
Performance Evaluation of Hierarchical Publish-Subscribe Monitoring

Architecture for Service-Oriented Applications

Ivan Zuzak

University of Zagreb

Faculty of Electrical Engineering and Computing

Zagreb, Croatia

izuzak@gmail.com

Ivan Benc

Croatian Telecom

Zagreb, Croatia

ivanbenc@gmail.com

Abstract - Contemporary high-performance service-oriented

applications demand a performance efficient run-time

monitoring. In this paper, we analyze a hierarchical publish-

subscribe architecture for monitoring service-oriented

applications. The analyzed architecture is based on a tree

topology and publish-subscribe communication model for

aggregation of distributed monitoring data. In order to satisfy

interoperability and platform independence of service-

orientation, monitoring reports are represented as XML

documents. Since XML formatting introduces a significant

processing and network load, we analyze the performance of

monitoring architecture with respect to the number of

monitored nodes, the load of system machines, and the overall

latency of the monitoring system.

Keywords- service-oriented computing, monitoring,

aggregation, service-oriented programming model,

publish-subscribe, performance, limitations

I. INTRODUCTION

Service-oriented computing (SOC) [1] is established as a

major paradigm for creating distributed applications. In
service-oriented computing, applications are created using
loosely coupled, dynamically bounded, platform independent
program modules called services. As the number, size and
complexity of service-oriented applications increases [2],
supervision and management of these systems becomes
performance demanding. Moreover, the platform
independence, interoperability, and loose coupling of SOC
result in difficult run-time collection and aggregation of large
amounts of distributed data [3]. Most notably, interoperable
service execution in heterogeneous environments requires
platform-independent data exchange. However, XML, which
is commonly used for data serialization, is inefficient with
respect to message size, message transfer rates and imposed
processing load [4]. Therefore, performance tradeoffs need
to be made during the design of systems for monitoring
service-oriented applications.

In this paper, we analyze the performance implications of
hierarchical monitoring in service-oriented applications. We
focus our analysis on limitations and necessary performance
tradeoffs of monitoring applications based on WebServices
protocol stack [5]. The analyzed monitoring architecture is
based on hierarchical aggregation of XML documents
containing reports collected from sensor services. The

hierarchical aggregation process is achieved by utilizing
publish-subscribe mechanisms organized in a tree topology.
For modeling and implementation of a monitoring system
based on the presented architecture, we use the
Service-Oriented Programming Model (SOPM) [6]. SOPM
enables the design, development, and execution of service-
oriented applications in which services mutually cooperate
and compete without central control.

In order to evaluate the architecture’s performance we
utilize a hybrid approach based on an analytic model
upgraded with results of measurements on implemented
systems. For example, we estimate the impact of the number
of sensor services, their monitoring reporting frequencies,
and monitoring report sizes on the load of system machines,
and overall latency of the monitoring system based on
measurement results. Since hierarchical topologies are
commonly used in data aggregation systems [7] [13], our
evaluation is applicable to a large number of existing
monitoring systems.

The remainder of the paper is organized as follows. An
overview of related research in the field of large-scale
distributed monitoring is given in section II. In Section II, we
also describe the Service-Oriented Programming Model. The
analyzed monitoring architecture is presented in section III,
while section IV presents the results of analytical and
empirical performance evaluation. Section V concludes the
paper with an analysis of the evaluation and gives
recommendations for usage of hierarchical monitoring
systems.

II. BACKGROUND

A. Large-scale distributed monitoring systems

One of more recent research efforts in distributed system
monitoring is the Grid Monitoring Architecture (GMA) [7],
a generic monitoring model which is not constrained by
protocol usage or by the underlying data model. GMA is
often used in development of large-scale service-oriented
monitoring systems. In GMA, Consumer components query
Registry components to find out what type of monitoring
information is available in the system, locate Producer
components that provide this information, and contact
Producers to obtain the relevant information.

Based on the GMA architecture, a four level taxonomy of
monitoring systems was developed [8]. Level 0 systems are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357578168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:izuzak@gmail.com
mailto:ivanbenc@gmail.com

monolithic in the way that producers are implemented within
the same system as consumers, while in Level 1 systems
producers are implemented separately. Level 2 systems
introduce republisher components which implement both
producer and consumer interfaces. Although these
components may be distributed and replicated, republishers
in Level 2 systems are constrained with respect to their
interconnection and network organization. Finally, Level 3
systems introduce configurable republishers, allowing their
organization in arbitrarily hierarchical structures. In such
hierarchies, republishers collect events from lower level
producers and aggregate them into higher level events. The
architecture of monitoring systems analyzed in this paper
allows arbitrarily structured data aggregation hierarchies and
may be considered a Level 3 GMA system.

The GMA architecture has been implemented in many
existing large-scale systems. Although the performance of
certain implementations has been evaluated, most of these
evaluations were not comprehensive. Most evaluations were
performed only experimentally and only for several specific
system configurations. Furthermore, the experiments were
performed by varying only a single system parameter, such
as the number of producers, and measuring the performance
only by observing a single system property, such as the
overhead introduced on CPU or network.

In [9] a Java-based design pattern of Grid Monitoring
System is presented and implemented. The network traffic
overhead introduced by the monitoring system is studied for
a single system configuration and varying message size.
Furthermore, for the implemented system the authors
experimentally conclude the number of Producers required to
saturate a Consumer. The evaluation of the system is
continued in [16] where the authors also provide
measurements of the systems’ response time as a function of
the message size.

In [10] GridEye: A Service-oriented Grid Monitoring
System is presented and tested at the China National Grid.
Specific monitoring traces are analyzed in order to determine
the CPU, memory and disk usage overhead on monitoring
nodes.

In [17] the design and implementation of a GMA based
Grid Monitoring Service is presented. Although the paper
does not provide any evaluation results, the authors derive an
architecture-level conclusion that the collecting frequency is
the key factor to the precision of the monitor information and
the load which is introduced to the system by sensors and
that a contradiction between load and precision exists.

Ganglia [18] is a popular distributed monitoring system
for high performance computing systems such as clusters
and Grids. Although the performance and scalability
evaluation of the system is extensive, it is still performed
through experimental measurements. For performance
overhead, the CPU, memory footprints, and network
bandwidth was measured. For scalability, the overhead on
individual nodes was measured and quantified how overhead
scales with the size of the system, both in terms of number of
nodes within a cluster and the number

The evaluation presented in this paper is an architecture-
level performance analysis, i.e. the architecture is evaluated

for various system configurations and with respect to both
different system parameters and performance criteria.
Furthermore, the evaluation is analytical as well as
experimental which enables insight into system performance
a-priori to system execution.

B. Service Oriented Programming Model

Service-Oriented Programming Model (SOPM) [6] is a
methodology for the design, development, and execution of
service-oriented applications. SOPM applications consist of
Application services, Coopetition services and Distributed
programs. Application services implement coarse fragments
of application’s computational logic while Coopetition
services are pre-built services of the SOPM environment for
coordination and synchronization of Application services.
Distributed programs, specified in a process description
language CL [12], use Coopetition services to bind
Application services into a distributed application.

The monitoring system presented in this paper utilizes
the EventChannel Coopetition service [11]. EventChannel is
an extension of the classic publish-subscribe mechanism into
a publish-subscribe-interpret mechanism that supports
development of event-driven document-oriented distributed
systems. In order to use the EventChannel, Publisher
Distributed programs publish events on the EventChannel
while Subscriber Distributed programs subscribe to sets of
events. The process of matching published events to active
subscriptions is implemented by external, application
specific Interpreter Services. The EventChannel sends a
notification to Subscriber Programs whenever published
events match a subscription. Additionally, before forwarding
events to subscribers, the Interpreter service may modify the
event set. We use this feature of the Interpreter service to
implement the aggregation of multiple monitoring report
documents into a single document.

III. HIERARCHICAL PUBLISH-SUBSCRIBE

 MONITORING ARCHITECTURE

The monitoring system aggregates monitoring reports
from a set of distributed sensor services. The aggregation
process creates a single global report combined from reports
of all system sensors [14]. In order to support scalable
execution of this process, the architecture of monitoring
system is based on multi-level hierarchical aggregation
where multiple reports from a lower level are combined into
a single report on the higher level.

Figure 1 presents the process of hierarchical aggregation
of monitoring reports. On the lowest level, service reports
contain data from a single application service, while node
reports aggregate reports from application services
executing on the same machine. Node reports from different
machines are aggregated into intermediate reports through
several levels of the hierarchy, and finally they are combined
into a single distributed system report. Since reports on a
higher level contain all information from lower level , their
size grows as the level of hierarchy increases. Furthermore,
in order to comply with platform neutrality of service-
oriented systems, reports are implemented as XML
documents.

Aggregator

service
Aggregator

service

Aggregator

service

App

Service

S1

..
.

App

Service

S2

App

Service

Sj

Sensor

service

Monitoring

EventChannel

Forwarder

service

Ts,1

Ts,2

Ts,j

Thold,0

..
.

Thold,1

Tin,1

Tout,1

Monitoring

EventChannel

Forwarder

service

Thold,2

Tin,2

Tout,2

..
.

......
Monitoring

EventChannel

Forwarder

service

Thold,h

Tin,h

Tout,h

..
.

R

R

R

R1R1R R1R1R R1R1R

Service Level (level = 0) Aggregation Levels (level = 1, 2, 3, ... h-1) Distributed System Level (level = h)

Service

Reports

Node

Reports

Intermediate

Reports

Distributed System

Report

R

Figure 2. Hierarchical publish-subscribe monitoring architecture

R

R

R

Node

Reports

Intermediate

Reports

R

R

R

R

R R

R

R

R

Service

Reports

Distributed System

Report

. . .

. . .

Figure 1. Aggregation of monitoring reports

In order to support loose coupling of system services, the
monitoring architecture is based on SOPM EventChannel
publish-subscribe-interpret mechanisms for collecting
reports. As presented in the Figure 2, the system is organized
into multiple levels: the service level, intermediate
aggregation levels and the distributed system level. On the
service level, each system machine runs a Sensor service that
periodically collects service reports from Application
services, creates a node report and publishes it to the first
aggregation level.

Each aggregation level contains several Monitoring
EventChannels, each with an associated Aggregator
service that operates as the Interpreter service and
Forwarder service which operates both as the Subscriber
program of the current level and Publisher program for the
next level. Monitoring EventChannels receive reports from
the lower level and forward received reports to Aggregator

services that periodically aggregate them into a single
intermediate report. The Monitoring EventChannel and
associated Aggregator and Forwarder services are executed
on the same machine. The number of Monitoring
EventChannels decreases as the level of aggregation
increases.

Intermediate reports are forwarded to the Forwarder
service that publishes it to a Monitoring EventChannel on
the next level. The same process occurs on the distributed
system level that contains a single Monitoring
EventChannel. The system-level Aggregator service
periodically aggregates received intermediate reports into a
single distributed system report that is forwarded to the
distributed system level Forwarder service.

IV. PERFORMANCE ANALYSIS OF THE HIERARCHICAL

PUBLISH-SUBSCRIBE MONITORING ARCHITECTURE

The major limiting factor of the performance of the
architecture is the use of XML formatting which introduces
high overhead on system processing and network transfer

load. In order to achieve acceptable system operation, a
tradeoff analysis is required to reveal the influence of
variable aspects on the system performance. For example, a
possible tradeoff could be between distributed system report
freshness and reporting period.

In order to investigate how architecture attributes, such as
number of sensors, reporting frequencies and report sizes,
affect the performance, we create an analytic model and
perform empirical measurements on a prototype
implementation. The combination of the analytic model and
measurements determine limitations for various architecture
configurations. The following metrics are of special interest:
(a) the maximum number of machines that can be monitored
by the proposed monitoring architecture, (b) the propagation
time of a report to the distributed system level, and (c) the
load on machines imposed by monitoring activities.

A. Analytic model

In order to determine the time needed to propagate a
service report to the distributed system level Aggregator
service, we propose an analytic model of the architecture. To
simplify the analysis, the analytic model assumes that every
Monitoring EventChannel at a specific level receives reports
from the same number of lower level services, i.e. the tree
representing the topology of the system is balanced. This
assumption is justified since balanced trees are common in
tree-based aggregation topologies due to their even
distribution of load on system nodes [13].

The purpose of the analytic model is to estimate the
propagation times (Tprop) and staleness times (Tstale) of
monitoring reports, as defined by the parameters of the
architecture in Table 1 and shown in Fig 2.

TABLE I. PARAMETERS OF THE HIERARCHICAL PUBLISH-SUBSCRIBE

MONITORING ARCHITECTURE

Term Meaning

h
The depth of hierarchy represented by the number of
aggregation levels plus one for the service level.

ni

The number of services sending monitoring reports to the

Monitoring EventChannel at level i. For i=0, ni represents the

number of different Application services sending reports to a
Sensor service.

Ts,j
The reporting period in which Application service Sj emits a

service report regarding its performance.

Tin,i

The input time on level i. This is the time it takes a report to

propagate from the Forwarder service on level i-1 to the

Aggregator service of level i.

Thold,i
The holding time of the Aggregator service on level i. This is

the period during which the Aggregator service accumulates

new reports before sending them to the Forwarder service.

Tout,i
The output time on level i. This is the time it takes a report to

propagate from the Aggregator service to the Forwarder service.

Tprop,j

The propagation time for Application service Sj. This is the

time it takes a service report from Sj to be formed and to
propagate to the distributed system level Aggregator service.

The value of Tprop,j is calculated through a series of Tprop,j,i values
which represent the times it takes an application condition to

reach the ith level Aggregator service of the hierarchy. Tprop,j,0

represents the time required for a condition in an Application
service to reach the Sensor service.

Tstale,j

The staleness time of service reports defined as the upper limit

of the oldness of reports from Application service Sj in the

distributed system level Aggregator service. The value of
Tstale,j is calculated through a series of Tstale,j,i which represent the

staleness of reports at the ith level of the hierarchy, analogous to

the computation of Tstale,j,i.

The analytic model is represented with the following

equations. The propagation time of a report in Application
service Sj to the Sensor service is represented with
expression 1):

 , ,0 ,0 0, 0,prop j holdT T j n

The propagation time Tprop,j,0 is defined by the time it takes a
Sensor service to pick up the service report, which is in the
worst case Thold,0. The propagation time for the first-level
Monitoring EventChannel is represented with expression (2):

 , ,1 , ,0 ,1 0, 0,prop j prop j inT T T j n

The propagation time Tprop,j,1 is defined by the propagation
time for the Sensor service (Tprop,j,0) incremented by the time
it takes a report to be received by the Aggregator service
(Tin,1). Expression (3) represents the way to calculate the
time it takes a report of an Application service Sj to reach an
Aggregator service of the i

th
 level Monitoring

EventChannel:

, , , , 1 , 1 , 1 ,

0

,

0, , 2,

prop j i prop j i hold i out i in iT T T T T

j n i h

As formulated, the maximum time it takes to reach a
particular Aggregator service is equal to the maximum time
it takes to reach the lower level Aggregator service, plus the
maximum waiting time in the lower level Aggregator service
(Thold,i-1), plus the time it takes a report to be received at the
lower level Forwarder service (Tout,i-1), plus the time it takes
to forward the report from the lower level Forwarder service
to the next level Aggregator service (Tin,i).

Expression (4) is obtained by recursively solving
expression (3) and using expressions (1) and (2) for
Tprop,j,0 and Tprop,j,1, respectively:

1 1

, , , , , 0

0 1 1

, 0, , 2,
i i i

prop j i hold k out k in k

k k k

T T T T j n i h

Expression (5) represent the way to calculate the
staleness time of a report from Application service Sj on the
i
th

 level Monitoring EventChannel:

 hinjTTT jsijreachijfresh ,2,,0, 0,,,,,

Since in the worst case a report of service Sj is Ts,j old, the
staleness time is calculated from the time it takes a condition
to be represented in a custom service report (Ts,j), plus the
time it takes the report to propagate to the i

th
 level

Monitoring EventChannel (Tprop,j,i).
Parameters Thold,i and Ts,j are constant for a given

monitoring system configuration. However, values Tout,i and
Tin,i depend on the system and network load. Therefore, we
perform measurements to determine values of Tout,i and
Tin,i for various system conditions.

B. Empirical results

In this section, we present results obtained through
experimental measurements and simulation of the
monitoring system for each level in the system architecture.
We use these results for estimating the Tout,i and Tin,i
parameters in the overall system analysis.

In general, monitoring reports vary in size depending on
the number and type of Application services running on each
machine. However, for empirical measurements we have
used node reports of fixed size of 0.5 kB.

Figure 3. CPU load, Tin,i and Tout,i of the EventChannel machine at ith level as a function of

the number of (i-1)th level services that are sending reports and their reporting rates. Thold,i = 30s.

Figure 4. CPU load, Tin,i and Tout,i of the EventChannel machine at ith level as a function of

the number of (i-1)th level services that are sending reports and their report size. Thold,i = 30s and Thold,i-1 = 30s.

1) Sensor service
When analyzing the Sensor service two parameters are

considered: the reporting period in which reports are
published to the Monitoring EventChannel (Thold,0), and the
reporting period of Application services on the local node
(Ts,j). Regarding the number of machines that can be
simultaneously monitored, the Sensor service does not
impose any restrictions, since it is started and executed
independently on each system machine. On the other hand,
the execution of Sensor services affects the CPU load of
local machines. Therefore, the reporting period Thold,0 should
not be too small, since high reporting frequencies can have a
significant effect on the CPU load.

2) Monitoring EventChannels
When analyzing Monitoring EventChannels on i

th
level

several parameters need to be considered: the number of
lower level services sending reports (ni), holding times of
both lower level Aggregator service (Thold,i-1) and current
level Aggregator service (Thold,i), and the size of reports that
are sent from lower level services.

Fig. 3 shows the CPU load, input time Tin,i, and output
time Tout,i of one of the Monitoring EventChannel machine at
i
th

 level as a function of the number of (i-1)
th

 level services
(ni) and their holding times (Thold,i-1) in seconds. Increase in
the number of services sending reports increases the CPU
load of the Monitoring EventChannel machine. Furthermore,
as the frequency with which services send reports increases
(1/Thold,i-1), the CPU load of the Monitoring EventChannel
also increases. Moreover, results indicate that the input time
Tin,i increases gradually until the CPU goes to saturation.

After that the input time increases infinitively. Lastly, the
output time Tout,i increases approximately linearly with the
number of lower level services that are sending reports.

Fig. 4 shows the correlation of the report size (r) that is
sent from services on level i-1, and the number of services on
level i-1 (ni) on the CPU load, input time and the output time
of the i

th
 level Monitoring EventChannel. The report size is

expressed as the number of node reports which it contains,
e.g. for r=30 the report contains 30 node reports. As can be
seen, the CPU load is significantly affected by the size of the
reports. Consequentially, the input time Tin,i of the
Monitoring EventChannel grows significantly as the CPU
load approaches 100%. However, unlike with the previous
scenario, the output time Tout,i is significantly affected by
both the report size and the number of lower level services
that are sending reports. The observed result is a
consequence of the output report size growing linearly with
the number of lower level services.

3) Distributed system level EventChannel
Since the distributed system level may be observed as an

intermediate level with only one Monitoring EventChannel,
measurements conducted for the system level Monitoring
EventChannel have similar results as those for the
aggregation levels. The CPU load of the distributed system
level EventChannel machine increases with the increase in
the number of services that are sending reports to the
distributed system level Aggregator service, with higher
report sending frequencies the load of the system level
machine grows faster. This indicates that a significant
parameter in the system is the input frequency at the system

(a) (b)

Figure 5. The limits of the system that can be monitored with different hierarchies: (a) propagation time, (b) distributed system level machine CPU load

level EventChannel which is proportional to both the number
of lower level services sending reports and the frequency
with which they send reports. When observing the input time
of the distributed system level EventChannel, we find that it
is negligible as long as the CPU load of the machine
executing the system level EventChannel is not close to
100%. After the CPU goes into saturation, the input time
grows significantly.

Furthermore, increase of the CPU load depends on the
size of reports sent from lower level services. As the size of
the reports increases, the CPU load grows faster.
Additionally, the input time of the distributed system level
Aggregator service is approximately constant until the CPU
load approaches 100%, after which it grows rapidly. Unlike
with previous results, while the CPU load is lower then
100% the input times for different report sizes are diverse.
This is a result of larger reports requiring more time for
parsing no matter the CPU load. Furthermore, with larger
reports the CPU load goes to saturation faster, and thus the
input time starts to grow significantly faster for
configurations with larger reports.

C. Overall analysis

The purpose of the overall analysis is to determine the
limits of applicability of hierarchical monitoring with the
maximum number of machines that can be monitored as the
most important limit. In order to explore these limits, we
combine the analytic model and empirical results presented
in previous sections to estimate the performance attributes of
four different hierarchies. Table 2 presents the experimental
hierarchies for which we performed estimations.

TABLE II. EXPERIMENTAL HIERARCHIES

Name Hierarchy structure and parameters

Single-level

hierarchy

Sensor services on a single Monitoring EventChannel
(h=1). Reporting periods Thold,0 of Sensor services is

60s.

Two-level

hierarchy1

Sensor services, multiple

intermediary EventChannels
and a system level

EventChannel (h=2). Thold,0

and Thold,1 are 30s. The

number of first level

EventChannels is varied.

50 Sensor services

connected to first
level EventChannel.

Two-level
hierarchy2

100 Sensor services

connected to first

level EventChannel.

Three-level

hierarchy

Three level hierarchy (h=3) with groups of 10 Sensor

services (n0=10) sending reports to first level every
10s, groups of 10 first level EventChannels (n1=10)

forwarding reports to second level every 30s, and

second-level EventChannels forward the reports to
system level every 30s. The number of second level

EventChannels is varied.

Fig. 5 presents the comparison of the hierarchies with

respect to the total number of machines in the system (ntotal).
The maximum propagation time (Tprop) of a report to the
distributed system level Aggregator service is presented on
Fig. 5 a). For the single-level hierarchy propagation time
starts to grow significantly even for a low number of
machines. However, the results also indicate that there is no
significant benefit of creating a three-level hierarchy over
two-level hierarchies. Also, there is no significant difference
in performance between the two two-level hierarchies. Fig. 5
b) indicates that the CPU load of the distributed system level
machine grows linearly with the growth of the number of
services sending reports until it reaches 100%. Furthermore,
the total propagation time grows rapidly as the distributed
system level machine approaches 100% CPU load.

These results demonstrate that the hierarchy of
Monitoring EventChannels is limited due to the fact that the
distributed system level Aggregator service must parse all
the reports coming from all machines being monitored.
Therefore, simple grouping of reports into larger report by
using hierarchy has limited applicability. For instance, for
the given scenarios the only meaningful hierarchies are two-
level hierarchies that can extend the size of the monitored
system approximately five times.

V. CONCLUSION

We are witnessing an increase in the scale and
complexity of service-oriented distributed applications. In
order to control and supervise these applications effectively,
efficient and scalable monitoring systems are needed. These
scalability requirements are gaining importance even more as
service-oriented computing technologies are increasingly
used as an execution platform on hardware-constrained
devices [15].

In this paper we analyze a publish-subscribe architecture
for hierarchical aggregation of distributed monitoring reports
of service-oriented applications. The analyzed architecture is
based on a tree topology which is often used for distributed
data aggregation. In the analyzed architecture, the leaves of

the topology are sensor services that collect XML reports
from individual system machines and publish them
periodically to their parents in the topology. The
intermediary nodes of the topology are machines that
aggregate the reports from lower levels and publish them to
their parents as a single report representing the state of a
larger part of the system. Finally, the root machine of the
topology creates a global, distributed system report about the
state of the monitored system.

In order to evaluate the limits of the architectures’
efficient performance we present an analytic model of the
architecture and conduct empirical measurements on a
prototype implementation. Together, these form the basis of
an architecture-level performance analysis which we suggest
for future evaluations of large-scale monitoring architectures.
In our analysis we focus on exploring architecture-level
limits introduced with the use of the XML language for
platform independent monitoring report serialization.

First, analysis results shows that the limiting factors to

the scalability regarding the size of the monitored system

are the frequency of publishing reports, the size of the

reports and the CPU power of the root machine. We show

that by varying the frequency of publishing reports, a

tradeoff may be achieved between the number of the

machines that are monitored and the staleness of the global,

distributed system reports. Lower reporting frequencies

enable a higher number of machines to be monitored, but at

the price of higher staleness of reports, and vice versa.

Similarly, by changing the size of reports we can achieve a

tradeoff between the number of machines that may be

monitored and the quality of the reports.
Furthermore, the size of the monitored system is

constrained by the CPU of the root machine since it
processes reports that contain all the data from the system
regardless of the exact topology. However, in our analysis
we show that benefits can be achieved by reorganizing the
tree topology, most notably varying between a deeper tree
and a wider tree. We show that the largest benefit comes
from introducing the first level of hierarchy, while
introducing additional levels does not significantly increase
the possible size of the monitored system.

REFERENCES

[1] M.N. Huhns, M.P. Singh, “Service-oriented computing: key concepts
and principles”, IEEE Internet Computing, vol. 9, Issue 1, pp. 75–81,
Jan./Feb. 2005.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing”,
Technical Report, EECS Department, University of California,
Berkeley, Feb. 2009.

[3] F. Lelli, G. Maron, S. Orlando, “Improving the performance of XML
based technologies by caching and reusing information”, Proceedings
of the IEEE International Conference on Web Services, pp. 689–700,
2006.

[4] W. Zhan, R. A. van Engelen, “High-Performance XML Parsing and
Validation with Permutation Phrase Grammar Parsers”, Proceedings
of the 2008 IEEE International Conference on Web Services, pp.
286–294, 2008.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S.
Weerawarana, “Unraveling the Web Services Web: An Introduction
to SOAP, WSDL, and UDDI”, IEEE Internet Computing, vol. 6, no.
2, pp. 86–93, Mar./Apr. 2002.

[6] I. Gavran, A. Milanovic, and S. Srbljic, “End-User Programming
Language for Service-Oriented Integration", 7th Workshop on
Distributed Data and Structures, Jan. 2006

[7] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, R.
Wolski, “A Grid Monitoring Architecture”, Global Grid Forum, Aug.
2002., http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-
GP-16-3.pdf

[8] S. Zanikolas, R. Sakellariou, “A taxonomy of grid monitoring
systems”, Future Generation Computer Systems, vol. 21, Issue 1 pp.
163–188 , Jan. 2005

[9] J. Liao, H. Cai, P. Jiang; M. Chen, “Design and Implementation of
Grid Monitoring System Based on GMA”, Sixth International
Conference on Parallel and Distributed Computing, Applications and
Technologies, pp.94–96, Dec. 2005

[10] W. Fu, Q. Huang, “GridEye: A Service-oriented Grid Monitoring
System with Improved Forecasting Algorithm”, Fifth International
Conference on Grid and Cooperative Computing Workshops, pp.
5-12, Oct. 2006.

[11] A. Milanovic, S. Srbljic, D. Skrobo, D. Capalija, and S. Reskovic,
“Coopetition Mechanisms for Service-Oriented Distributed Systems”,
3rd International Conference on Computing, Communication and
Control Technologies, Vol. I, pp. 118-123., 2005.

[12] D. Skrobo, A. Milanovic, and S. Srbljic, “Distributed program
Interpretation in Service-Oriented Architectures”, 9th World
Multi-Conference on Systemics, Cybernetics and Informatics, Vol.
IV, pp. 193-197, 2005.

[13] M. Cai, K. Hwang, “Distributed Aggregation Schemes for Scalable
Peer-to-Peer and Grid Computing”, submitted to IEEE Transactions
on Parallel and Distributed Systems, 2006.

[14] R. Cristescu, B. Beferull-Lozano, M. Vetterli, “On network correlated
data gathering”, INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies,
March 2004, Vol. 4, pp. 2571-2582

[15] C. Groba, S. Clarke, “Web services on embedded systems - A
performance study”, Proceedings of the 1st International Workshop
on the Web of Things (WoT), Mannheim, Germany, March, 2010.

[16] J. Shen, B. Gong, Y. Hu, S. Li, “The Design and Implementation of a
GMA based Grid Monitoring Service”, Proceedings of the 11th
International Conference on Computer Supported Cooperative Work
in Design, pp. 588-593, 2007.

[17] H. Cai, F. Min, J. Liao, “Research on Implementation of Grid
Monitoring System Based on GMA”, Proceedings of the 2009
International Conference on Communications and Mobile
Computing, pp. 34-38, 2009.

[18] M. L. Massie, B. N. Chun, D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience”, Parallel
Computing, Volume 30, Issue 7, July 2004, pp. 817-840

