmetries do not persist over time. That is: the price is informationally

efficient. When the REE is stable, informational efficiency obtains provided that

p∗ (ω) 6= p∗ (ω′). On the other hand, when the REE is unstable, any price may arise

in any state and the price is not revealing. These two statements suppose, however,

an infinite number of steps of learning, while informational efficiency can obtain

after a finite number of steps only.

After a finite number of steps τ , a price reveal ω if it belongs to P τ (ω)−P τ (ω′)

for any ω′ 6= ω. For any price in P τ (ω) to reveal ω at step τ , it is needed that P τ (ω)

has no intersection with any other interval P τ (ω′). In case of stability of the REE,

there exists a threshold step τ such that any price at step τ is revealing if and only

if τ ≥ τ . The lower this threshold is, the more efficient the learning process. Hence,

this threshold provides us a criterion for informational efficiency of the price.

Assume for convenience φ(ω) = φ and P 0(ω) = P 0 for every ω (agents have no

prior information about the state). By Proposition 1, the REE is stable if and only

if φ < 1.

Proposition 3. Assume that the REE is stable (φ < 1). Let τ be the smallest

integer τ satisfying

p0
sup − p0

inf <
α

φτ
1− (αφ)τ

1− αφ
inf
ω,ω′
|η (ω′)− η (ω)| . (15)

Then, any price reveals the state ω at step τ of learning, i.e. the Ω sets P τ (ω) do

not intersect, if and only if τ ≥ τ .

The threshold τ increases with the proportion of uninformed agents (1−α), and

with the forecast weight φ.

Proof. It follows from (12), with φ(ω) = φ, that

p̄τ+1
inf ≡

Ω∑
w=1

π(w)pτinf(w) = φτ+1p0
inf +

1− φτ+1

1− φ
η̄,

12



p̄τ+1
sup ≡

Ω∑
w=1

π(w)pτsup(w) = φτ+1p0
sup +

1− φτ+1

1− φ
η̄.

Let dpτ+1(ω′, ω) = pτ+1
sup (ω′)−pτ+1

inf (ω), dη(ω′, ω) = η (ω′)−η (ω), and dp0 = p0
sup−p0

inf .

Then, from (12) and both previous equations, one gets

dpτ+1(ω′, ω) = αφdpτ (ω′, ω) + αdη(ω′, ω) + (1− α)φτ+1dp0.

Hence, dpτ+1(ω′, ω) equals

(αφ)τ+1 dp0 + α
1− (αφ)τ+1

1− αφ
dη(ω′, ω) + (1− α)φτ+1 1− ατ+1

1− α
dp0.

The Ω sets P τ (ω) do not intersect if and only if dpτ (ω, ω′) < 0 whenever η (ω′) <

η (ω), which is equivalent to:

dp0 <
α

φτ
1− (αφ)τ

1− αφ
inf
ω,ω′
|dη(ω′, ω)| .

Since the LHS does not depend on τ and the RHS is increasing in τ , the thresh-

old value τ stated in the proposition is the smallest integer satisfying the above

inequality. This shows the first part of the proposition. Observe now that

α

φτ
1− (αφ)τ

1− αφ

increases with α and τ (since φ < 1). It decreases with φ, since

d

dφ

(
α

φτ
1− (αφ)τ

1− αφ

)
=

α

(1− αφ)φτ+1

(
αφ

1− ατφτ

1− αφ
− τ
)

,

and

αφ
1− ατφτ

1− αφ
= αφ+ (αφ)2 + ...+ (αφ)τ < τ .

This concludes the proof.

Informational efficiency improves, i.e., τ is lower, when (1) the anchorage assump-

tion is informative, i.e. p0
sup − p0

inf is small, and (2) the spread between equilibrium

prices

|p∗ (ω′)− p∗ (ω)| = |η (ω′)− η (ω)|
1− αφ

, (16)

13



is large, i.e., the proportion of informed agents is high and |η (ω′)− η (ω)| is impor-

tant. The influence of the forecast weight onto informational efficiency is a priori

ambiguous, however. On the one hand, a higher φ increases the spread between

equilibrium prices, which increases τ . On the other hand, it increases the speed of

convergence to the REE, which lowers τ . The above proposition gives the net effect:

a higher φ deteriorates informational efficiency.

5 Extensions

5.1 Higher Order Uncertainty

So far uninformed agents have used a common prior distribution of states, and this

fact was CK. Our analysis actually holds if the probability πi(ω) assigned by some

uninformed agent i to state ω is private information, but

π(ω) ≡ 1

(1− α)

∫ 1

α

πi(ω)di

is CK. It may appear difficult to justify such an assumption in a framework which

otherwise stipulates a high level of ignorance. We now consider the case of higher

order uncertainty, where every agent is uncertain about others’ beliefs over the

different states of nature.

The aggregate forecast is

P e (ω) =

∫ α

0

pei (ω) +

∫ 1

α

Ω∑
w=1

πi (w) pei (w)di.

At step τ , the price forecasts pei (ω) (for any i and any ω) belong to some interval

P τ (ω) =
[
P τ

inf(ω), P τ
sup(ω)

]
. We define higher order uncertainty as follows: every

agent only knows that the aggregate price forecast

P e (ω) ∈
[
αP τ

inf(ω) + (1− α) inf
w
P τ

inf(w), αP τ
sup(ω) + (1− α) sup

w
P τ

sup(w)

]
for any ω.

When φ(ω) = φ, the iterative learning process writes:

P τ+1
inf (ω) = φ

[
αP τ

inf(ω) + (1− α) inf
w
P τ

inf(w)
]

+ η(ω), (17)

14



P τ+1
sup (ω) = φ

[
αP τ

sup(ω) + (1− α) sup
w
P τ

sup(w)

]
+ η(ω). (18)

This shows that higher order uncertainty prevents agents to discover the REE.

Indeed, P τ
inf(ω) = P τ

sup(ω) = P τ+1
inf (ω) = P τ+1

sup (ω) = p∗(ω) is not a solution of the

system (17) and (18). Let Pinf(ω) and Psup(ω) be the fixed points of this system

(P τ
inf(ω) = P τ+1

inf (ω) = Pinf(ω) for every ω in (17) and Psup(ω) is defined analogously

from (18)). Stability corresponds to convergence of the sequence
[
P τ

inf(ω), P τ
sup(ω)

]
toward [Pinf(ω), Psup(ω)] for every ω.

The next result shows that stability is not affected by higher order uncertainty,

at least when φ(ω) = φ.

Proposition 4. The dynamics (17) and (18) is stable if and only if φ < 1.

Proof. The dynamics of lowest bounds P τ
inf(ω) rewrites

pτ+1
inf = φ [αIΩ + (1− α) 1Ω] pτinf ,

where 1Ω stands for the Ω×Ω stochastic matrix whose each entry in the ωth column

is 1, where ω = arg infw Pinf(w), and any remaining entry is 0. The Ω eigenvalues

of the matrix φ [αIΩ + (1− α) 1Ω] are φ, αφ, ..., αφ. The same analysis applies to

P τ
sup(ω).

Unlike the case examined in Section 4, stability does not necessarily imply effi-

ciency of prices. The next result characterizes informational efficiency in presence

of higher order uncertainty.

Proposition 5. Let φ < 1. Then, the price eventually reveals the state, i.e., no two

intervals [Pinf(ω), Psup(ω)] and [Pinf(ω
′), Psup(ω′)] intersect, if and only if

α > 1−
inf
ω 6=ω′
|η(ω)− η(ω′)|

sup
ω 6=ω′
|η(ω)− η(ω′)|

(
1

φ
− 1

)
. (19)

Proof. Let φ < 1. Let also η(1) < · · · < η(Ω). Then, infw Pinf(w) = Pinf(1) =

η(1)/(1− φ),

Pinf(ω) =
(1− α)φ

1− φ
η(1)

1− αφ
+

η(ω)

1− αφ
for ω > 1,

Psup(ω) =
(1− α)φ

1− φ
η(Ω)

1− αφ
+

η(ω)

1− αφ
for ω < Ω,
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and supw Psup(w) = Psup(Ω) = η(Ω)/(1−φ). Since Pinf(ω) < Pinf(ω
′) and Psup(ω) <

Psup(ω′) for ω < ω′, no two sets P (ω) and P (ω′) intersect if and only if Psup(ω) −
Pinf(ω

′) < 0 whenever ω < ω′, or equivalently

φ (1− α)

1− φ
η(Ω)− η(1)

1− αφ
<
η(ω′)− η(ω)

1− αφ

for every ω < ω′. This inequality rewrites

φ (1− α)

1− φ
<

infω,ω′ |η(ω)− η(ω′)|
η(Ω)− η(1)

,

which leads to the result.

The conditions for informational efficiency have the same flavor as in the absence

of higher order uncertainty. Namely, informational efficiency is favored by a large

proportion of informed agents α and a small forecast weight φ.

From Condition (19), informational efficiency becomes more likely when the term

inf
ω 6=ω′
|η(ω)− η(ω′)|

sup
ω 6=ω′
|η(ω)− η(ω′)|

is maximum. This happens when the spread between two successive η(ω) is constant.

By (16), this corresponds to a situation where no two equilibrium prices are too

close. The possibility of an equilibrium price that strongly differs from the others

deteriorates informational efficiency.

5.2 Individual Heterogeneity

In the case of homogeneous agents, the influence of individual forecasts on the actual

price is the same for every agent. This section analyzes stability in presence of some

agents’ heterogeneity. Let φI (ω) and φU (ω) be the forecast weights in state ω,

respectively for an informed agent and an uninformed one. Hypothesis 1 becomes:

φI (ω) > 0 and φU (ω) > 0 for every ω.

The actual price is then given by

p(ω) = φI (ω)

∫ α

0

pei (ω) di+ φU (ω)

∫ 1

α

Ω∑
w=1

π(w)pei (w)di+ η (ω) , (20)
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which replaces (1). A REE of (20) is a vector (p∗ (1) , ..., p∗ (Ω)) such that p(ω) =

pei (ω) = p∗ (ω) in (20) for any ω and any i.

The learning process is defined as previously. An initial price restriction P 0 (ω) =[
P 0

inf(ω), P 0
sup(ω)

]
in state ω is postulated. At step τ , if it is CK that pei (ω) ∈

P τ (ω) =
[
P τ

inf(ω), P τ
sup(ω)

]
, then it is CK that the actual price p(ω) belongs to

P τ+1 (ω) =
[
P τ+1

inf (ω), P τ+1
sup (ω)

]
, where P τ+1

inf (ω) equals

φI (ω)αP τ
inf(ω) + φU (ω) (1− α)

Ω∑
w=1

π(w)P τ
inf (w) + η (ω) , (21)

and P τ+1
sup (ω) equals

φI (ω)αP τ
sup(ω) + φU (ω) (1− α)

Ω∑
w=1

π(w)P τ
sup (w) + η (ω) . (22)

It follows that it is also CK that pei (ω) ∈ P τ+1 (ω) in state ω. The REE is the

only limit point of this iterative process, i.e., P τ
inf(ω) and P τ

sup(ω) converges to p∗(ω)

whenever these two sequences converge. The next result characterizes stability.

Proposition 6. Let φI (ω) > 0 and φU (ω) > 0 for any ω = 1, . . . ,Ω. If αφI (ω) > 1

for some ω, then the REE is unstable. If αφI (ω) < 1 for every ω, then the REE is

stable if and only if
Ω∑
w=1

π (w)
(1− α)φU (w)

1− αφI (w)
< 1. (23)

Proof. The REE is stable if and only if the spectral radius ρ(M) of the Ω×Ω matrix

M =αΦI + (1− α) ΦUΠ is less than 1, where ΦI and ΦU are two Ω × Ω diagonal

matrices whose ωωth entry is φI(ω) and φU(ω), respectively. Let

Q (x, ω) = αφI (ω) + (1− α)φU (ω)
1

xω

Ω∑
w=1

π (w)xw.

As in Proposition 1, the first part of Proposition 6 follows by appealing to the

Ω× 1 vector x = (ε, ..., ε, 1), where ε > 0 is small enough. The last part follows by

appealing to the Ω× 1 vector x whose ωth component xω is

1

E

(1− α)φU (ω)

1− αφI (ω)
,
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with

E =
Ω∑
w=1

π (w)
(1− α)φU (w)

1− αφI (w)
.

The map (20) shows that a change dpe of every price forecast pei (ω) implies a

change dp (ω) = ((1− α)φU (ω) + αφI (ω)) dpe. A sufficient condition for stability

is that every (1− α)φU (ω) + αφI (ω) is less than 1. In this case, |dp (ω)| < |dpe|,
i.e., the actual price is not too sensitive to expectations. More generally, we have:

Corollary 7. Assume that φI (ω) > 0 and φU (ω) > 0 for any ω = 1, . . . ,Ω.

1. If φI (ω) < 1 for any state ω, then there exists α∗ < 1 such that stability

obtains if and only if α > α∗. Furthermore, α∗ > 0 if and only if φ̄U > 1.

2. If, on the contrary, φI (ω) > 1 for any state ω, then there exists α∗ < 1 such

that stability obtains if and only if α < α∗. Furthermore, α∗ > 0 if and only if

φ̄U < 1.

Proof. If α supω φI(ω) ≥ 1, the REE is unstable. If α supω φI(ω) < 1, the REE is

stable if and only if (23) is met, i.e.

F (α) ≡
Ω∑
w=1

π (w)
(1− α)φU (w)

1− αφI (w)
< 1.

The function F (·) is continuous in α and F (0) = φ̄U . It is straightforward that,

if φI (ω) < 1 for any ω, then F ′ (α) < 0. It follows that F (α) < 1 if and only if

α > α∗. Since F (1) = 0, α∗ < 1. Lastly, φ̄U > 1 if and only if α∗ > 0. If, on the

contrary, φI (ω) > 1 for any ω, then F ′ (α) > 0. It follows that F (α) < 1 if and

only if α < α∗. Since F (1/ supω φI(ω)) = +∞, α∗ < 1. Again, φ̄U < 1 if and only if

α∗ > 0.

These properties are quite intuitive. Stability obtains when there are many

informed agents if every φI (ω) is less than 1. If, on the other hand, every φI (ω) is

greater than 1, stability obtains when there are many uninformed agents, provided

that the actual price is not too sensitive to their forecasts (φ̄U < 1). The intermediate

situation where some φI (ω) are less than 1, and others are greater than 1, is more

intricate. It is studied Appendix 1. Stability is shown to be again favored by small

forecast weights, and a low proportion of informed agents.
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5.3 Sunspots

Consider a stochastic sunspot variable that can take Σ values (S = 1, . . . ,Σ) not cor-

related with fundamentals. Assume that its actual value is not known when agents

form their forecasts. Namely, every agent i observes a private signal si = 1, . . . ,Σ

imperfectly correlated with S. Conditionally to S, private signals are independently

and identically distributed across agents, and the probability Pr(si | S) that i ob-

serves si in sunspot event S is independent of i. Thus, in sunspot event S, there are

Pr(s | S) agents who observe signal s (s = 1, . . . ,Σ).

Suppose that all the agents expect the price pe(ω, S) to arise if the state of

fundamentals is ω and the sunspot is S. In state (ω, S), there are αPr(s | S)

informed agents whose price forecast is

Σ∑
S′=1

Pr(S ′ | s)pe(ω, S ′)

for any s. There are also (1− α) Pr(s | S) uninformed agents who expect

Σ∑
S′=1

Pr(S ′ | s)
Ω∑
w=1

π (w) pe (w, S ′) .

Let

µ(S ′|S) =
Σ∑
s=1

Pr(s | S) Pr(S ′ | s)

be the average probability (across agents) of sunspot S ′ if the actual sunspot is S.

The aggregate price forecast P e(ω, S) expresses as

Σ∑
S′=1

µ(S ′|S)

[
αpe(ω, S ′) + (1− α)

Ω∑
w=1

π (w) pe (w, S ′)

]
, (24)

and the actual price p(ω, S), determined by (1) in state (ω, S), is such that

p(ω, S) = φ (ω)P e(ω, S) + η (ω) . (25)

A REE is a vector of ΩΣ prices (p∗(1, 1), . . . , p∗(Ω,Σ)) such that pe (ω, S) = p (ω, S) =

p∗(ω, S) for every (ω, S) in (24) and (25). When p∗(ω, S) is independent of S, the

REE is said to be ‘fundamental’; otherwise, the REE is a sunspot REE.

The following result gives the conditions for existence of sunspot REE.
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Proposition 8. There exist sunspot REE if and only if the fundamental REE is

unstable.

Proof. Let us rewrite conditions (25) in matrix form. To this aim, let p(S) be

the Ω × 1 vector whose ωth component is p(ω, S), and p be the ΩΣ × 1 vector

(p(1), . . . ,p(Σ)). Let S be the Σ×Σ stochastic matrix whose SS ′th entry is µ(S ′, S).

Then, with M defined in Proposition 1, a REE is a vector p such that

p = (M⊗ S) p + 1Σ ⊗ η, (26)

where the symbol ⊗ stands for the Kronecker product. Let e(S) be the Sth eigen-

value of S, with e(S) ∈ [−1, 1] since S is a stochastic matrix. Let µ(ω) be the ωth

eigenvalue of M. Then, the ΩΣ eigenvalues of M ⊗ S are e(S)µ(ω) for any pair

(ω, S). If ρ(M) < 1, then all the eigenvalues of M⊗S have moduli less than 1, and

so M ⊗ S − I2Ω is invertible and there is a unique REE. If ρ(M) ≥ 1, there exist

stochastic matrices such that e(S) = 1/ρ(M) for some S. In this case, the matrix

M⊗S has an eigenvalue equal to 1, and there are infinitely many p solution to (26),

i.e. infinitely many sunspot REE and the fundamental REE.

It is natural to wonder whether a sunspot REE can be stable. In presence of

the sunspot, the iterative process is modified as follows. An initial price restric-

tion P 0 (ω, S) =
[
P 0

inf(ω, S), P 0
sup(ω, S)

]
in state (ω, S) is assumed. At step τ , if

it is CK that pei (ω, S) ∈ P τ (ω, S) =
[
P τ

inf(ω, S), P τ
sup(ω, S)

]
, then it is CK that

p(ω, S) ∈ P τ+1 (ω, S) =
[
P τ+1

inf (ω, S), P τ+1
sup (ω, S)

]
, where P τ+1

inf (ω, S) and P τ+1
sup (ω, S)

are respectively equal to

φ(ω)
Σ∑

S′=1

µ(S ′, S)

[
αP τ

inf(ω, S
′) + (1− α)

Ω∑
w=1

π (w)P τ
inf(w, S

′)

]
+ η (ω)

and

φ(ω)
Σ∑

S′=1

µ(S ′, S)

[
αP τ

sup(ω, S ′) + (1− α)
Ω∑
w=1

π (w)P τ
sup(w, S ′)

]
+ η (ω) .

It follows that it is also CK that pei (ω, S) ∈ P τ+1 (ω, S) in state (ω, S). The REE

prices are the only limit points of this iterative process. The REE is stable when

the two sequences P τ
inf(ω, S) and P τ

sup(ω, S) converge. A Corollary of Proposition 8

is
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Corollary 9. No sunspot REE is stable.

Proof. The dynamics of the two sequences P τ
inf(ω, S) and P τ

sup(ω, S) is governed by

the ΩΣ×ΩΣ matrix M⊗S. Since the spectral radius of M⊗S is ρ (M), a sunspot

REE is stable if and only if ρ (M) < 1. But then there is no sunspot REE (by

Proposition 8).

This result relies on the linear framework. In a nonlinear framework, locally

stable sunspot REE may exist. When one of these REE exhibits revealing prices,

local instability of the fundamental REE no longer prevents efficiency of the price.

Extraneous uncertainty then ensures price efficiency.
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Appendix 1

We have:

Corollary 10. Let infω φI (ω) < 1 < supω φI (ω).

1. If EφU < EφIφU ,1 then there exists α∗ < 1/ supω φI(ω) < 1 such that stability

obtains if and only if α < α∗. α∗ > 0 if and only if EφU < 1.

2. If EφU ≥ EφIφU and EφU ≤ 1, then there exists α∗, 0 < α∗ < 1/ supω φI(ω) <

1, such that stability obtains if and only if α < α∗.

3. If EφU ≥ EφIφU and EφU > 1, then, (i) either the equilibrium is unsta-

ble for every α, (ii) or there are two values α− and α+ with 0 < α− <

α+ < 1/ supω φI(ω) < 1 such that the equilibrium is stable if and only if

α ∈ [α−, α+]. Precisely, consider a vector (φI (1) , ..., φI (Ω)). In the space IRΩ
+

of the vectors (φU (1) , ..., φU (Ω)), there is a neighborhood of the hyperplane

EφU = 1 such that case (i) (resp. (ii)) obtains when (φU (1) , ..., φU (Ω)) is

outside (resp. inside) this neighborhood. In particular, case (i) obtains when

EφU > supω φI(ω)/ (supω φI(ω)− 1).

Proof. We write F ′ (α) = Q+ −Q− where2

Q+ =
∑

ω/φI>1

πφU
φI − 1

(1− αφI)2 ≥ 0,

Q− = −
∑

ω/φI<1

πφU
φI − 1

(1− αφI)2 ≥ 0.

Q+ and Q− are both continuous, increasing and convex.

In the case EφU < EφUφI , (that is F ′ (0) > 0) given that (1− αx)−2 is increasing

in x for every given α, we have:

Q+ ≥
∑
s/φI>1

πφU
φI − 1

(1− α)2 ,

Q− ≤ −
∑
s/φI<1

πφU
φI − 1

(1− α)2 .

1EφIφU
def
=
∑Ω

w=1 π (w)φI (w)φU (w).
2We drop the index ω for simplicity.
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It follows that F ′ (α) ≥ F ′ (0) / (1− α)2 > 0, F is increasing and F
(

1
maxφI

)
= +∞

so that stability obtains iff α is below a certain threshold α∗. Given that F (0) =

EφU , α∗ > 0 iff EφU < 1. This proves the first point in the corollary.

In the case EφU > EφUφI , (that is F ′ (0) ≤ 0), at a point where Q+ = Q−, we

have that

dQ+

dα
≥ 2

∑
s/φI>1

πφU
1

(1− α)

φI − 1

(1− αφI)2 =
2Q+

(1− α)
,

dQ−
dα

≤ −2
∑
s/φI<1

πφU
1

(1− α)

φI − 1

(1− αφI)2 =
2Q−

(1− α)
,

so that
dQ−
dα
≤ 2Q−

(1− α)
=

2Q+

(1− α)
≤ dQ+

dα
,

i.e. Q+ crosses Q− from below at any intersection point. It follows that there is at

most one intersection point. Notice now that

Q+ (0) < Q− (0) and Q−

(
1

supφI

)
< Q+

(
1

supφI

)
= +∞,

implying that there is exactly one intersection point (denoted αmin > 0) between

Q+ and Q−. It follows that F (α) is decreasing iff α ≤ αmin and F (α) reaches a

minimum at αmin . As a result, we have that, in the case F (αmin) < 1, there exists

α− and α+ such that stability obtains iff α ∈ [α−, α+], while in the case F (αmin) > 1,

stability never obtains.

To prove the second point in the corollary, notice that α− = 0 iff EφU < 1. To

prove the third point, notice first that, for α in [0, 1/ supφI ](
1− 1

supφI

)
EφU < (1− α)EφU < F (α) .

Fix a vector (φI (1) , ..., φI (Ω)). Consider a given vector φ1
U = (φ1

U (1) , ..., φ1
U (Ω))

such that Eφ1
U = 1, Eφ1

U ≥ Eφ1
UφI . Define φU = λφ1

U with λ ≥ 1, and denote

Fλ = λF1. The value αmin such that F ′λ (αmin) = 0 does not depend on λ. F1 (α) < 1

in a non empty interval. As Fλ (α) increases in λ and stability writes Fλ (α) < 1,

there is a value λmax (φ1
U) such that Fλ (α) < 1 for some α iff λ < λmax (φ1

U).

Consider now the set I =
{
φU/EφU < λmax

(
1

EφU
φU

)}
. This a neighborhood of the

hyperplane EφU = 1 satisfying the third point.
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