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Milano–Bicocca, Via Cozzi 53, I-20153, Milano, Italy,

alessandro.russo@unimib.it

Abstract

We introduce a new variant of Nodal Virtual Element spaces that mimics

the “Serendipity Finite Element Methods” (whose most popular example is

the 8-node quadrilateral) and allows to reduce (often in a significant way)

the number of internal degrees of freedom. When applied to the faces of a

three-dimensional decomposition, this allows a reduction in the number of

face degrees of freedom: an improvement that cannot be achieved by a sim-

ple static condensation. On triangular and tetrahedral decompositions the

new elements (contrary to the original VEMs) reduce exactly to the classical

Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite

similar (and have the same amount of degrees of freedom) to the Serendipity

Preprint submitted to Elsevier February 18, 2016



Finite Elements, but are much more robust with respect to element distor-

tions. On more general polytopes the Serendipity VEMs are the natural (and

simple) generalization of the simplicial case.

1. Introduction

The original Virtual Element Methods, as introduced in [6], show a sur-

prising robustness with respect to the variety of shapes allowed for the ge-

ometry of elements, and compared to Finite Elements allow a much easier

construction of C1 elements (and actually also C2 or more). These aspects

raised the interest of several groups working on various applications (as for in-

stance topology optimization in elasticity problems [14], fractured materials

[10], plate bending problems [12], or the Cahn-Hilliard equation [2]).

An interesting feature is surely the possibility of joining classical Finite

Elements (on rectangles or quadrilaterals) in some part of the domain, and

VEMs in some other part, as the two methods share the same trial functions

and degrees of freedom on edges. But as far as the internal degrees of

freedom are concerned, on simple geometries, as on triangles, VEMs are

more expensive than the traditional Finite Elements: for a given accuracy

k, VEMs on triangles use (together with polynomials of degree k on every

edge) a number of internal degrees of freedom equal to k(k − 1)/2, instead

of the (k − 1)(k − 2)/2 used by Finite Elements. This would also imply

that the possibility of combining FEM and VEM is not immediate in three

dimensions even when the common face is a triangle.
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On quadrilaterals, VEMs have again k(k − 1)/2 internal degrees of free-

dom, that now should be compared to the (k−1)2 internal degrees of freedom

of Qk-Finite Flements, or to the (k−2)(k−3)/2 internal d.o.f.s of Serendipity

FEM (on quadrilaterals).

However, on non-affine quadrilaterals the Serendipity Finite Elements

suffer a severe deterioration of accuracy: see e.g. [4] or the more recent [3],

[15]. See also [5] for a general survey on the various Finite Element choices.

On the contrary, VEMs have in their robustness with respect to distortion

one of their most relevant advantages.

On the other hand, the biggest advantage of classical FEM (over Virtual

Elements and similar methods) is surely the fact that the values of trial or

test functions of FEMs can be easily computed at any point, while VEMs

are easily computed only along the edges. The common remedy, for VEMs,

is to use (for computing point values and for similar information), instead

of the true trial and test functions, their L2-projection on some polynomial

space of degree, say, r. For the original VEMs in [6] we could take only

r = k − 2 (with an obvious lack of accuracy) or use other, non orthogonal,

projectors (a procedure that needed a theoretical justification). However, for

their advanced versions, as in [1], we could reach r = k still using k(k− 1)/2

internal degrees of freedom. This however, on simple elements like triangles

or tetrahedra, was still higher than the FEM counterpart.

Here we propose a variant of VEMs that mimics, in some sense, the

Serendipity approach of FEMs. The new variant coincides exactly, on tri-

angles, with traditional Finite Elements, and on quadrilaterals can (in some
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sense) keep all the good aspects of Finite Elements without most drawbacks.

In particular, on parallelograms we use (k − 2)(k − 3)/2 degrees of freedom

(as for Serendipity FEMs) and we can easily compute the L2-projection on

Pk, but we can also keep the same accuracy when the element is strongly

distorted. The only degeneracy that is not fully allowed is when the quadri-

lateral element becomes a triangle (as in the second element of Figure 6

below). But in that case (even in the limit, when the quadrilateral is exactly

a triangle), we can keep optimal accuracy just by using (k − 1)(k − 2)/2

degrees of freedom (the same amount that we would use on a triangle).

Moreover, the edge degrees of freedom are exactly the same as for finite

elements, so that in 2 dimensions we can combine the two methods (using

each in a different part of the domain). The same is now true also in three

dimensions, if the matching VEM-FEM is done on triangular faces, and even

the matching through quadrilateral faces could be easily arranged (for in-

stance with a slightly nonconforming matching).

Our construction is a mixture of Serendipity ideas and of the ones coming

from enhanced elements of [1]. Roughly speaking, instead of keeping (among

the degrees of freedom) the moments up to the order k−2 (as in the original

VEMs), we go down to k−3, and we use the boundary d.o.f.s and the internal

moments up to k−3 to compute a rough projector from the VEM space onto

Pk. Then we use such a rough projector to define the moments of degree up

to k as a byproduct.

Throughout the paper we will use the following notation.

For k ≥ 0 and d ≥ 1 integer we denote by Pk,d the set of polynomials
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of degree ≤ k in d variables. Often, the dimension d will be omitted when

it is reasonably clear form the context. With a (rather common) abuse

of language we also set P−1 ≡ {0}. Whenever convenient, for a generic

geometric object O in d dimensions we will denote by Pk,d(O) the restriction

to O of Pk,d.

Following [7] we denote by πk,d the dimension of Pk,d (that is, for instance,

(k+1)(k+2)/2 in two variables and (k+1)(k+2)(k+3)/6 in three variables).

An outline of the paper is as follows. In Section 2 we recall the origi-

nal VEMs in 2 dimensions, and we compare them with classical Lagrange

Finite Elements on triangles, and with classical Qk and Serendipity Finite

Elements on parallelograms and quadrilaterals. In Section 3 we introduce

our new Serendipity Virtual Elements in 2 dimensions, and we extend them

to the three dimensional case in Section 4. Numerical examples involving the

convection-diffusion-reaction equation are presented in Section 5.

2. Original Nodal VEMs

2.1. Original nodal Elements in 2 dimensions

Here below we recall the original “nodal Virtual Element” as reported in

[6, 8] for the two dimensional case, and in [1] for the three-dimensional one.

As common, we will concentrate on the description of the finite dimensional

spaces within a single element (polygon) E. The assembling of the spaces on

the whole computational domain will then be done with the same procedure

followed for H1-conforming Finite Elements.
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As is already well known, Virtual Elements allow an enormous general-

ity in the geometry of the elements to be used in the decomposition of the

computational domain, and the precise limits of this generality are, in some

cases, still to be understood. For simplicity, here we will consider the typical

assumption (see for instance [6]): there exists a fixed number ρ0 > 0, inde-

pendent of the decomposition, such that for every element E (with diameter

hE) we have that: i) E is star-shaped with respect of all the points of a ball

of radius ρ0 hE, and ii) every edge e of E has length |e| ≥ ρ0 hE. Actually,

more general assumptions could be allowed in the definition of our VEM

spaces, but this goes beyond the scope of the present paper (again, see for

instance [6]). Figure 1 will show some examples of polygons that are indeed

acceptable for our constructions.

10 edges8 edges 8 edges 7 edges 

Figure 1: Element shapes allowed in our construction

For k integer ≥ 1 we define

Vk(E) = {ϕ ∈ C0(E) : ϕ|e ∈ Pk(e) for all edge e, and ∆ϕ ∈ Pk−2(E)}.

(2.1)

The degrees of freedom in Vk(E) are taken as

• the values of ϕ at the vertices, (2.2)

•
∫
e

ϕ q ds for all q ∈ Pk−2(e) ∀ edge e, (2.3)
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•
∫
E

ϕ q dE for all q ∈ Pk−2(E). (2.4)

It is immediate to verify that the degrees of freedom (2.2)-(2.4) are unisolvent

(see [6]). For convenience of the reader we recall the proof. The number of

degrees of freedom in (2.2)-(2.4) is obviously equal to the dimension of the

space Vk(E) in (2.1): for a polygon of Ne edges, they are both equal to k Ne

(number of boundary d.o.f.s) plus πk−2,2 (dimension of Pk−2 in two variables).

Assume now that for a given ϕ ∈ Vk(E) we have that all (2.2)-(2.4) are

identically zero. Then clearly ϕ would be zero on the boundary (from (2.2)-

(2.3)) and then using (2.4) we would have
∫
E
|∇ϕ|2 dE = −

∫
E
ϕ∆ϕ dE = 0

since ∆ϕ is a polynomial of degree k − 2. This ends the proof.

The spaces Vk(E) are, in some sense, the basic ones in the VEM theory,

similarly to, say, Lagrange finite elements on triangles for the FEM theory.

However, compared with FEM (on triangles and on quadrilaterals) they show

some differences, already in the number of internal degrees of freedom.

Comparing these (original) VEMs with the classical Finite Elements,

whenever possible (meaning, here, for triangular or quadrilateral elements)

we find that on the boundary of the elements we have (or we can easily take)

the same degrees of freedom. In the interior, however, this is not the case.

In particular, on triangles, Virtual Elements have more degrees of freedom

than the corresponding Finite Elements, and more precisely: the number of

internal degrees of freedom for Virtual Elements of degree k is equal to πk−2,2

while that of the corresponding Finite Elements is πk−3,2 (see Figure 2). For

quadrilaterals, instead, the number of internal nodes for Finite Elements is

equal to the dimension of Qk−2 (which is (k − 1)2), while for Virtual Ele-

7



ments the internal degrees of freedom equal the dimension of Pk−2 (that is

k(k − 1)/2). See Figure 3.

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 2: Triangles: Classical FEM and Original VEM

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 3: Quads: Classical Qk-FEM and Original VEM

Remark 1. As we already mentioned, for the present 2-dimensional case
the restriction to each edge of Finite Elements and of Virtual Elements is
the same (both being polynomials of degree ≤ k in one dimension), so that
we could actually allow a combined use of traditional Finite Elements (in
some parts of the computational domain) and of Virtual Elements (in other
parts).

Remark 2. In addition to the previous remark, we observe that for Virtual
Elements we could very easily consider cases in which different degrees are
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used (say, in (2.3)) for different edges of the same polygon. In this case we
note that: i) the order of accuracy on every polygon will be reduced to the
lowest among the orders of the single edges, and ii) in the global setting, to
ensure conformity, the degrees of freedom on an edge shared by two polygons
must obviously be the same. This generalization could be, for instance, useful
to develop hp Virtual Elements in a very natural way.

Needless to say, the number of degrees of freedom for a given accuracy is

not, by far, the whole story. One has to see what should be done with them;

but this goes beyond the aims of the present paper.

2.2. More general nodal VEMs

For integers k ≥ 1 and k∆ ≥ −1 we define

Vk,k∆
(E) = {ϕ ∈ C0(E) : ϕ|e ∈ Pk(e)∀ edge e, and ∆ϕ ∈ Pk∆

(E)}. (2.5)

The degrees of freedom in Vk,k∆
(E) are taken as

• the values of ϕ at the vertices, (2.6)

•
∫
e

ϕ q ds for all q ∈ Pk−2(e), (2.7)

•
∫
E

ϕ q dE for all q ∈ Pk∆
(E). (2.8)

Clearly, the previous case (2.1) corresponds to the choice k∆ = k − 2.

The extension of the previous unisolvence proof to the more general case

of the degrees of freedom (2.6)-(2.8) is an exercise. We also point out that,

for k∆ ≥ 0 the degrees of freedom (2.8) allow for the computation of the L2-

orthogonal projection operator Π0
k∆

, from Vk,k∆
(E) to Pk∆

(E). As we shall

see, the possibility to compute this operator with an algorithm that uses
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only the degrees of freedom is one of the crucial steps in Virtual Element

Methods.

We remark that the space Vk,k∆
(E) clearly contains the space of polyno-

mials Ps(E) for all s ≤ min{k, k∆ + 2}, but Π0
r can be computed (out of the

degrees of freedom), only for r ≤ k∆.

It is also clear that a smaller k∆ will correspond to a smaller number of

degrees of freedom. However, as we have seen, for k∆ < k−2 the space Vk,k∆

will fail to contain all polynomials of Pk.

On the other hand, the choice k∆ = k would allow an immediate com-

putation of the moments up to the order k, and hence the computation of

the L2-projection operator Π0
k that, as we said, is extremely useful. But for

k∆ = k the degrees of freedom (2.8) would be very expensive.

Nevertheless, looking at Figure 2, we feel that there should be something

better that can be done. To explain it, we start with some simple observations

on polynomials that vanish on the boundary of a polygon.

2.3. Polynomials that vanish on ∂E

We start by noting that: If a polynomial pk(x, y) of degree ≤ k vanishes

identically on a segment (of positive length) that belongs to the straight line

with equation, say, ax + by + c = 0, then pk can be written as pk = (ax +

by + c) qk−1 with qk−1 a polynomial of degree ≤ k − 1. The property is very

well known, but if one needs more details we refer, for instance, to Lemma

3.1.10 of [11].
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As a consequence, a polynomial that vanishes identically on ∂E will con-

tain, in its expression, the product of all the different straight lines that

contain at least one edge of ∂E. Note that even if several edges belong to

the same line, (see for instance the fourth case in Figure 1) the equation of

the line will always appear once (and not as many times as there are edges).

For instance, looking again at the fourth case of Figure 1, we have ten edges

but we have to count only five lines.

In general, given a polygon E, we will denote by ηE the number of distinct

straight lines that contain at least one edge of E. This is an important

notation, that deserves to be better highlighted:

ηE = minimum number of straight lines needed to cover all ∂E. (2.9)

Having said that, we note that for every k < ηE we obviously have

∀pk ∈ Pk,2 {pk = 0 on ∂E} =⇒ {pk ≡ 0}. (2.10)

With this, and noting that for every polygon E we always have ηE ≥ 3,

it is not difficult to see that, for instance, a polynomial of degree k ≤ 2 is

uniquely identified by its values at the boundary of any polygonal element

E. As a consequence, knowing the boundary value of a polynomial of degree

≤ 2 we know the whole polynomial, and hence we know its mean value (and,

if needed, its moments of any degree). Why should we need internal degrees

of freedom?

More generally, for k ≥ 3 on triangles it is easy to see (looking for instance

at the classical Finite Elements, see again Figure 2) that a polynomial of
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degree ≤ k is uniquely identified by its boundary values and by its moments

of degree ≤ k− 3, and we shouldn’t need the moments of degree k− 2. And

on a more general polygon E, with ηE > 3, the boundary values should count

even more. So why should we need the moments of degree k − 2?

A solution to this unsatisfactory situation could be found in a reduction of

the VEM space similar to what is done in Finite Elements for quadrilaterals,

with the introduction of the Serendipity elements.

3. Serendipity Virtual Elements in 2 dimensions

To fix ideas, and to keep things as simple as possible, we start from the

space Vk,k(E), although, as it will be clearer later on, other choices of the type

Vk,k∆
(E) are possible. We recall that if E has Ne edges, then the dimension

of the space will be NE := k Ne + πk,2.

3.1. The property S

Now let us assume that we have chosen a positive integer S with πk,2 ≤

S ≤ NE, and that the degrees of freedom in (2.6)-(2.8) are ordered as

δ1, δ2, ... δNE
in such a way that the first S of them, that is

δ1, δ2, ... δS (3.1)

have the following property:

(S ) ∀pk ∈ Pk,2(E) {δ1(pk) = δ2(pk) = ... = δS(pk) = 0} ⇒ {pk ≡ 0}.

(3.2)
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As it will become clearer in a while, the S chosen degrees of freedom will

be the ones kept and used in the final system (the other ones being left, in

each element, as “dummies”).

As a consequence, in order to save the conformity of the whole space

(defined on the whole computational domain) it will be always convenient to

keep, among the first S degrees of freedom, all the boundary ones (2.6)-(2.7).

For simplicity, we will consider only the case in which this has been done,

and we then assume that:

The d.o.f.s δ1, δ2, ... δS contain all the boundary ones (2.6)-(2.7). (3.3)

In a certain number of cases the boundary degrees of freedom will be

sufficient to give the property S , but in other cases it will be necessary to add

some internal degrees of freedom from (2.8). The number of these additional

degrees of freedom will end up being equal to the number of internal degrees

of freedom that will be kept in our Serendipity Virtual Elements. Hence it is

clear that property S in (3.2) has a crucial relevance, and deserves a more

detailed analysis.

3.2. Sufficient conditions for property S

To start with, together with ηE it will also be convenient to introduce the

basic bubble bE (or simply b), that is, the function given by the product of

the equations of the ηE different straight lines that contain all the edges of

E.

Using assumption (3.3) we note that a polynomial pk ∈ Pk that satisfies

δ1(pk) = δ2(pk) = ... = δS(pk) = 0 (3.4)
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will be identically zero on all edges of ∂E, and in particular its expression

will contain the bubble bE as a factor. We also recall that the degree of bE is

equal to ηE. Then, in particular, we have that a polynomial pk that satisfies

(3.4) will necessarily have the form pk = bEqk−ηE with qk−ηE a polynomial of

degree k − ηE. We will consider, separately, several cases.

• Case k < ηE

From the above discussion we deduce in particular the following result.

Proposition 3.1. For k < ηE assumption (3.3) implies that property S is
always satisfied.

We then split the analysis of the case k ≥ ηE in two cases.

• Case k ≥ ηE and E convex

For values of k ≥ ηE, together with the boundary degrees of freedom, we

would need in general some additional internal ones. In particular we have

the following result.

Proposition 3.2. Assume that k ≥ ηE, that E is convex, and that as-
sumption (3.3) is satisfied. Assume moreover that the degrees of freedom
δ1, δ2, ... δS include all the moments of order ≤ k − ηE in E as well. Then
property S is satisfied.

Proof. We first note that if E is convex then bE will not change sign inside
E. Hence, if pk vanishes on ∂E (and hence pk = bEq

∗
k−ηE) and if moreover∫

E

pk q dE = 0 ∀q ∈ Pk−ηE , (3.5)

then it is enough to take q = q∗k−ηE in (3.5) to deduce that

0 =

∫
E

pk q
∗
k−ηE dE =

∫
E

bE (q∗k−ηE)2 dE and therefore pk = 0. (3.6)
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From the two above propositions we see in particular that: for k = 2 we

will never need internal moments (for any shape of E) and property S will

always hold; for k = 3 we will need the mean value only when ηE = 3, and

no internal d.o.f.s for a bigger ηE; for k = 4 we will need all the moments up

to the degree 1 for ηE = 3, but only the mean value when ηE = 4 and E is

convex . And so on.

• Case k ≥ ηE and E non convex

The case of non-convex polygons, for k ≥ ηE, is more tricky. For instance

if E is a non convex quadrilateral (as the third case in Figure 6), then bE will

indeed change sign in E, and the argument in (3.9) will not apply. However,

indicating by w2 the second degree polynomial made by the product of the

equations of the two “re-entrant” edges, it is easy to check that the product

bEw2 does not change sign inside E (as the equations of the re-entrant edges

will be taken twice). The same will obviously be true for more general poly-

gons, whenever we have only two re-entrant edges (as, for instance the fourth

element in Figure 1). Actually what counts is the number of re-entrant lines,

as in the third example of Figure 1. For the sake of simplicity, however,

we restrict ourselves to the case of two re-entrant edges, and present the

following result.

Proposition 3.3. Assume that k ≥ ηE, that assumption (3.3) is satisfied,
and that E has only two “re-entrant edges”. Let w2 be the second degree
polynomial made by the product of the equations of the two “re-entrant” edges.
Assume moreover that the degrees of freedom δ1, δ2, ... δS include also all
the moments ∫

E

pk q w2 dE ∀q ∈ Pk−ηE . (3.7)

Then property S is satisfied.
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Proof. We remark first that if E has two re-entrant corners then ηE ≥ 4, and
therefore k− ηE + 2 (the degree of the test function q w2 in (3.7)) is ≤ k− 2,
so that the degrees of freedom in (3.7) are still part of the degrees of freedom
(2.4) in Vk(E). Then, let pk be a polynomial of degree ≤ k vanishing on ∂E
and such that ∫

E

pk q w2 dE = 0 ∀q ∈ Pk−ηE . (3.8)

We first deduce, as before, that pk = bηEq
∗
k−ηE for some q∗k−ηE ∈ Pk−ηE . Then

we take q = q∗k−ηE in (3.8) to get

0 =

∫
E

pk w2 q
∗
k−ηE dE =

∫
E

bE w2 (q∗k−ηE)2 dE, (3.9)

that implies again pk = 0 since bE w2 does not change sign in E.

So far we discussed (long enough) the cases in which assumption S holds

true, or it does not. It is now time to see some of its consequences.

3.3. The operator ΠSk

As we shall see in a little while, given a set of degrees of freedom δ1, δ2, ... δS

(subset of (2.6)-(2.8)) that satisfy property S (see (3.2)), it will always be

possible to construct an operator ΠSk from Vk,k(E) to Pk(E) with the following

properties:

• ΠSk is computable using only the d.o.f. δ1, ..., δS, (3.10)

and

• ΠSk qk = qk for all qk ∈ Pk. (3.11)
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3.4. The reduced (Serendipity) VEM spaces

Once the operator ΠSk has been defined, we can use it to construct our

Serendipity VEM spaces. The basic idea can be summarized as follows.

• we work in Vk,k(E),

• for each ϕ ∈ Vk,k(E) we use the first S degrees of freedom to construct

ΠSkϕ,

• then we use δr(Π
S
kϕ), for S < r ≤ NE to define the values of the

remaining NE − S degrees of freedom in Vk,k(E) .

In other words, given ϕ ∈ Vk,k(E) we construct another element (say, ϕ̃)

such that

δr(ϕ̃) = δr(ϕ) for (1 ≤ r ≤ S), (3.12)

and

δr(ϕ̃) = δr(Π
S
kϕ) for (S + 1 ≤ r ≤ NE). (3.13)

Clearly, the elements ϕ ∈ Vk,k(E) such that ϕ̃ = ϕ form the space

V S
k (E) = {ϕ ∈ Vk,k(E) s. t. δr(ϕ) = δr(Π

S
kϕ) ∀r = S + 1, ..., NE}, (3.14)

that we identify as our reduced (Serendipity) Virtual Element Space. It is

immediate to see that the space V S
k (E) has the following properties:

• the dimension of V S
k (E) is S,

• δ1, ..., δS is a unisolvent set of degrees of freedom for V S
k (E),
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• Pk,2(E) ⊆ V S
k (E),

• the L2-projection Π0
k is computable from the d.o.f. of V S

k (E).

It is also immediate to see that for triangles the new spaces V S
k (E) have

now the same number of degrees of freedom as the classical Lagrange Finite

Elements, and are, actually, the same spaces, since Pk,2(E) and V S
k (E) have

the same dimension. See Figure 4.

VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Figure 4: Triangles: Classical FEM and Serendipity VEM

Serendipity Finite Elements on quadrilaterals are in general defined on

squares and on their affine images (that is, on parallelograms), while their ex-

tension to more general quadrilaterals (via isoparametric mappings) suffers,

in general, a loss of accuracy (see e.g. [4]).

For parallelograms, our Serendipity Virtual Elements have the same

number of degrees of freedom as the Serendipity Finite Elements: for a gen-

eral k both use the boundary degrees of freedom plus the internal moments

of degree ≤ k − 4, although, in general, with a different space.
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For more general quadrilaterals Serendipity Virtual Elements and

Serendipity Finite Elements have again the same number of degrees of free-

dom (see Figure 5, and, for instance, papers [3] or [13]), although Finite

Elements allow much less general distortions, and even for small deviations

from parallelograms show a lack of accuracy that disappears only if the mesh

(progressively, as the mesh-size h goes to zero) tends to be made of parallel-

ograms (see [4]). On the other hand, Virtual Elements are extremely robust,

VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Figure 5: Quads: S-FEM (Arnold-Awanou) and S-VEM

and can survive several types of severe distortion. The only degeneration

that must be avoided, in the present context, occurs, clearly, when two edges

fit in the same straight line (as, for instance, in the second example of Figure

6). But even when the element degenerates to a triangle we could still survive

in a cheap-and-easy way, just by using also the internal moments of degree

up to k − 3. Clearly, for stability reasons, when two edges are almost on the

same straight line it would still be wise to use also the moments of degree

k − 3. Hence we can say that for quadrilateral elements we have the same

number of degrees of freedom that Serendipity Finite Elements use on affine

elements, but our construction works in much more general cases, using a
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different space that is more robust to distortions. In Figure 6 we show some

example of allowed distortions. In the first case depicted, only moments of

degree up to k − 4 need to be included, while in the second case also the

moments of degree k − 3 are needed. In the third case we can use moments

of degree up to k−4 with the quadratic multiplicative factor defined in (3.7).

YES YES YES

Figure 6: Allowed distortions for quadrilaterals

Finally it is still worth mentioning that Serendipity VEM can also be

defined (and perform very well) on much more general polygons where

Serendipity Finite Elements (as well as classical Finite Elements) do not

exist. On the other hand, VEM require a heavier local work, and even on

quadrilaterals the greater robustness (related to a different local space) has

to be paid with a (small) additional work at the element level.

3.5. Construction of ΠSk

There is just one item that we have to detail in order to complete the

description of the nodal Serendipity Virtual Elements on polygons: the con-

struction of the operator ΠSk starting from a set of degrees of freedom that

satisfy property S . For this, we assume that, for a given k, we are given a

set δ1, δ2, ... δS of degrees of freedom having the property S , and we define
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the operator D

D : Vk,k(E)→ RS defined by Dϕ := (δ1(ϕ), ..., δS(ϕ)). (3.15)

Needless to say, the operator D will have the properties:

• D can be computed using only the d.o.f δ1, ..., δS, (3.16)

• D q = 0⇒ q = 0 for all q ∈ Pk. (3.17)

Property (3.16) is trivial, and property (3.17) is inherited by (3.2).

We observe that, for coding purposes, the operator D corresponds to take

the first S rows of the matrix D given in [8], formula (3.17).

We are now going to use D to construct ΠSk as follows: for every ϕ ∈

Vk,k(E) we can define ΠSk ϕ ∈ Pk through

(D(ΠSkϕ− ϕ),Dq)RS = 0 ∀q ∈ Pk, (3.18)

where (· , ·)RS is the Euclidean scalar product in RS (or, if more convenient,

any positive definite symmetric bilinear form on RS). Property (3.17) ensures

that the matrix

(Dp,Dq)RS p, q ∈ Pk (3.19)

is nonsingular, so that for every right-hand side (Dϕ,Dq)RS the linear system

(3.18) in the unknown ΠSk ϕ will have a unique solution. It is an easy exercise

to check that the operator ΠSk , as defined in (3.18), satisfies the required

properties (3.10)-(3.11).
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3.6. Different options

We first point out that, in our presentation, the reason why we delayed

the construction of the operator ΠSk is the presence, in its construction, of

an excessive freedom. Indeed, there are zillions of possible choices for the

basic degrees of freedom to be used (in the construction of the operator D)

and zillions of possible choices for the symmetric and positive definite bilinear

form to be used (if convenient) in place of the Euclidean scalar product (· , ·)RS

in RS. In principle, the presence of many choices could allow a strategy

toward a final space with suitable properties (we shall see an example later

on). But in many cases the presence of too many options is more a drawback

than an advantage.

We did not consider so far the scaling and stability problems. As pointed

out in several occasions (actually, almost everywhere) in the VEM literature,

it is (much) wiser to use degrees of freedom that scale in the same way.

Otherwise (for instance) the choice of the Euclidean scalar product should

not be recommended, since degrees of freedom that scale differently should

be treated in different ways.

It should be said, however, that the situation is not as bad as it could

seem. Indeed, once we took care of choosing degrees of freedom that scale

in the same way, the methods show a remarkable robustness, and the use of

the Euclidean scalar product, or of the Euclidean scalar product multiplied

or divided by 10, or of other similar bilinear forms, would end up in equally

good final schemes.
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3.7. The lazy choice and the stingy choice

We have seen that, for an order of accuracy k, and for a polygon (for

simplicity, convex) whose edges belong to ηE different straight lines, in our

serendipity spaces only internal moments up to the degree k−ηE can be used.

We also pointed out that, however, for stability reasons one should also take

care of the cases where two (or more) edges belong almost to the same straight

line, and consider them as actually belonging to the same straight line. This

would decrease the number ηE for the polygon, and increase the number

k − ηE of moments to be used. An additional difficulty, with this choice,

would then be to decide the precise meaning of the above term “almost”, for

instance in terms of the angle between the two (almost coincident) straight

lines that contain the two (or more) edges under scrutiny.

In light of the above discussion (and always for a given fixed order of

accuracy k) we see that, in the actual implementation of a code in which

many different shapes of polygonal elements are expected, one faces a very

important choice. A first possibility (let us call it, the stingy choice) would

be: to fix a minimum angle θ0 > 0 and then, for every polygon E, to count

the number ηE(θ0) of different straight lines that contain all the edges of

E, by considering “different from each other” two straight lines only when

the smaller angle between them is bigger than θ0. Then, use moments up

to the order k − ηE(θ0) as degrees of freedom inside E. Another possibility

(let us call it, the lazy choice) would be to use always internal moments of

degree up to k−3, since our assumptions imply that ηE(θ0) is always ≥ 3 for

θ0 small enough compared to ρ0 (say, for ρ0 ≥ tan(θ0/2)). Needless to say,
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many strategies in between are possible, and the choice among all of them

would depend on the type of code one is writing, and on the use one wants

to make of it. We shall come back to this problem when dealing with the

three-dimensional case.

4. Serendipity Virtual Elements in 3 dimensions

Let us consider now the case of three-dimensional VEM. Again, for the

sake of simplicity, we will make some simple assumptions on the geometry

of our elements. In particular we will consider the typical assumption (see

for instance [1]): there exists a fixed number ρ0 > 0, independent of the

decomposition, such that for every polyhedron P (with diameter hP) we

have that: i) P is star-shaped with respect of all the points of a ball of radius

ρ0 hP, ii) every edge e of P has length |e| ≥ ρ0 hP, and iii) every face f is

star-shaped with respect of all the points of a ball of radius ρ0 hP. Here too,

more general assumptions could be allowed but again this goes beyond the

scope of the present paper. See for instance [1].

As we did for the two-dimensional case, we shall concentrate on the choice

of the spaces on a single polyhedron P.

Moreover, still to keep things as simple as possible, we assume that, in

the terminology of Subsection 3.7 , we follow for every face the lazy choice.

4.1. Polynomials that vanish on ∂P

We point out that, for the faces of a three-dimensional decomposition, the

difference between the two choices (stingy and lazy) would be decidedly more
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dramatic than in two dimensions. Indeed, for 2D-decompositions the degrees

of freedom internal to the elements could always be eliminated (easily and

cheaply) by static condensation. But in three dimensions the degrees of

freedom internal to faces cannot be (easily and cheaply) eliminated by static

condensation, and in general they still appear in the final (global) stiffness

matrix. The difference would become more and more expensive for higher

choices of the accuracy k. To make an example, for k = 8 on an hexagonal

face f (with ηf = 6) the lazy choice would require the use of all the moments

of degree up to 8 − 3 (that is, 21 d.o.f.) while the stingy choice would

require only the moments of degree up to 8− 6 (that is, 6 d.o.f.). Hence, the

systematic use of the lazy choice on all faces (as done here) is more a way of

keeping the presentation simple rather than a suggestion on what to do in a

practical code. Indeed, for higher order of accuracy and for decompositions

in which many faces have (each) many edges, we would not recommend the

lazy choice, which could be much more expensive. We think, however, that

once the basic idea is understood it will be quite immediate for the users to

see how and when to shift from the lazy choice to more cheap ones.

We then take an integer k ≥ 1 and we consider for every face f (that for

simplicity we assume to be convex) the Serendipity space V S
k (f) (as we said,

to fix ideas, with the lazy choice).

Then for k∆ ≥ −1 we define the space

Vk,k∆
(P) := {ϕ ∈ C0(P) such that

ϕ|f ∈ V S
k (f) ∀ face f in ∂P, and ∆ϕ ∈ Pk∆

(P)} (4.1)
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with the degrees of freedom

• the values of ϕ at the vertices, (4.2)

•
∫
e

ϕ q ds ∀ edge e for all q ∈ Pk−2(e), (4.3)

•
∫
f

ϕ q df ∀ face f for all q ∈ Pk−3(f). (4.4)

•
∫

P

ϕ q dP for all q ∈ Pk∆
(P). (4.5)

We point out that the degrees of freedom (4.4) follow from our decision to

always take the lazy choice on every face and from the simplified assumption

of convex faces. For non convex faces we should adapt the nature of the

degrees of freedom (although, in general, not the number), as discussed in

Subsection 3.2.

4.2. D, ΠSk , and the Serendipity spaces

At this point we could restart mutatis mutandis the reduction procedure

that we followed for the two-dimensional case. The two cases (2-dimensional

and 3-dimensional) are very similar, and therefore we will summarize the

3-dimensional one very shortly.

We start by taking k∆ = k in (4.1) as we did at the beginning of Section

3. Let NP be the number of degrees of freedom of Vk,k(P). We order them in

such a way that the boundary ones (4.2)-(4.4) come first (and, typically, the

internal moments are ordered from lowest to highest degree). Then we choose

an integer S such that the first S degrees of freedom are: the boundary ones,

and the internal moments of degree up to k − ηP, where now, in general, ηP
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is the number of distinct planes that contain all the faces of P. Here too, we

could make the lazy choice of taking always ηP = 4.

We note that our degrees of freedom will satisfy the property (that we

still call S ):

(S ) ∀pk ∈ Pk,3(P), {δ1(pk) = δ2(pk) = ... = δS(pk) = 0} ⇒ {pk ≡ 0},

(4.6)

and therefore we can use them to construct, following the same path that we

took in Subsection 3.5, a projection operator ΠSk such that :

• ΠSk is computable using only the d.o.f. δ1, ..., δS, (4.7)

and

• ΠSk qk = qk for all qk ∈ Pk. (4.8)

Once we have the operator ΠSk we can define the Serendipity Virtual Element

space V S
k (P) as

V S
k (P) = {ϕ ∈ Vk,k(P) s. t. δr(ϕ) = δr(Π

S
kϕ) ∀r = S + 1, ..., NP}. (4.9)

As degrees of freedom for the space V S
k (P), defined in (4.9), we take

• the values of ϕ at the vertices, (4.10)

•
∫
e

ϕ q ds ∀ edge e for all q ∈ Pk−2(e), (4.11)

•
∫
f

ϕ q df ∀ face f for all q ∈ Pk−3(f), (4.12)

•
∫

P

ϕ q dP for all q ∈ Pk−ηP
(P), (4.13)

27



and we point out that in (4.12) we could use, for each face f , the moments

only up to the degree k − ηf if we chose a more stingy strategy. Just to

make a toy-example, on a regular dodecahedron (12 pentagonal faces, with

a total of 20 vertexes and 30 edges) for k = 4 we would have, with the

most stingy choice (on faces and inside), only one d.o.f. per vertex and three

additional degrees of freedom per edge (for a total of 110 degrees of freedom:

the absolute minimum, if you want a P4 conforming element). The original

VEMs would have required 12 × π2,2 + 1 × π2,3 = 82 additional degrees of

freedom (6 for each of the 12 faces , and 10 for the interior of the polyhedron).

Adopting the lazy choice, instead, we would add (to the 110 ones on vertices

and edges) 3 degrees of freedom per face and one inside (for a total of 37

additional d.o.f.s).

Remark 3. The extension of the present idea to construct a Serendipity
version of H(div) and H(curl)-conforming vector valued spaces (as the ones
in [7]) can be done in a reasonably easy way, and is the object of a paper in
preparation (by the same authors).

4.3. Different degrees of freedom

An obvious generalization of our procedure (among several others) would

be (for simplicity: in two dimensions) to substitute part of the original de-

grees of freedom (2.2)-(2.4) with some equivalent ones. For instance, for

k ≥ 2 one can use, instead of the moments (2.3), the values of ϕ at k − 1

nodes inside each edge (a typical convenient choice would be given by the

k − 1 Gauss-Lobatto nodes inside the edge).

Another example has been suggested already in Proposition 3.3: for non

convex polygons, we could use suitable polynomial weights in the degrees
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of freedom, including the equations (among those defining the edges) that

change sign inside E .

But more imaginative variants could come out being convenient in some

circumstances. In particular, it is not necessary that the functionals in (3.1)

(the ones used to construct D and then ΠSk ), are a subset of the original

degrees of freedom: we only need to select S linear functionals, and then, if

convenient, use in (3.1) a different set of d.o.f.s that can be deduced from

the chosen ones.

For instance, one could keep the nodal values (2.2) and the moments (2.3)

as degrees of freedom (for obvious conformity reasons), but then use in (3.1),

in place of (2.2) and (2.3):

• the mean value of ϕ over ∂E (4.14)

and (after ordering the vertices V1, ..., VN , VN+1 ≡ V1 in the, say, counter-

clockwise order) the integrals

• Ij,k :=

∫ Vj+1

Vj

∂ϕ

∂t
qk−1 ds for j = 1, 2, ..., N and qk−1 ∈ Pk−1 (4.15)

(under the obvious condition that
∑

j Ij,1 ≡ ϕ(VN+1)− ϕ(V1) = 0). Clearly,

as we said, the boundary degrees of freedom would remain (2.2)-(2.3), but

the new ones (that is, (4.14) and (4.15)) could be employed (possibly together

with other data) to define D and then to construct ΠSk . A choice like this

might be interesting when combining Serendipity VEM spaces of various

nature (like, say, the nodal ones here and the edge-ones mentioned in Remark

3 above).
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5. Numerical experiments

As pointed out before, the Serendipity variant of the Virtual Element

Method raises several problems of computational nature, like for instance

the definition of ηE in the case of almost-degenerate polygons, or the choice

of the scalar product in the definition of the projector ΠSk .

In this paper we will limit ourselves to the presentation of very simple

numerical experiments showing that the method works as expected for an

elliptic equation in two cases: quadrilateral elements and a more general

Voronoi mesh made of convex polygons. In both cases we have taken k =

2, 3, 4. The error shown is always the relative L2 error; the H1 error behaves

similarly.

Figure 7: Trapezoidal mesh Figure 8: Voronoi mesh
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We set Ω =]0, 1[2 and consider the elliptic problem div(−κ∇p+ bp) + γ p = f in Ω

p = g on ∂Ω.
(5.1)

The variational form of problem (5.1) is given by∫
Ω

κ∇p · ∇q dx−
∫

Ω

p(b · ∇q) dx+

∫
Ω

γp q dx =

∫
Ω

f q (5.2)

and, as shown in [9], its Virtual Element approximation consists in replacing

in each element

p with Π0
k−1ph and ∇p with Π0

k−1∇ph. (5.3)

The difference with respect to [9] is that here the L2 projections are com-

puted using the operator ΠSk instead of Π∇k for the missing moments. The

stabilization term is defined in terms of the L2-projection.

5.1. Quadrilateral meshes

In the quadrilateral case we have considered the trapezoidal mesh studied

in [4] for which the authors have proved that the classical serendipity finite

elements do not converge with the optimal rates. We have compared our

serendipity VEM with the classical serendipity finite elements Sk and with

the standard Qk elements. The sequence is composed of four meshes with

8 × 8, 16 × 16, 32 × 32 and 64 × 64 trapezoids respectively. In Fig. 7 the

16× 16 mesh is shown.

We have considered the Poisson problem, i.e. we have taken in (5.1)

κ =

1 0

0 1

 , b = (0, 0), γ = 0, (5.4)
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with the right hand side f and the Dirichlet data g defined in such a way

that the exact solution is the fifth-degree polynomial

pex(x, y) := x3 + 5y2 − 10y3 + y4 + x5 + x4y. (5.5)

In Figs 9, 10 and 11 we show the relative L2 error for the three methods. We

observe that the serendipity VEM (“stingy”) behaves like the Qk element

but with much fewer degrees of freedom.
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Figure 9: k = 2, L2 error for the trapezoidal meshes. Note the non-optimal convergence
rate for the classical serendipity finite element method Sk compared with the serendipity
VEM (“stingy”); both have the same number of degrees of freedom.

5.2. Polygonal meshes

The polygonal meshes are made of 25, 100, 400 and 1600 polygons and

have been obtained starting with a random Voronoi mesh and then regular-

ized by means of Lloyd iterations. The 100 polygon mesh is shown in Fig.

8.
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Figure 10: k = 3, L2 error for the trapezoidal meshes.

The equation that we solve is the same used for the numerical experiments

in [9]. We take

κ =

y2 + 1 −xy

−xy x2 + 1

 , b = (x, y), γ = x2 + y3, (5.6)

and right hand side f and Dirichlet boundary condition g defined in such a

way that the exact solution is

pex(x, y) := x2y + sin(2πx) sin(2πy) + 2. (5.7)

In Figs 12, 13 and 14 we show the L2 error for the “stingy” and the “lazy”

strategies, and we compare them to the original VEM. Note that we have

always taken ηE equal to the number of edges of the polygon E.

In all cases we observe that the errors are very similar even if the number

of degrees of freedom is considerably different.
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Figure 11: k = 4, L2 error for the trapezoidal meshes

6. Conclusions

Virtual Element Methods generalize Finite Elements from simple geo-

metric shapes (triangles, tetrahedrons, quadrilaterals, hexahedrons, etc.) to

much more general shapes, including several types of “degenerations”. How-

ever, when restricted to simple geometries they do not reproduce the tradi-

tional FEM, not even in the number of degrees of freedom. For simplexes

(in 2 or 3 dimensions), FEMs of order k have a number of internal degrees of

freedom that is equal to πk−d−1,d (the dimension of the space of polynomials

of degree ≤ k − d − 1 in d dimensions), while the number of internal d.o.f.

of traditional VEMs is equal to πk−d,d. On quadrilaterals and hexahedrons

traditional FEMs have k−d,d internal nodes (the dimension of the space of

polynomials of degree ≤ k− d in each variable in d dimensions) while VEMs

do better with only πk−d,d. Serendipity FEMs, however, can go down to

πk−d−3,d, but they suffer dramatic losses of accuracy when the elements are
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Figure 12: k = 2, L2 error for the Lloyd meshes

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1

4

mean diameter

r
e
la
t
iv
e
L
2
e
r
r
o
r

stingy
lazy
classical VEM

degrees of freedom
# el. stingy lazy VEM

25 204 229 279
100 804 904 1104
400 3204 3604 4404
1600 12804 14404 17604

Figure 13: k = 3, L2 error for the Lloyd meshes

not parallelograms. Something quite similar also happens for hexahedrons.

Here we introduced a new family of VEMs that mimicks (in some sense)

the Serendipity idea of FEM. These new elements reduce in a significant
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Figure 14: k = 4, L2 error for the Lloyd meshes

way the number of internal degrees of freedom of traditional VEMs, without

losing the good features of being able to deal with very general shapes and

distortions.

On triangles, the new VEMs coincide now with Finite Elements, so that

we don’t gain anything apart from the conceptual satisfaction of equaling the

“competitors” (in a friendly sense) where and when they are at their best.

On quads, however, the new VEMs can match the number of degrees of

freedom of Serendipity FEM with much more generality in the geometry, and

could therefore become a competitor even for rather simple element shapes

(as it is clearly shown by the numerical experiments of the previous section).

On top of that, they allow extremely general geometries that are totally out

of reach for Finite Elements.

We point out that in three dimensions our discussion applies as well to
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the degrees of freedom that are internal to the faces, that therefore cannot

be eliminated by a simple static condensation.
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