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Abstract - Contemporary high-performance service-oriented 

applications demand a performance efficient run-time 

monitoring. In this paper, we analyze a hierarchical publish-

subscribe architecture for monitoring service-oriented 

applications. The analyzed architecture is based on a tree 

topology and publish-subscribe communication model for 

aggregation of distributed monitoring data. In order to satisfy 

interoperability and platform independence of service-

orientation, monitoring reports are represented as XML 

documents. Since XML formatting introduces a significant 

processing and network load, we analyze the performance of 

monitoring architecture with respect to the number of 

monitored nodes, the load of system machines, and the overall 

latency of the monitoring system.  

Keywords- service-oriented computing, monitoring, 

aggregation, service-oriented programming model, 
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I.  INTRODUCTION 

 
Service-oriented computing (SOC) [1] is established as a 

major paradigm for creating distributed applications. In 
service-oriented computing, applications are created using 
loosely coupled, dynamically bounded, platform independent 
program modules called services. As the number, size and 
complexity of service-oriented applications increases [2], 
supervision and management of these systems becomes 
performance demanding. Moreover, the platform 
independence, interoperability, and loose coupling of SOC 
result in difficult run-time collection and aggregation of large 
amounts of distributed data [3]. Most notably, interoperable 
service execution in heterogeneous environments requires 
platform-independent data exchange. However, XML, which 
is commonly used for data serialization, is inefficient with 
respect to message size, message transfer rates and imposed 
processing load [4]. Therefore, performance tradeoffs need 
to be made during the design of systems for monitoring 
service-oriented applications.  

In this paper, we analyze the performance implications of 
hierarchical monitoring in service-oriented applications. We 
focus our analysis on limitations and necessary performance 
tradeoffs of monitoring applications based on WebServices 
protocol stack [5]. The analyzed monitoring architecture is 
based on hierarchical aggregation of XML documents 
containing reports collected from sensor services. The 

hierarchical aggregation process is achieved by utilizing 
publish-subscribe mechanisms organized in a tree topology. 
For modeling and implementation of a monitoring system 
based on the presented architecture, we use the 
Service-Oriented Programming Model (SOPM) [6]. SOPM 
enables the design, development, and execution of service-
oriented applications in which services mutually cooperate 
and compete without central control.  

In order to evaluate the architecture’s performance we 
utilize a hybrid approach based on an analytic model 
upgraded with results of measurements on implemented 
systems. For example, we estimate the impact of the number 
of sensor services, their monitoring reporting frequencies, 
and monitoring report sizes on the load of system machines, 
and overall latency of the monitoring system based on 
measurement results. Since hierarchical topologies are 
commonly used in data aggregation systems [7] [13], our 
evaluation is applicable to a large number of existing 
monitoring systems. 

The remainder of the paper is organized as follows. An 
overview of related research in the field of large-scale 
distributed monitoring is given in section II. In Section II, we 
also describe the Service-Oriented Programming Model. The 
analyzed monitoring architecture is presented in section III, 
while section IV presents the results of analytical and 
empirical performance evaluation. Section V concludes the 
paper with an analysis of the evaluation and gives 
recommendations for usage of hierarchical monitoring 
systems. 

II. BACKGROUND 

A. Large-scale distributed monitoring systems 

One of more recent research efforts in distributed system 
monitoring is the Grid Monitoring Architecture (GMA) [7], 
a generic monitoring model which is not constrained by 
protocol usage or by the underlying data model. GMA is 
often used in development of large-scale service-oriented 
monitoring systems. In GMA, Consumer components query 
Registry components to find out what type of monitoring 
information is available in the system, locate Producer 
components that provide this information, and contact 
Producers to obtain the relevant information. 

Based on the GMA architecture, a four level taxonomy of 
monitoring systems was developed [8]. Level 0 systems are 
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monolithic in the way that producers are implemented within 
the same system as consumers, while in Level 1 systems 
producers are implemented separately. Level 2 systems 
introduce republisher components which implement both 
producer and consumer interfaces. Although these 
components may be distributed and replicated, republishers 
in Level 2 systems are constrained with respect to their 
interconnection and network organization. Finally, Level 3 
systems introduce configurable republishers, allowing their 
organization in arbitrarily hierarchical structures. In such 
hierarchies, republishers collect events from lower level 
producers and aggregate them into higher level events. The 
architecture of monitoring systems analyzed in this paper 
allows arbitrarily structured data aggregation hierarchies and 
may be considered a Level 3 GMA system. 

The GMA architecture has been implemented in many 
existing large-scale systems. Although the performance of 
certain implementations has been evaluated, most of these 
evaluations were not comprehensive. Most evaluations were 
performed only experimentally and only for several specific 
system configurations. Furthermore, the experiments were 
performed by varying only a single system parameter, such 
as the number of producers, and measuring the performance 
only by observing a single system property, such as the 
overhead introduced on CPU or network.  

In [9] a Java-based design pattern of Grid Monitoring 
System is presented and implemented. The network traffic 
overhead introduced by the monitoring system is studied for 
a single system configuration and varying message size. 
Furthermore, for the implemented system the authors 
experimentally conclude the number of Producers required to 
saturate a Consumer. The evaluation of the system is 
continued in [16] where the authors also provide 
measurements of the systems’ response time as a function of 
the message size. 

In [10] GridEye: A Service-oriented Grid Monitoring 
System is presented and tested at the China National Grid. 
Specific monitoring traces are analyzed in order to determine 
the CPU, memory and disk usage overhead on monitoring 
nodes.  

In [17] the design and implementation of a GMA based 
Grid Monitoring Service is presented. Although the paper 
does not provide any evaluation results, the authors derive an 
architecture-level conclusion that the collecting frequency is 
the key factor to the precision of the monitor information and 
the load which is introduced to the system by sensors and 
that a contradiction between load and precision exists. 

Ganglia [18] is a popular distributed monitoring system 
for high performance computing systems such as clusters 
and Grids. Although the performance and scalability 
evaluation of the system is extensive, it is still performed 
through experimental measurements. For performance 
overhead, the CPU, memory footprints, and network 
bandwidth was measured. For scalability, the overhead on 
individual nodes was measured and quantified how overhead 
scales with the size of the system, both in terms of number of 
nodes within a cluster and the number 

The evaluation presented in this paper is an architecture-
level performance analysis, i.e. the architecture is evaluated 

for various system configurations and with respect to both 
different system parameters and performance criteria. 
Furthermore, the evaluation is analytical as well as 
experimental which enables insight into system performance 
a-priori to system execution. 

B. Service Oriented Programming Model 

Service-Oriented Programming Model (SOPM) [6] is a 
methodology for the design, development, and execution of 
service-oriented applications. SOPM applications consist of 
Application services, Coopetition services and Distributed 
programs. Application services implement coarse fragments 
of application’s computational logic while Coopetition 
services are pre-built services of the SOPM environment for 
coordination and synchronization of Application services. 
Distributed programs, specified in a process description 
language CL [12], use Coopetition services to bind 
Application services into a distributed application. 

The monitoring system presented in this paper utilizes 
the EventChannel Coopetition service [11]. EventChannel is 
an extension of the classic publish-subscribe mechanism into 
a publish-subscribe-interpret mechanism that supports 
development of event-driven document-oriented distributed 
systems. In order to use the EventChannel, Publisher 
Distributed programs publish events on the EventChannel 
while Subscriber Distributed programs subscribe to sets of 
events. The process of matching published events to active 
subscriptions is implemented by external, application 
specific Interpreter Services. The EventChannel sends a 
notification to Subscriber Programs whenever published 
events match a subscription. Additionally, before forwarding 
events to subscribers, the Interpreter service may modify the 
event set. We use this feature of the Interpreter service to 
implement the aggregation of multiple monitoring report 
documents into a single document.  

III. HIERARCHICAL PUBLISH-SUBSCRIBE 

             MONITORING ARCHITECTURE 

The monitoring system aggregates monitoring reports 
from a set of distributed sensor services. The aggregation 
process creates a single global report combined from reports 
of all system sensors [14]. In order to support scalable 
execution of this process, the architecture of monitoring 
system is based on multi-level hierarchical aggregation 
where multiple reports from a lower level are combined into 
a single report on the higher level.  

Figure 1 presents the process of hierarchical aggregation 
of monitoring reports. On the lowest level, service reports 
contain data from a single application service, while node 
reports aggregate reports from application services 
executing on the same machine. Node reports from different 
machines are aggregated into intermediate reports through 
several levels of the hierarchy, and finally they are combined 
into a single distributed system report. Since reports on a 
higher level contain all information from lower level , their 
size grows as the level of hierarchy increases. Furthermore, 
in order to comply with platform neutrality of service-
oriented systems, reports are implemented as XML 
documents.  
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Figure 2. Hierarchical publish-subscribe monitoring architecture 
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Figure 1. Aggregation of monitoring reports 

In order to support loose coupling of system services, the 
monitoring architecture is based on SOPM EventChannel 
publish-subscribe-interpret mechanisms for collecting 
reports. As presented in the Figure 2, the system is organized 
into multiple levels: the service level, intermediate 
aggregation levels and the distributed system level. On the 
service level, each system machine runs a Sensor service that 
periodically collects service reports from Application 
services, creates a node report and publishes it to the first 
aggregation level.  

Each aggregation level contains several Monitoring 
EventChannels, each with an associated Aggregator 
service that operates as the Interpreter service and 
Forwarder service which operates both as the Subscriber 
program of the current level and Publisher program for the 
next level. Monitoring EventChannels receive reports from 
the lower level and forward received reports to Aggregator 

services that periodically aggregate them into a single 
intermediate report. The Monitoring EventChannel and 
associated Aggregator and Forwarder services are executed 
on the same machine. The number of Monitoring 
EventChannels decreases as the level of aggregation 
increases.  

Intermediate reports are forwarded to the Forwarder 
service that publishes it to a Monitoring EventChannel on 
the next level. The same process occurs on the distributed 
system level that contains a single Monitoring 
EventChannel. The system-level Aggregator service 
periodically aggregates received intermediate reports into a 
single distributed system report that is forwarded to the 
distributed system level Forwarder service.  

IV. PERFORMANCE ANALYSIS OF THE HIERARCHICAL 

PUBLISH-SUBSCRIBE MONITORING ARCHITECTURE  

The major limiting factor of the performance of the 
architecture is the use of XML formatting which introduces 
high overhead on system processing and network transfer 

load. In order to achieve acceptable system operation, a 
tradeoff analysis is required to reveal the influence of 
variable aspects on the system performance. For example, a 
possible tradeoff could be between distributed system report 
freshness and reporting period.  

In order to investigate how architecture attributes, such as 
number of sensors, reporting frequencies and report sizes, 
affect the performance, we create an analytic model and 
perform empirical measurements on a prototype 
implementation. The combination of the analytic model and 
measurements determine limitations for various architecture 
configurations. The following metrics are of special interest: 
(a) the maximum number of machines that can be monitored 
by the proposed monitoring architecture, (b) the propagation 
time of a report to the distributed system level, and (c) the 
load on machines imposed by monitoring activities.   



A. Analytic model 

In order to determine the time needed to propagate a 
service report to the distributed system level Aggregator 
service, we propose an analytic model of the architecture. To 
simplify the analysis, the analytic model assumes that every 
Monitoring EventChannel at a specific level receives reports 
from the same number of lower level services, i.e. the tree 
representing the topology of the system is balanced. This 
assumption is justified since balanced trees are common in 
tree-based aggregation topologies due to their even 
distribution of load on system nodes [13]. 

The purpose of the analytic model is to estimate the 
propagation times (Tprop) and staleness times (Tstale) of 
monitoring reports, as defined by the parameters of the 
architecture in Table 1 and shown in Fig 2. 

TABLE I.  PARAMETERS OF THE HIERARCHICAL PUBLISH-SUBSCRIBE 

MONITORING ARCHITECTURE 

Term Meaning 

h 
The depth of hierarchy represented by the number of 
aggregation levels plus one for the service level. 

ni 

The number of services sending monitoring reports to the 

Monitoring EventChannel at level i. For i=0, ni represents the 

number of different Application services sending reports to a 
Sensor service.  

Ts,j 
The reporting period in which Application service Sj emits a 

service report regarding its performance. 

Tin,i 

The input time on level i. This is the time it takes a report to 

propagate from the Forwarder service on level i-1 to the 

Aggregator service of level i. 

Thold,i  
The holding time of the Aggregator service on level i. This is 

the period during which the Aggregator service accumulates 

new reports before sending them to the Forwarder service. 

Tout,i  
The output time on level i. This is the time it takes a report to 

propagate from the Aggregator service to the Forwarder service. 

Tprop,j 

The propagation time for Application service Sj. This is the 

time it takes a service report from Sj to be formed and to 
propagate to the distributed system level Aggregator service. 

The value of Tprop,j is calculated through a series of Tprop,j,i values 
which represent the times it takes an application condition to 

reach the ith level Aggregator service of the hierarchy. Tprop,j,0 

represents the time required for a condition in an Application 
service to reach the Sensor service. 

Tstale,j 

The staleness time of service reports defined as the upper limit 

of the oldness of reports from Application service Sj in the 

distributed system level Aggregator service. The value of 
Tstale,j is calculated through a series of Tstale,j,i which represent the 

staleness of reports at the ith level of the hierarchy, analogous to 

the computation of Tstale,j,i.  

 
The analytic model is represented with the following 

equations. The propagation time of a report in Application 
service Sj to the Sensor service is represented with 
expression   1):  

  , ,0 ,0 0, 0,prop j holdT T j n   

The propagation time Tprop,j,0 is defined by the time it takes a 
Sensor service to pick up the service report, which is in the 
worst case Thold,0. The propagation time for the first-level 
Monitoring EventChannel is represented with expression (2):  

  , ,1 , ,0 ,1 0, 0,prop j prop j inT T T j n    

The propagation time Tprop,j,1 is defined by the propagation 
time for the Sensor service (Tprop,j,0) incremented by the time 
it takes a report to be received by the Aggregator service 
(Tin,1). Expression (3) represents the way to calculate the 
time it takes a report of an Application service Sj to reach an 
Aggregator service of the i

th
 level Monitoring 

EventChannel: 



   

, , , , 1 , 1 , 1 ,
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0, , 2,
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j n i h

     

 

 

As formulated, the maximum time it takes to reach a 
particular Aggregator service is equal to the maximum time 
it takes to reach the lower level Aggregator service, plus the 
maximum waiting time in the lower level Aggregator service 
(Thold,i-1), plus the time it takes a report to be received at the 
lower level Forwarder service (Tout,i-1), plus the time it takes 
to forward the report from the lower level Forwarder service 
to the next level Aggregator service (Tin,i).  

Expression (4) is obtained by recursively solving 
expression (3) and using expressions (1) and (2) for 
Tprop,j,0 and Tprop,j,1, respectively: 

    
1 1

, , , , , 0

0 1 1

, 0, , 2,
i i i

prop j i hold k out k in k

k k k

T T T T j n i h
 

  

        

Expression (5) represent the way to calculate the 
staleness time of a report from Application service Sj on the 
i
th

 level Monitoring EventChannel:

    hinjTTT jsijreachijfresh ,2,,0, 0,,,,,   

Since in the worst case a report of service Sj is Ts,j old, the 
staleness time is calculated from the time it takes a condition 
to be represented in a custom service report (Ts,j ), plus the 
time it takes the report to propagate to the i

th
 level 

Monitoring EventChannel (Tprop,j,i). 
Parameters Thold,i and Ts,j are constant for a given 

monitoring system configuration. However, values Tout,i and 
Tin,i depend on the system and network load. Therefore, we 
perform measurements to determine values of Tout,i and 
Tin,i for various system conditions.  

B. Empirical results 

In this section, we present results obtained through 
experimental measurements and simulation of the 
monitoring system for each level in the system architecture. 
We use these results for estimating the Tout,i and Tin,i 
parameters in the overall system analysis.  

In general, monitoring reports vary in size depending on 
the number and type of Application services running on each 
machine. However, for empirical measurements we have 
used node reports of fixed size of 0.5 kB. 

 
 



   

Figure 3. CPU load, Tin,i and Tout,i  of the EventChannel machine at ith level as a function of  

the number of (i-1)th level services that are sending reports and their reporting rates. Thold,i = 30s. 

   
Figure 4. CPU load, Tin,i and Tout,i  of the EventChannel machine at ith level as a function of  

the number of (i-1)th level services that are sending reports and their report size. Thold,i = 30s and Thold,i-1 = 30s. 

1) Sensor service 
When analyzing the Sensor service two parameters are 

considered: the reporting period in which reports are 
published to the Monitoring EventChannel (Thold,0), and the 
reporting period of Application services on the local node 
(Ts,j). Regarding the number of machines that can be 
simultaneously monitored, the Sensor service does not 
impose any restrictions, since it is started and executed 
independently on each system machine. On the other hand, 
the execution of Sensor services affects the CPU load of 
local machines. Therefore, the reporting period Thold,0 should 
not be too small, since high reporting frequencies can have a 
significant effect on the CPU load.  

2) Monitoring EventChannels 
When analyzing Monitoring EventChannels on i

th 
level 

several parameters need to be considered: the number of 
lower level services sending reports (ni), holding times of 
both lower level Aggregator service (Thold,i-1) and current 
level Aggregator service (Thold,i), and the size of reports that 
are sent from lower level services.  

Fig. 3 shows the CPU load, input time Tin,i, and output 
time Tout,i of one of the Monitoring EventChannel machine at 
i
th

 level as a function of the number of (i-1)
th

 level services 
(ni) and their holding times (Thold,i-1) in seconds. Increase in 
the number of services sending reports increases the CPU 
load of the Monitoring EventChannel machine. Furthermore, 
as the frequency with which services send reports increases 
(1/Thold,i-1), the CPU load of the Monitoring EventChannel 
also increases. Moreover, results indicate that the input time 
Tin,i increases gradually until the CPU goes to saturation. 

After that the input time increases infinitively. Lastly, the 
output time Tout,i increases approximately linearly with the 
number of lower level services that are sending reports. 

Fig. 4 shows the correlation of the report size (r) that is 
sent from services on level i-1, and the number of services on 
level i-1 (ni) on the CPU load, input time and the output time 
of the i

th
 level Monitoring EventChannel. The report size is 

expressed as the number of node reports which it contains, 
e.g. for r=30 the report contains 30 node reports. As can be 
seen, the CPU load is significantly affected by the size of the 
reports. Consequentially, the input time Tin,i of the 
Monitoring EventChannel grows significantly as the CPU 
load approaches 100%. However, unlike with the previous 
scenario, the output time Tout,i  is significantly affected by 
both the report size and the number of lower level services 
that are sending reports. The observed result is a 
consequence of the output report size growing linearly with 
the number of lower level services. 

3) Distributed system level EventChannel 
Since the distributed system level may be observed as an 

intermediate level with only one Monitoring EventChannel, 
measurements conducted for the system level Monitoring 
EventChannel have similar results as those for the 
aggregation levels. The CPU load of the distributed system 
level EventChannel machine increases with the increase in 
the number of services that are sending reports to the 
distributed system level Aggregator service, with higher 
report sending frequencies the load of the system level 
machine grows faster. This indicates that a significant 
parameter in the system is the input frequency at the system 



  
(a) (b) 

Figure 5. The limits of the system that can be monitored with different hierarchies: (a) propagation time, (b) distributed system level machine CPU load 

level EventChannel which is proportional to both the number 
of lower level services sending reports and the frequency 
with which they send reports. When observing the input time 
of the distributed system level EventChannel, we find that it 
is negligible as long as the CPU load of the machine 
executing the system level EventChannel is not close to 
100%. After the CPU goes into saturation, the input time 
grows significantly.  

Furthermore, increase of the CPU load depends on the 
size of reports sent from lower level services. As the size of 
the reports increases, the CPU load grows faster. 
Additionally, the input time of the distributed system level 
Aggregator service is approximately constant until the CPU 
load approaches 100%, after which it grows rapidly. Unlike 
with previous results, while the CPU load is lower then 
100% the input times for different report sizes are diverse. 
This is a result of larger reports requiring more time for 
parsing no matter the CPU load. Furthermore, with larger 
reports the CPU load goes to saturation faster, and thus the 
input time starts to grow significantly faster for 
configurations with larger reports.  

C. Overall analysis 

The purpose of the overall analysis is to determine the 
limits of applicability of hierarchical monitoring with the 
maximum number of machines that can be monitored as the 
most important limit. In order to explore these limits, we 
combine the analytic model and empirical results presented 
in previous sections to estimate the performance attributes of 
four different hierarchies. Table 2 presents the experimental 
hierarchies for which we performed estimations. 

TABLE II.  EXPERIMENTAL HIERARCHIES 

Name Hierarchy structure and parameters 

Single-level 

hierarchy 

Sensor services on a single Monitoring EventChannel 
(h=1). Reporting periods Thold,0 of Sensor services is 

60s. 

Two-level 

hierarchy1 

Sensor services, multiple 

intermediary EventChannels 
and a system level 

EventChannel (h=2). Thold,0 

and Thold,1 are 30s. The 

number of first level 

EventChannels is varied.  

50 Sensor services 

connected to first 
level EventChannel. 

Two-level 
hierarchy2 

100 Sensor services 

connected to first 

level EventChannel. 

Three-level 

hierarchy 

Three level hierarchy (h=3) with groups of 10 Sensor 

services (n0=10) sending reports to first level every 
10s, groups of 10 first level EventChannels (n1=10) 

forwarding reports to second level every 30s, and 

second-level EventChannels forward the reports to 
system level every 30s. The number of second level 

EventChannels is varied. 

 
Fig. 5 presents the comparison of the hierarchies with 

respect to the total number of machines in the system (ntotal). 
The maximum propagation time (Tprop) of a report to the 
distributed system level Aggregator service is presented on 
Fig. 5 a). For the single-level hierarchy propagation time 
starts to grow significantly even for a low number of 
machines. However, the results also indicate that there is no 
significant benefit of creating a three-level hierarchy over 
two-level hierarchies. Also, there is no significant difference 
in performance between the two two-level hierarchies. Fig. 5 
b) indicates that the CPU load of the distributed system level 
machine grows linearly with the growth of the number of 
services sending reports until it reaches 100%. Furthermore, 
the total propagation time grows rapidly as the distributed 
system level machine approaches 100% CPU load.  

These results demonstrate that the hierarchy of 
Monitoring EventChannels is limited due to the fact that the 
distributed system level Aggregator service must parse all 
the reports coming from all machines being monitored. 
Therefore, simple grouping of reports into larger report by 
using hierarchy has limited applicability. For instance, for 
the given scenarios the only meaningful hierarchies are two-
level hierarchies that can extend the size of the monitored 
system approximately five times. 

V. CONCLUSION 

We are witnessing an increase in the scale and 
complexity of service-oriented distributed applications. In 
order to control and supervise these applications effectively, 
efficient and scalable monitoring systems are needed. These 
scalability requirements are gaining importance even more as 
service-oriented computing technologies are increasingly 
used as an execution platform on hardware-constrained 
devices [15]. 

In this paper we analyze a publish-subscribe architecture 
for hierarchical aggregation of distributed monitoring reports 
of service-oriented applications. The analyzed architecture is 
based on a tree topology which is often used for distributed 
data aggregation. In the analyzed architecture, the leaves of 



the topology are sensor services that collect XML reports 
from individual system machines and publish them 
periodically to their parents in the topology. The 
intermediary nodes of the topology are machines that 
aggregate the reports from lower levels and publish them to 
their parents as a single report representing the state of a 
larger part of the system. Finally, the root machine of the 
topology creates a global, distributed system report about the 
state of the monitored system. 

In order to evaluate the limits of the architectures’ 
efficient performance we present an analytic model of the 
architecture and conduct empirical measurements on a 
prototype implementation. Together, these form the basis of 
an architecture-level performance analysis which we suggest 
for future evaluations of large-scale monitoring architectures. 
In our analysis we focus on exploring architecture-level 
limits introduced with the use of the XML language for 
platform independent monitoring report serialization.  

First, analysis results shows that the limiting factors to 

the scalability regarding the size of the monitored system 

are the frequency of publishing reports, the size of the 

reports and the CPU power of the root machine. We show 

that by varying the frequency of publishing reports, a 

tradeoff may be achieved between the number of the 

machines that are monitored and the staleness of the global, 

distributed system reports. Lower reporting frequencies 

enable a higher number of machines to be monitored, but at 

the price of higher staleness of reports, and vice versa. 

Similarly, by changing the size of reports we can achieve a 

tradeoff between the number of machines that may be 

monitored and the quality of the reports. 
Furthermore, the size of the monitored system is 

constrained by the CPU of the root machine since it 
processes reports that contain all the data from the system 
regardless of the exact topology. However, in our analysis 
we show that benefits can be achieved by reorganizing the 
tree topology, most notably varying between a deeper tree 
and a wider tree. We show that the largest benefit comes 
from introducing the first level of hierarchy, while 
introducing additional levels does not significantly increase 
the possible size of the monitored system. 
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