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Summary. We investigate several iterative methods for the numerical so- 
lution of Theodorsen's integral equation, the discretization of which is either 
based on trigonometric polynomials or function families with known attenu- 
ation factors. All our methods require simultaneous evaluations of a con- 
jugate periodic function at each step and allow us to apply the fast Fourier 
transform for this. In particular, we discuss the nonlinear JOR iteration, the 
nonlinear SOR iteration, a nonlinear second order Euler iteration, the 
nonlinear Chebyshev semi-iterative method, and its cyclic variant. Under 
special symmetry conditions for the region to be mapped onto we establish 
local convergence in the case of discretization by trigonometric interpo- 
lation and give simple formulas for the optimal parameters (e.g., the under- 
relaxation factor) and the asymptotic convergence factor. Weaker related 
results for the general non-symmetric case are presented too. Practically, 
our methods extend the range of application of Theodorsen's method and 
improve its effectiveness strikingly. 

Subject Classifications: AMS (1980): 30C30; 42A50, 65H10, 65R20. CR: 5.19; 
5.15, 5.18. 

1. Introduction 

Solving Theodorsen's integral equation for the numerical computation of con- 
formal mappings is one of the well-known methods [4] that take advantage 
of the fact that the dimension of the problem can be reduced from two to one if 
at first the boundary correspondence function 0 is determined. The method 
yields this function for a map of the unit disk onto a starlike region given by the 
polar coordinates z, p(z) of its boundary F. 
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was at the Dept. of Computer Science, University of British Columbia, Vancouver, B.C., Canada. It 
is part of a thesis submitted for Habilitation at ETH Zurich 
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The usual way to discretize Theodorsen's integral equation is based on 
interpolating t~--,log p(O(t)) on an equidistant grid by a trigonometric polynomial 
T of degree N and evaluating the conjugate polynomial K T [-which approx- 
imates t~---~O(t)-t] on the same grid. This process used to be replaced by the 
equivalent multiplication with Wittich's matrix K [-4]. However, while this 
multiplication requires O(N 2) multiplications, the fast Fourier transform (FFT) 
made it possible to implement the original idea of interpolation, conjugation, 
and evaluation with only O(NlogN) multiplications [-10, 13]. On proposal of 
Prof. P. Henrici, both Mrs. C. Lundwalt-Skaar [,16] and the author started in 
1975 with numerical experiments to explore the progress made possible by the 
FFT  in this field. 

The discretization leads to a nonlinear system of 2N equations in 2N 
unknowns. In accordance with its structure the nonlinear Jacobi method is the 
simplest of several iterative numerical methods that have been proposed for its 
solution [4]. Unfortunately, the global and local convergence of this method are 
only ensured if ep~ =sup ]p'(~)/p(~)] < 1. Niethammer [-18] proposed to permute 
the unknowns and the equations before applying the nonlinear SOR method or 
the Newton-SOR method. He pointed out that a nearly optimal underrelaxation 
factor can be determined a priori subject to the assumption that the eigenvalues 
of the Fr6chet derivative 3 of the Jacobi iteration function are exactly or nearly 
imaginary. For boundaries F satisfying a special symmetry condition Gekeler 
[-6] found rather large rectangular regions containing these eigenvalues. How- 
ever, we state in Theorem 3.4 that these eigenvalues are in fact purely imaginary 
under weaker conditions. Essentially, we only require that F should be sym- 
metric about one or several axes passing through the origin and that p' should 
not change sign except at the points on these axes. On the basis of this theorem 
it is possible to establish for arbitrary ep the local convergence of the nonlinear 
SOR iteration, of the Newton-SOR method, and of several other numerical 
methods if the exact solution of the discrete equation satisfies one additional 
condition, which is fulfilled by every useful solution. 

In order that the SOR method be competitive, it is important that the FFT 
can be applied too. The corresponding algorithm is described in detail in [,10]. 
(Independently, this has been discovered by Htibner [,14] too, who, using our 
Theorem 3.4, has also established the local convergence of the SOR method.) 

In another related paper [-12] we show that the FFT can also be applied if 
the discretization of Theodorsen's integral equation is based on spline functions 
(or on another one of a large number of families of approximants). Wittich's 
matrix K is then replaced by a product K1;, where I; is a symmetric circulant 
Toeplitz matrix. Unfortunately, this modification prevents the direct application of 
the SOR iteration, but we present other methods that work. Also, Theorem 3.4 
seems to hold no more in general. 

All the numerical methods we discuss require the simultaneous evaluation of 
a conjugate periodic function at each step and allow one to apply the FFT for 
this. All of them are linear-nonlinear methods [20] for which no secondary 
iteration is necessary due to the special structure of the discrete Theodorsen 
equation. (But some of our results are also useful if the linear versions of these 
methods are used as secondary iterations in Newton's method, cf. [-20].) In 
particular, we consider the Jacobi overrelaxation method (JOR), the SOR 
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iteration, a second order generalized Euler method (which turns out to be a 
second order Richardson iteration too), and, for completeness, the related 
Chebyshev semi-iterative method and its cyclic variant. Under the mentioned 
assumptions of Theorem 3.4 we are able in each case to determine a priori 
nearly optimal parameters (e.g., underrelaxation factors) and the corresponding 
asymptotic (foot-)convergence factor. If these assumptions are violated, it is still 
possible to find the optimal parameters with respect to an elliptic region (or, for 
the JOR method, the intersection of two disks) that is supposed to contain the 
eigenvalues of J. 

The SOR and the cyclic Chebyshev iterations have the best convergence 
rate, but they are only applicable for trigonometric interpolation, i.e. 12 =I.  The 
second order Euler method and the Chebyshev iteration, both allowing X + I ,  
are approximately half as efficient. Moreover, as partly known [7, 8, 15, 19], all 
of these methods are closely related to each other in our case. 

If ep < 1, global convergence is established in Theorems 3.1 and 7.3. If ep> 1, 
however, our results only guarantee local convergence. In fact, our numerical 
experiments have shown that it is often necessary to combine those methods 
with the so-called continuation method [20]: One after the other we solve the 
conformal mapping problems with radius function pl/L(Z), l= 1 . . . . .  L, using the 
result of each problem as starting point for the next one. 

Some other questions arising in practice, including the one of how to 
evaluate the mapping function in the interior of the unit disk, will be discussed 
in another closely related paper [11]. There we will also present numerical 
experiments. They indicate that in practice our choice of parameters based on 
Theorem 3.4 is still very good if the assumptions of this theorem do not hold. 

2. Theodorsen's Integral Equation and its Discretization 

Let F be a Jordan curve that is starlike with respect to the origin and given by 
its polar coordinates r, p(z): 

r . ' = { ~ e ~ :  ~ = p ( r ) e  i~, zelR}. 

(p is a 2n-periodic positive function.) Assume F satisfies an e-condition, i.e. p is 
absolutely continuous and 

eo: = ess sup p'(~) O<-t<2~ p ~  ~00 .  

Moreover, suppose D is the open unit disk in the w-plane and A is the interior of 
F in the ~-plane. Let b and A denote the closure of D and A, respectively. There 
is a unique topological mapping g: D ~ A  that is the extension of a conformal 
mapping of D onto A and fulfills g(0)=0, g'(0)>0. The restriction of g to the 
unit circle ~?D may be written in terms of the boundary correspondence function O, 
a real continuous function that is implicitly defined by 

g[eD: e%--'g(el') = p(O(t)) e win, 
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and may be normalized by 
2 x  

S O(t) dt=2~2" 
0 

This boundary correspondence function satisfies Theodorsen's equation, a 
singular and nonlinear integral equation [4, p. 65]: 

O ( t ) - t = K [ l o g p ( O ( . ) ) ]  (t), Vt~IR. (2.1) 

Here K denotes the conjugation operator [28]: For XcL[0,27r]  the conjugate 
periodic function K X  is defined a.e. by the principal value integral 

1 2 ~  t - - s  
KX( t ) :  ~ P.V. S X(s) cot ~ - -  ds. 

0 

The restriction of K to L2[0,27~] is a skew-symmetric endomorphism with 
operator norm 1. In fact, if XeL2[0,27r]  has the real Fourier coefficients 
a o , a l , a  2 . . . . .  b l , b  2 . . . . .  then K X e L 2 [ O ,  27r ] has the coefficients 0 , - b  1, 
- b  2 . . . . .  a l , a  2 . . . .  [28, p. 128]. 

For numerical computation one has to discretize the conjugation operator. 
The most common way to do this is based on replacing X by the trigonometric 
polynomial T of degree N normalized by a vanishing s in(N0 coefficient and 
interpolating X at the 2N equidistant points tk:=krc/N , k - O  . . . .  , 2 N - I .  
The coefficients of T as well as all the values yk:=(KT)(tk) c a n  be computed 
very efficiently with the fast Fourier transform (FFT) [10, 13]. 

On the other hand, since Yk depends linearly on the given values x / = X ( t s ) ,  
j = 0 , . . . , 2 N - 1 ,  there exists a matrix K of order 2N such that y = K x  if 
Y: =(Y0 . . . .  , Y2N- 1) r, x: = (x o . . . . .  x2N_ 0 r (where T denotes transposition). For our 
theoretical investigations we will use this classical matrix representation of the 
discrete conjugation operator, although it hides the connection with trigonomet- 
ric interpolation and the related efficient implementation with the FFT. 

K is called Wittich's matrix and has the elements [4, p. 76] 

l0  is even, i f j  l 

(K)lJ = [ 1N cot --(I-J)2N lr , if j -  l is odd 

( / , j = 0  . . . . .  2 N - 1 ) .  It is a circulant skew-symmetric Toeptitz matrix, which 
contains zeros in a checkerboard layout including the diagonal. Due to this last 
property K is weakly cyclic of index 2 [24], cf. Sect. 5. Owing to the first 
property it is easy to show that all non-vanishing eigenvalues are _+i, namely, 
N -  1 of each [27, w 17.6]. Hence IIKI] = 1 for the spectral norm. 

For any selR 2N and any scalar function cr let us define 

, ~ ( s )  : = (o'(s0), ~(s O, . . . ,  G(s2N_ ~))~. 

Then, the discrete Theodorsen equation replacing Eq. (2.1) is 

y = K log p(t + y), (2.2) 

where y is supposed to approximate 0 ( t ) - t .  
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It has been proved by the author [9], and in a private communication by O. 
Hiibner, that Eq. (2.2) always has at least one solution. However, as we will see 
in computed examples [11], some solutions may yield useless approximations of 
the exact boundary correspondence function 0, which, of course, is strictly 
monotone in [0, 2re]. 

We may equally well approximate X by an interpolating spline function with 
knots t k instead of using the interpolating trigonometric polynomial T. In fact, 
this just means that the coefficients of the polynomial K T  have to be modified 
before its evaluation with the FFT [12]. We can even implement a number of 
other approximation functions with the same modification but using different 
weights. In the sequel we will only use the fact that K is then replaced by 

Kz: =KZ,  

where I; is a circulant positive semi-definite symmetric Toeplitz matrix com- 
muting with K and satisfying 

112211<1. 

Thus, K z is still a circulant skew-symmetric Toeplitz matrix, but, in general, it is 
no longer weakly cyclic of index 2. We will call 

y = K z log p(t + y) (2.3) 

the modified discrete Theodorsen equation. Equation (2.2) corresponding to I ;= I 
(the identity matrix) will be considered as a special case of (2.3). The existence 
proof for (2.2) carries over to (2.3). As we will see, the constant ~o, which is very 
important in the discussion of numerical methods for (2.2), is replaced by 

~" =~r, ILK~.IL 

when we are dealing with (2.3). 

3. On the Jacobi Iteration Function and the Eigenvalues 
of its Fr/~chet Derivative 

The classical method to solve Eq.(2.2), or now (2.3), is the nonlinear Jacobi 
iteration 

Ym+ 1-" = 4~(Ym): =K~ log p(t + y,,), m=0,  1 . . . . .  (3.t) 

It may be started with Y0:=0 or with another approximation of the solution. 
Since p is absolutely continuous, p' exists a.e. and 

Ttogp(zl)_logp(z2)l= !2 P'(r) dz p ~  <eo[z l -%1  (3.2) 

for every r~ and %. Using the Euclidean norm we get 

H4~(y)-~(~)11 <e,, IIKzll Ily-~ll =~ Ily-~ll, (3.3) 
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which means that ~ is a Lipschitz constant for the iteration function q~. Thus, the 
contraction theorem yields the following simple generalization of the classical 
convergence theorem [4, p. 87]. 

Theorem3.1. I f  e < l ,  Eq.(2.3) has exactly one solution y*, and iteration (3.1) 
started with an arbitrary Y0 converges to y*. 

But what can we say if e>  1? For any iteration ym+l=~(ym) with Fr6chet 
differentiable (F-differentiable) function ~ the local convergence to a fixed point 
y* of ~ hinges on the spectral radius A of the Fr6chet derivative (F-derivative) 
~'(y*) of �9 at y* [21, Chap. 22]. Moreover, if Ae(0, 1), the convergence is linear 
and the asymptotic convergence factor (called root-convergence factor R~ in 
[20]) equals A [20, 10.1.4]. Since most of our convergence results will be based 
on these facts, we need 

Assumption (D). y* is a solution of (2.3), and p is differentiable at each 
component of y*. 

First, it follows that the F-derivative at y* of the Jacobi iteration function 
[defined in (3.1)] exists" 

J :  = ~'(y*) = K~D, 
where (3.4) 

D " = diag (@ (tk + Y~))k= o ..... zN-I" 

[Note that even if O were not differentiable at y*, there would exist according to 
(3.2) a diagonal matrix I3,. with Ill)roll <e~ such that 

log p(t + y , , ) -  log p(l + y*) = 13m(ym-- y*), 

and hence 
Ym + 1 - Y* = Kx f)m (Ym -- Y*)" (3.5) 

Our following investigations on the eigenvalues of J carry over to the equally 
structured matrices K~13 m. This motivates our opinion that, practically, the 
differentiability of p is not crucial for the local convergence of the nonlinear 
methods to be discussed.] 

Of course, the spectral radius A(J) of J satisfies A(J)< IlJJl <e. In the case !; 
= I  numerical experiments have shown that, in general, A(J) is almost equal to 
if N is large. Consequently, if e < 1, the convergence is indeed linear with an 
asymptotic factor close to e. However, if ~> 1 and N is large, y* is usually a 
point of repulsion; in its neighborhood iteration (3.1) can be expected to diverge, 
although convergence could occur [21, Chap. 22]. In Appendix 1 we will prove 
the related 

Lemma 3.2. Under assumption (D), if N ~ ~ and the third largest absolute value 
of an element of D tends to ~p, then lim IIKD]I =e  0. 

In particular, this lemma applies if p is continuously differentiable and the 
solution y* of (2.2)"converges" to the function O(t)-t .  (A correct formulation of 
this fact would require additional notation.) 
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The question, whether the spectral radius A(KD) tends to ep too, is still open. 
To choose a numerical method that is more appropriate than Jacobrs  

iteration (3.1) requires additional information on the spectrum of J. 

Lemma 3.3, Under assumption (D) the spectrum of d is symmetric about O. 

Proof If D is regular, W : = D  1/2 can be defined and is regular. So, W J W  --~ 
= W K ~ W  is a complex skew-symmetric matrix similar to J, and its spectrum is 
symmetric about 0 [5, p. 12]. Since the eigenvalues of d depend continuously on 
the elements of D, the statement remains true for singular D. [] 

(In case !; = I, there is another simple proof based on the fact that J is weakly 
cyclic of index 2, cf. [27, w 17.4].) 

Additional information on the spectrum of J can be deduced for some 
boundaries f symmetric about an axis. More precisely, we have to replace 
assumption (D) by 

Assumption (SD). F is symmetric about the real axis and, in addition, v-fold 
rotationally symmetric about 0, where v > 1 is a divisor of N, M: = N/v. 5 ~ is the 
( M -  1)-dimensional subspace of vectors  y~lR. 2N satisfying 

Yo=Yu =0 ,  Yk = --YzN- k, k = l  . . . . .  N - l ;  (3.6a) 

yk=yk+zM, k = 0  . . . . .  2 N - 2 M - 1  if v > l .  (3.6b) 

y ' e 5  ~ is a solution of (2.3), for which 

tk+Yke(O,~/v), k = l ,  M - 1 .  (3.7) 

t * k = l  . . . .  M - l ,  and p'(tk+Y'~)>O (or Moreover, p is differentiable at k+Y~, 
_--< 0) for these values of k. Finally, ~7 = I. 

Of course, the last condition is fulfilled if p is differentiable and weakly 
monotone in (0, g/v). Simple examples of curves F satisfying this and the 
symmetry condition are: an ellipse (v=2)  or a square (v=4) symmetric about 
real and imaginary axis, and the curve defined by p(z)= exp l z I, I zj < ~, for which 
v z l .  

As already noticed by Niethammer [18], there are good reasons to believe 
that the eigenvalues of J are often close to the imaginary axis. Gekeler [6], 
assuming (SD) with v = 2, established a rather weak related result. In Appendix 2 
we wilt prove the much stronger 

Theorem 3.4. Under assumption (SD) 5 ,~ is an invariant subspace of J [defined by 
(3.4)], and the restriction JJs~ of J to 5~ has purely imaginary eigenvalues. 

In the following sections we will discuss the impact of this theorem on 
several numerical methods for the solution of (2.3) or (2.2). We will also consider 
weaker assumptions on the eigenvalues of J. An important but simple tool in 
applying Theorem 3.4 will be 

Lemma 3.5. Assume 5 e is any subspace of ~,", and ~:  IR"-~IR" is F-differentiable 
at ye .S  and satisfies ~(5P)cS.Denote the restriction of ~ and ~'(y)  to .9~ by ~l~* 
and ~'(y)L~, respectively. Then ~ ' ( y ) 5 ~ J  and ~'(y)ls~ =(!PIs~)'(y ). 
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Proof. By definition of the F-derivative ~ ' (y)  of �9 at y, 

I1 ~P(y + h ) -  ~ ( y ) -  ~W(y) h [I = o(llh[I) as h-+0.  

Assuming y6~ ,  h 6 5  p we see that  ~V'(y)h65 p too since the left side would be 
O(llhtl) otherwise. Hence,  ~V'(y) 5 o c ~ and 

1[ ~ls~ (Y + h) - ~lw (Y) - 'P'(Y)[~ h II = o(llh IlL 

So, ~'(y)[s~ =(~v[s0'(y) by definition of the latter. [ ]  

In particular, L e m m a  3.5 applies to the i teration function q~ of (3.1) and the 
subspace A '~ defined by (3.6) for it will be proved in Appendix 2 that q~(~) c5<. 

4. T h e  N o n l i n e a r  J O R  M e t h o d  

The nonlinear dacobi iteration with overrelaxation (nonlinear J O R  iteration) to 
solve (2.3) is defined by 

J Y,,+I :=~(Ym):=coK~l~ re=O, 1,2 . . . . .  (4.1) 

where Y0 is a given starting approximat ion  and co is the overrelaxat ion factor. 
We will choose toe(0, 1], i.e. apply underrelaxation rather  than overrelaxation,  
but  nevertheless use the abbreviat ion JOR.  

The  eigenvalues /~ of J [defined by (3.4)] and the eigenvalues 2 of the F- 
derivative 

J~: = coJ + (1 - co) I (4.2) 

of ~s  at y* are related by 

2 =co # + 1 - co .  (4.3) 

Again, we use A(J s) to denote  the spectral radius of  J~. 

T h e o r e m 4 . 1 .  (i) Let cos(0, 1], a e ( 1 - c o ,  1), and let assumption (D) be satisfied, 
Then A ( J ~ ) < a  iff all eigenvalues # of J lie in the point set 

which is an intersection of two disks with radius a/co and center +(1 -co)/co. 

(ii) Under assumption (SD), 

A J (J~]s,) < a:  = as(e, co):= [1 - co + ie col, 
and 

2 
aj(e, co)< 1 /ff O < c o <  

1_t_8 2. 

Moreover, 

rain ~rs(~ , co) = o'~ ( 0  : = 
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Imp 
/ 

Fig. 1. The mapping of eigenvalues by the JOR method [-e =]/3, o3=~0~'(e)] 

is attained at 

and, for ~ ~ a3, 

1 

~ = ~ * ( e ) :  = 1 + e  2 '  

a ~ ( e ) = l - ~ e 2 + O ( e - 4 ) ,  oJ*(e)= +O(e 4). 

(iii) In both cases, iteration (4.1) converges locally and (except if e = ~o-  1 = O) 
linearly to y*, and the asymptotic convergence factor is not worse than a. 

Proof  Relation (4.3) and elementary geometrical considerations easily yield part 
~ ( S P )  c 5P (since ~(5  p) c 5 P) and apply (i); cf. Fig. 1. To obtain (ii) we note that J 

Lemma 3.5 and Theorem 3.4 in addition. Finally, (iii) follows from Ostrowski's 
theorem and the linear convergence theorem [21, Chap. 22; 20, 10.1.4]. [] 

oJ~'(~) is the optimal underrelaxation factor with respect to our knowledge 
(exhibited in Theorem 3.4) about the eigenvatues of J. 
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By geometric considerations and by a compactness argument we easily get 

Corollary4.2. (i) I f  coe(0, 1], /f assumption (D) holds, and if the interior of L~,~ 
contains the spectrum of J, then iteration (4.1) converges locally to y*. 

(ii) I f  assumption (D) holds and the spectrum of J is contained in the strip {/1: 
IRe #[ < 1}, then there exists cot(O, 1] such that (4.1) converges locally to y*. 

Finally, note that e < 1, co =< 1, and (3.3) imply 

II ~ ( y )  - ~J~(y)It < 7 II y - ~ II, ~= = 1 - co + co ~ < 1. (4.4) 

Hence, 7 < 1 is a Lipschitz constant for ~ ,  and we get 

Theorem 4.3. For e < 1 iteration (4.1) converges globally. 

5. The Nonlinear SOR Method 

Niethammer [18] showed that in the traditional case with X = I  two steps of the 
nonlinear Jacobi iteration (3.1) are essentially equivalent to one step of the 
nonlinear Gauss-Seidel method if for the latter the equations and unknowns in 
system (2.2) are suitably permuted. Moreover, on the basis of examples and his 
conjecture (mentioned in Sect. 3) concerning the eigenvalues of J he pointed out 
that underrelaxation may improve the convergence of the Gauss-Seidel method 
considerably. Owing to our Theorem 3.4 we are now able to prove his obser- 
vation. We restrict ourselves to the case X=I  (as he did) since this is the only 
practical approximation that can be treated efficiently with the SOR method. 

For any Y=(Y0, Yl . . . . .  YZN--1) TE]R2N we let 

Y":=(Yo,  Yz, "", Y2N- 2) T, Y':=(Ya, Y3, "", YzN--1) T, 

and define the permutation matrix P by 

P y = V y e ] R  2N. (5.1) y, ' 

Then, since K features zeros in a checkerboard layout, 

_ L r 

where L is an N x N matrix. So, the discrete Theodorsen equation (2.2) is 
equivalent to the system 

y" = - L r log p( t '+  y'), (5.3a) 

y' = L log p (t" + y"). (5.3 b) 

(5.2) exhibits that K and J = K D  are weakly cyclic of index 2 [24, p. 39], 
which implies that I - J = I - K D  is 2-cyclic and has property A [-24, p. 99]. 
However, opposite to J, the matrix p j p r  is consistently ordered with the a 1 
ordering [25]. Since p j p T  is the F-derivative of the right side of (5.3) (considered 
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as function of y" and y'), Young 's  S O R  theory [25] can be applied for the 
computa t ion  of  a nearly opt imal  relaxation factor and the correspondent  
asympto t ic  convergence factor of  either the nonlinear  S O R  method  or the 
N e w t o n - S O R  method.  

To  apply the nonlinear SOR method to (5.3) means to compute  

Y~ + i" - co L r log p (t' + y~,,) + (1 - co) y~, (5.4 a) 

y~,+ 1: = co L log p(t" + y~+ 1) + (1 - co) y~,,, (5.4b) 

m = 0 , 1  . . . .  , 

where Yo, and, if co 4= 1, Yo are given start ing approximat ions .  In practice it is 
mos t  impor tan t  that  there exist a fast a lgori thm based on the F F T  for the 
mult ipl icat ion of  a vector  in 1R N by L or Lr ;  for large N each of these 
mult ipl icat ions costs only half  as much  as the mult ipl icat ion of a vector  in IR ~N 
by K. This a lgor i thm and an A L G O L  60 p rog ram are listed in [10]. (Inde- 
pendently,  this possibili ty has also been recognized by Hiibner  [14].) 

If co = 1, y~ is now in fact seen to consist of  the even indexed componen t s  of  
Yzm -1, constructed by Jacobi ' s  me thod  (3.1), while y~, contains exactly the odd 
indexed componen t s  of  Y2m [18]. However ,  the effect of  underre laxat ion on the 
Gauss-Seidel  method  is much greater  than  on Jacobi ' s  method.  

The i teration function ~ s  of  the nonlinear  S O R  method  becomes evident, if 
we replace in (5.4) the second definition (5.4b) by the equivalent  assignment  

yi,,+ 1 : = co L log p I t " - c o  Lr  log p(t '  + y~,,)+ ( 1 -  co)y~] + ( 1 -  co)yl,. (5.4b') 

In part icular,  the F-derivat ive of  ~ s  at y* is 

s .  ( ( l - c o ) I  - c o L r D '  '~ (5.5) 
J~  \ c o ( 1 - c o ) L D "  ( 1 - c o ) I - c o Z L D " L r D ' ]  ' 

where D"  and D '  are in an obvious  way defined as submatr ices  of  P D P  r. 
Formal ly  a more  c o m m o n  formula  for J~  is obta ined if we linearize the right 
side of  (5.3) at y=y* and delete higher order  terms:  

y ' = - L r c ' - L r D ' y  ', where c". = log p(t' + y* ' ) -  D' y*', 
(5.6) 

y ' - - L e "  + L D " y " ,  where e" : = log p(t" + y * " ) -  D"  y*". 

The  S O R  iteration for this linear system would be 

y~,+ ~: = - coLre ' - coLrD'y~, + (1 - co) y~, 

y'+l:=coLc"+coLD"y'~+l+(1-co)y'~,  m = 0 , 1  . . . .  (5.7) 

By not ing that  the inverse of  a t r iangular  matr ix  with diagonal  elements equal  to 
1 always exists, we get now (cf. [20], Th. 10.3.5) 

1 _coLrD,~  

which is easily verified to be in accordance with (5.5). 
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Young [25, Theorem 2.3] showed: If co#0, if 2 is a non-zero eigenvalue of 
j s ,  and if # satisfies 

()~ + co_  1)2 : CO21./2/'~, (5.8) 

then g is an eigenvalue of J. Conversely, if # is an eigenvalue of J and 2 satisfies 
(5.8), then 2 is an eigenvalue of j s .  

A further discussion of this relationship (for details see [,19], Sect. 6, [-25], 
Sect. 2, or [,26], or Sect. 6.4) leads to part (i) illustrated by Fig. 2 of 

Theorem 5.1. (i) Let cot(0, 1], a e [ 1 - c o ,  1), but not co-1  = a = 0 .  Under assump- 
tion (D), iteration (5.4) converges linearly with an asymptotic convergence factor 
not greater than a locally to y* iff all eigenvalues g of  J lie in the closed point set 
I2~,~o bounded by the ellipse E~, o with foci +iy  and semi-axes 

where ~, 6, a, and co are related by 

2 2 
1J/i-Z-o- m, i.e. co 

co 1+ 1 ] / i ~ '  

~ /  1--co 
6 =  1 - c o ( < l ) ,  i.e. a -  62 

ff 

(5.1o) 

(In particular, c~=f l=V~ /f co=l ,  while for 3=1  the ellipse reduces to the 
segment with endpoints - i ?  and i7.) 

(ii) Under assumption (SD), we may choose y=e  and 3 : 1 in (i): I f  

2 
co = ~ ( 0  : = 1 + 1 1 / ~ '  

iteration (5.4) converges locally and, if  ~>0, linearly to y*; 
convergence factor is 

,f2 
G~(~): = 1 -co~(O =-1( + ]/f~ + ~z)2 < 1. 

the asymptotic 

For ~ -~ oo, 

2 a~(O= l _ _ + O ( e -  2), co~(O = 2 + O ( e  2). 
g 8 

Proof of  part (ii). If we let 

5e': = {y~5~ : yzk=O, k=O . . . .  , N - l } ,  

then dim 5f' = [M/2], dim 5 ~'' = [(M - 1)/2], and 

j :~,_~ 5f", J :Af ' -~Af ' .  
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Im 

; 
Im 1 

/ / 
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Re I~ Re l 

l,l,a 

\ / 

Fig. 2. The mapping of eigenvalues by the SOR method [3,=e =]/3, (o=~o~(e)] 

The same holds for ~ s  [-defined by (5.4a) and (5.4b')] and for ,l s. If we use in 5 P 
an orthogonal basis the first [ ( M -  1)/2] vectors of which are a basis of 5 e'', then 
the matrix corresponding to the restriction of the operator J to 50 is weakly 
cyclic of index 2 and consistently ordered. This fact is automatically capitalized 
upon if we use iteration (5.4) with a starting vector y0e5 e (implying yme5 P, 
Vm>0); actually, if thought of as an iteration in ,9 ~, (5.4) just yields some 
additional redundant components of Y,,+ i. But, as proposed by Lemma 3.5, the 
local convergence only depends on the eigenvalues of the restriction of ,1 to 5 ~, 
which are purely imaginary according to Theorem 3.4. Part (ii) then results from 
the linear theory [,19, Theorem 6.3]. []  

Using Niethammer's results [,,18, 19] Gekeler [6] has stated some facts 
related to our Theorem 5.I; however, part (ii) is an essential improvement of 
his result for doubly symmetric regions. On the basis of our Theorem 3.4, 
which was already presented in a previous version of this paper, Hiibner [14] 
has independently proved part (ii) as well. 

The underrelaxation factor ~o used in Theorem 5.1 is optimal for every 
6e(0, 1] with respect to the ellipse Ey, a [19, Theorem 6.3]. Iteration (5.4) would 
converge locally whenever the relaxation factor were chosen in the interval 
(0, 2/(1 +c0) [-25, Corollary 3.1]. 

For a--+ 1 the parameters in (5.9) and (5.10) become 

2 2 - 0 )  
7 = ~ ] / 1 - c o ,  6 = l / i - - ~ o  , o~= co , fl=-l. 



418 M.H. Gutknecht 

Using a compactness argument, we get in analogy to Corollary 4.2: 

Corollary 5.2. (i) I f  toe(0, 1], if assumption (D) holds, and if the spectrum of d lies 
inside the ellipse with foci _+2i(1-o))1/2/o9 and semi-axes c~=(2-co)/co and fl= 1, 
the iteration (5.4) converges locally to y*. 

(ii) I f  assumption (D) holds and the spectrum of J is contained in the strip 
{#:IRe #l < 1 }, then there exists co~(0, 1] such that (4.1) converges locally to y*. 

If I; # I  one might consider the nonlinear SOR iteration 

Y(,~ >+ 1: = coKz log p (t + y~)) + (1 - co) y~), 
(5.11) 

y~> l:=coKs log p(t +v  (1~ 1)+(1 -co) y~), m=0,  1, 
- - . ~ m +  " ' ' ~  

where y~o 1) and y~o 2) are given (cf. [7] for the linear case). Every solution y of (2.3) 
defines a fixed point y(l):=y~2):=y of (5.1t). But the converse need not be true 
since the coupled system 

y(1) =K~ log p(t + y(2)) 
y(2) = Ks log p (t + y(1 )) (5.12) 

might have additional solutions. The F-derivative of the right side of (5.12) is 

0 D) 

By Lemma 3.3 and a standard argument based on forming j2 [27, w 17.4] it is 
easy to conclude that ,I has the same eigenvalues as J but with double geometric 
multiplicity. Hence, the F-derivative j s  of the iteration function corresponding 
to (5.11), which in analogy to (5.5) is 

- s  _ ( (1 - co) I coJ ) 
Jo , -  \og(1-co)J (1-co)I+co2J  2 ' (5.14) 

has the same eigenvalues as ,I s, but with double multiplicity. We conclude 

Theorem 5.3. For iteration (5.11), which does not require X=I,  Theorem 5.1 and 
Corollary 5.2 still hold. 

However, each step of iteration (5.11) costs approximately twice as much as a 
step of iteration (5.4). This is the price we have to pay for working with the 
generalized discrete Theodorsen equation (2.3), where /24:I, and l - d  has lost 
property A. 

The global convergence of the iterations (5.4) and (5.11) will be established in 
Sect. 7 under the assumption e<  1. 

6. Nonlinear Second Order Euler Methods 

Generalized Euler methods for linear systems have been proposed by Kublanovs- 
kaya (see [3], pp. 532-548) and Niethammer [19]. In the case of systems with 
2-cyclic matrices Niethammer has also investigated the relationship with the 
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SOR method. Here we modify some of these second order methods to apply 
them to the nonlinear equations (2.2) and (2.3) It turns out that the method most 
appropriate to (2.3) is equivalent to the SOR iteration (5.11). Moreover, the 
corresponding method for linear Hermitian systems would be identical with a 
particular optimal second order Richardson iteration [7]. 

For the moment, let us assume I;=1 again. The coupled nonlinear system 
(5.3) is equivalent to the uncoupled system 

y"=  - L  r log p(t' + L  log p(t" + y")), (6.1a) 

y' = L  log p(t" - Lr log p(t '  + y')). (6.1b) 

Similarly, the linear system (5.6) may be written as an uncoupled system. As 
shown in Sect. 6 of [19], solving the first part of it with a particular second 
order Euler method yields the same iterates y'~ as the SOR method (5.7) with 
special starting values y~, Yo. 

In analogy, the nonlinear second order Euler iteration appropriate for (6.1a) 
has the form 

Ym + 1 :  : - -  0)2 LT log p(t' + L log p(t" + y~)) 

+2(1 - co) y~,- (1 - co)Zy~,_ 1 , m=0,  1, ..., (6.2) 

where coo(0, 1). Every fixed point y" of this iteration is a solution of (6.1a). 
Moreover, if we then define y' by (5.3b), both equations (5.3) are satisfied. We 
start with given y" i = y o  possibly using a different co=cooe[0, 1] for m=0.  In 
any case, y~,=y~, Vm>0, if Yo happens to be a fixed point already. 

Now, note that y~,+ 1 in (6.2)just contains the even indexed components of 

Ym+ 1" = co2K~ log p(t +K~ log p(t +Ym)) 

+2(1 -co) Ym-(1 - co)2Ym -1, m=0,  1 . . . . .  (6.3) 

if this iteration is started with y_ 1 =Y0 and the same co o. Of course, this method 
is also welt defined if I ;41.  It relates to the system (5.12) and the SOR method 
(5.11) as iteration (6.2) relates to (5.3) and the SOR method (5.4). Again, it is 
twice as expensive as (6.2), and it might have fixed points that are not solutions 
of the given problem. 

However, both iterations (6.2) and (6.3) have a serious disadvantage: while in 
the linear case the SOR iteration (5.7) (with special choice of y~, Yo) is equivalent 
to an Euler method, this is not true in the nonlinear case. As we know from 
Jacobi's method, even if Ym is not far from y*, the vector K s log p(t + y,,) may be 
relatively far away (if e ~ 1) since it is not modified by underrelaxation; therefore, 
in (6.2) and (6.3) p is sometimes evaluated at unfavorable points. Hence, 
although these iterations feature the same excellent asymptotic rate of con- 
vergence as the SOR methods (5.4) and (5.11), they are less recommended. 

Fortunately, there is another nonlinear second order Euler iteration that is 
adapted to (2.3) directly. Its linear version is based on Niethammer's Theorem 
5.1 in [19] (cf. [3], p. 542, and [15], too), which we state in slightly generalized 
form. (Also, the original formulas in [19] contain two misprints.) 
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Theorem 6.1. Suppose all eigenvalues of the matrix B lie in a closed domain L 
bounded by the ellipse with foci a, bell?, and semiaxes of length 

c~ 7 1 y 

where 1 7=2[a-bl ,  6~(0, 1]. Assume that l q~L, and that ~ is the solution of 

(b-a) ~2 + 2(b + a -  2) ~ + ( b - a ) = 0  

that lies in the unit disk. Then, the following second order Euler method for the 
linear system x - B x  =e  is optimal with respect to L: 

X l : : X o :  :C~ 

Xm+ X: = 6 ~  m +c) +co(1 -e3) x,,, +(1 -co) x m - i, m = O , l  . . . . .  
(6.4) 

where 

2 
( O : = l + ~  2, 0 5 : - - - -  

2 - - a  - b "  

Its asymptotic convergence factor is not worse than 1~1/3. 

In our application the foci are at ++_i7, and hence 

- i y  2 
~-- (.0-- 

1+ 1r 1+ 1r 
o5=1. 

We have to replace x,, by y,, and Bxm+e by Kz log p(t +y,,). Then (6.4) becomes 

Ym+l:=c~176176 1, m=0,  1 . . . . .  (6.5) 

Again, we let y 1:=Y0 and may use a special co=~Ooe[0, 1] for m=0.  
One might also call (6.5) a nonlinear second order Richardson iteration since 

in the linear Hermitian case the second order Euler method reduces to a 
particular Richardson iteration [7]. Young [26] calls it second-degree Jacobi 
method. Surprisingly, (6.5) is nearly identical with the JOR iteration (4.1), where 
the last term contains y,, instead of y,,_x. However, the iterates Ym of (6.5) 
actually are identical with those constructed by the SOR method (5.11): 

v(2) Vm >_ O, Y2m =Y~), Y2m+ I =am , 

if the starting values are chosen appropriately. The optimal relaxation factor co 
is the same, too. [Note that in general, if 3 were an arbitrary real or complex 
matrix, e.g., J = ( i )  or J=(0.5),  the matrix (5.13) would not have the same 
eigenvalues as J, and the optimal second order Euler method would be different 
from the SOR iteration (5.11). It is essential that Lemma 3.3 holds for our J.] 

(6.5) is a nonlinear system of second order difference equations. As usual 
there is an equivalent first order system of double size. The corresponding 
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i teration function @~ and its F-derivat ive 

0 ,) 
~ (1-co)  I coJ 

421 

(6.6) 

are easily writ ten down. Note  that  ,-co,(jE]2 =jS~o. Thus, both  the equivalence with 
the S O R  method  (5.11) and the linear theory (Theorem 6.1) lead to 

Theorem 6.2. Theorem 5.1 and Corollary 5.2 hold for the nonlinear second order 
Euler iteration (6.5) as well, except that the asymptotic convergence factor is not 
worse than cr '=~  1/2 in part (i) and equal to 

g 

in part (ii), respectively. In particular, 

1 
a~(~)= 1- -+O(e  2) 

i + l / l + e  2 

a s  8 ----~ 0(3. 

Although the S O R  methods  (5.4) and (5.11) converge twice as fast, we must  
be aware  that  the second one is exactly as efficient as (6.5) since each step of 
(5.11) consists of  two steps of (6.5). However,  i teration (5.4), which takes 
advantage  of the cyclic s tructure in the case Z" = I, is roughly twice as efficient. 

But if Z = I ,  i teration (6.5) can also be simplified by a s tandard trick due to 
Riley [23]. At first, by permut ing  the equat ions we get 

y ' +  ~ : :  -- coL r log p(t' + y~,) + (1 - co) y~__~, (6.7a) 

Y'm + i := coL log p(t" + y~) + (1 - co) y~,__l. (6.7b) 

It is now possible to compute  the subsequences {Y2,, 1} and {Y~m} by using 
(6.7a) for even m and (6.7b) for odd  m only. Consequently,  the iterates 

Y~: =YJ,,  - 1, Y'm: = Y~,,, m =0 ,  1 . . . .  (6.8) 

are obta ined  with half the effort. However ,  this method  is easily seen to be 
identical with the S O R  method  (5.4). 

For  a global convergence theorem, see Sect. 7. 

7. Nonlinear Chebyshev Iteration 

The generalized Euler methods  discussed in the last section are but one type of 
semi-i terat ive methods.  Another  type, used very often for Hermi t ian  systems of 
linear equations,  is the Chebyshev  iteration, which was developed mainly by 
Go lub  and Varga  [7, 8, 24]. Its generalization to nonsymmet r ic  systems has 
been investigated by Manteuffel  [17]. Unfortunately,  in general the me thod  does 
not feature the opt imal  average rate of convergence as in the Hermi t ian  case, 
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where two facts are exploited: first, the spectral norm is equal to the spectral 
radius, and, second, the Chebyshev polynomials, translated to a real interval 
containing the eigenvalues, are the unique solution of a related optimization 
problem. Moreover, the optimality mentioned refers to linear systems, while we 
are considering a nonlinear iteration in this section. 

The appropriate nonlinear Chebyshev iteration for the solution of the modi- 
fied discrete Theodorsen equation (2.3) with X 4=I is 

ym+ 1: =co,,+ 1K~ log p(t + ym) + (1 -- CO,,+ X) y,,__ i, m=0,  1,2 . . . . .  (7.1a) 

where Yo has to be given, and where for any cot(0, 1] 

COl:~I, 

2 \i7/ 1 + ( -  1)"(1 --co)~ 
(1 ; C~ - ( -  1)"(1 -co) m+~' co"+l"-i? rm+~ U7 

2]/ 2 
?: = 1 - co,  i . e .  co = 

co 1 +] /1  +?2 

r e = l , 2  . . . . .  (7.1b) 

Here T,, denotes the Chebyshev polynomial of degree m: 

T,,(z): = cosh(m cosh- l(z)), ze(U. 

(Any branch of cosh- 1 may be used in this definition.) The equality in (7.1b) is 
easily verified; if Log denotes the principal branch of the logarithm, we get: 

= c o s h ( _ m "  coy . n'~ 

=�89 - co)~/~ {1 + ( -  i )~ (1  - co)~}.  (7 .2)  

and the asserted equality follows. 
Note that co and ? are related as in Euter's method and the SOR iteration, cf. 

(5.10), and that 

Hence 

]/1 -co = 7 =a~(?) < 1. (7.3) 
1 + ] / 1  + ,~2 

co,,+ 1 --* co as rn ~ oe, (7.4) 

which means that the nonlinear Chebyshev method (7.1) approaches asymptoti- 
cally the nonlinear Euler method (6.5). (For linear Hermitian systems, this fact is 
well known [7, 19].) 
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Since iteration (7.1) is non-stationary,  we cannot  apply Ostrowski 's theorem 
to establish convergence. However,  since y* is a fixed point of  ~ [defined by 
(3.1)], (7.1a) is equivalent to 

x,.+ t - Y *  = Y~-  Y*, 

Ym +~ -- Y* = co,. + t [q~(y~) - ~(y*)]  + (1 -- co" +1) (x" - y*). (7.5) 

The second equation may be written in the form 

Ym+l-Y* = coJ(ym- y*) + (1 - co) (xm-  y*) 

+(co"+ ~ -co)  [ J ( y , . - y * ) - x m  + y *  ] 

+ corn+ I [ ~ ( y , . ) -  ~ b ( y * ) -  J(y, .  - y*)] .  

Here the last bracket  is o(l ly, .-y*H) as y~.--,y*. Hence, 

_ E ~lql (Xm+ i --y* (X,.-- y* 

Ym+ 1 Ym 

where JR defined by (6.6) is regular if toe(0, 1), 

Ilk(m, x,,, Y")II < const(Ipx,, -Y*[I + IlY,, -Y*IF) 

for every m and every x,,, y,, in a ne ighborhood of y*, and, cf. (7.4), 

II~(m, x,., y,.)ll ~ 0  as m-~ oo, x,. --* y*, y,.--* y*. 
I[xm-Y*l[ + I[Y,,-Y*II 

Thus, Perron's  1-22] conditions A and B are fulfilled and his Theorems 5 and 11 
can be applied: If A( J~ )< I ,  if x o and Yo are sufficiently close to y*, and if 
y~ + y* for all m, then x~ ~ y*, y~ ~ y* linearly (as m ~ ~ ) ,  and the asymptotic  
convergence factor only depends on the dominant  eigenvalues of the matrix J~, 
which originally has been defined as F-derivative of the Euler iteration (6.5). We 
conclude 

T h e o r e m  7.1. Theorem 6.2 holds for the nonlinear Chebyshev iteration (7.1) also. 

On the other  hand, if Z = I ,  then the discrete Theodorsen  equation (2.2) is 
equivalent to the system (5.3), for which an appropria te  nonlinear cyclic Cheby- 
shev iteration exists: 

y~,+ 1 :=  --(D2m + 1Lr log P(t' + Y~,) + ( 1 --(D2m+ I)Y~, 
(7.6) 

y ' +  ~: = e)zm + 2L log p(t" + y~+ 1) +(1 - co2m+ 2) ym, 

m = 0 , 1 , 2  . . . .  

Here, the factors co,, are again defined by (7.1b), and only y~ has to be given. 
In view of (7.4) this method,  which is a particular nonlinear modified SOR (i.e., 
MSOR)  iteration, approaches the nonlinear SOR method as m ~ Go. Applying 
Perron 's  theory again, we get 
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Theorem 7.2. Theorem 5.1 and Corollary 5.2 hold for the nonlinear cyclic 
Chebyshev iteration (7.6) as well. 

Theorems 7.1 and 7.2 would hold as well if {09m} were any real sequence 
converging to 09. 

Finally, supposing e < 1 we are going to establish the gloval convergence. As 
we have seen, the nonlinear Chebyshev iteration (7.1a) satisfies Eqs. (7.5), which 
also describe the nonlinear Euler i teration (6.5) if we set 09": = 09, Vm > 0. In view 
of (3.3), with any ~c>0, 

6.]: = ~  JIx,.-y*l[, 6~,:-- IlYm-- y*ll 

fulfill the inequalities 

0<,~" = ~6~,,, ~ m +  1 
1 ,, (7.7) 

0=< 6"+ 1 =<09m+ 1Cb~, + (1 --09m+ 1) to- (~m" 

The right side can be written in the form 

H(09m+i) \6~,]' where It(09):= (1-09)  ~c--i 09e 

If we denote  by 6m:=[(6~)2+(6~)2] I/2 the Euclidean norm of  " , r (6m, 6,~) and use 
the (compatible) spectral norm of H(09m+ 1), it follows from (7.7) that 

0<8 , ,+  1 < IIH(09,,+ 1)11 • , , ,  Vm>0 .  (7.8) 

Now, suppose 09~(0, 1), 09,,--*09 (or 09,,=09, Vm>0),  ~c:=(1 _09)1/2, and Ao:=(2  
+e09-09)/2.  Then, the eigenvalues 2 of H(09) satisfy 

I;tl = �89 Q - ( 8 2 0 ) 2  - -  409 + 4)1/2t < A o < 1. 

Since H(09) is symmetric,  IJH(09)II = A(H(c0)) < A o. Consequently,  [IH(09m+ 1)11 < Ao 
for, say, m > too, and, by (7.8), 6 m --* 0 as m ~ oo. 

In view of the fact that the SOR method (5.4) yields exactly par t  of the 
components  of  the Euler iterates (6.5) [cf. (6.8)], and since the same relation 
holds between the nonlinear  M S O R  iteration (7.6) and the i teration (7.1a), we 
conclude 

Theorem 7.3. Assume e < l ,  09~(0, 1) arbitrarily, and {09,.} is any real sequence 
converging to 09. Then the nonlinear second order iteration (7.1a), the nonlinear 
Euler iteration (6.5), the equivalent nonlinear SOR method (5.11), as well as the 
nonlinear MSOR method (7.6), and the nonlinear SOR method (5.4) (the last two 
requiring Z = I )  converge globally to the unique solution y* of (2.3), to (y . r ,  y ,r)T,  
or to Py*,  respectively. 

Consequently,  the system (5.12) also has the unique solution y~ l )=y t2 )=y ,  if 
~ < I .  

If 09 = 1, the Euler i teration reduces to the Jacobi  i teration (3.1), and the SOR 
iteration reduces to the Gauss-Seidel method,  bo th  of which are known to 
converge globally, cf. Theorem 3.1 and [18], respectively. 
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Appendix 1. Proof of Lemma 3.2 

The proof  is mainly based on the well-known minimax theorem for the 
eigenvalues of a symmetric matrix [2, Chap. 1, w and on the fact that the 
restriction of - K  2 to a distinct 2 N - 2  dimensional subspace is the identity. 

We let tk'.=kn/N, k = 0 ,  ..., 2 N - l ,  and 

N--1 
~N.'={xelR2N: Xk= ~ (amcosmtk+b,,sinmtk), 

m=l 
k = 0  . . . .  ,2N-1;amelR, bmelR, m=l . . . .  , N - l } .  

F rom the relation sketched in Sect. 2 (cf. [10] for details) between K and the 
discrete Four ier  t ransform it follows that IR 2N = ~ |  K (the kernel of K) and 
that K2x = - x  for every x e ~  N, i.e. the restriction of - K  2 to ~N is the identity. 
The discrete Four ier  t ransform also yields 

{ 2N--1 2N 1 } 
•= xelR zN" ~ Xk= ~ (--1)kxk=O. 

k=0 k=0 
If we let 

.~N: = {yelRZN:DYe~s},  

D: =diag(d  o . . . . .  d2N- I), 

then K T K D y =  - K 2 D y = D y  for every Ye~N, and, on the other  hand, 

"~N=lyelR2N: k~-odkYk= k=0E (--1)kdkYk =0~" 

So, ~N is a subspace of dimension at least 2 N - 2 .  Now, 

] [!KDY, K D y)] ,/2 [ (KD y, K D  y) 1/2 > max 
IIKD II = max [- - ( ~  y~aN k (y, y) y~2N 

y~:0 y:~0 

= m a x  [(Y' D2 Y)] 1/2 

y~-~N L (y, y) J y~0 

According to the minimax theorem cited, the last maximum is not  smaller than 
the square root  of  the third largest eigenvalue of the diagonal matrix D 2. [ ]  

Appendix 2. Proof of Theorem 3.4 

Suppose that  assumption (SD) holds, and let ~ o : =  {ye]R2N: y satisfies (3.6b)}. If 
Y ~ o ,  then D y ~  o and l o g p ( t + y ) ~  o. We might call these vectors 2M- 
periodic. If we denote  the complex discrete Four ier  t ransform in C 2N and t~ TM 

by f f  and ~o, respectively, then, cf. [10, 12], 

K: = f f K f f -  1 = diag(0, - i . . . .  , - i, 0, i . . . . .  i), 
(1) 

Z:  = Y Z f f -  1 = diag(a0, ..., aN , aN__ 1 . . . . .  al)  
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with real nonnegative weights a o . . . . .  a N. We let K o be the 2 M  x 2 M  Wittich 
matrix, and set 

Xo" = ~ o -  1 diag(ao, av, a2 . . . . . .  aN, aN . . . . . . .  av) o~o, 

Do'.=diag ( ~ ( t k  + y*)) 
/ k = O  . . . . .  2 M - 1  

It can be proved that  X o is again a real symmetric  circulant Toeplitz matrix. 
Now, if y E ~ o ,  those components  of  ~ D  y (i.e. those Fourier  coefficients), where 
the index is not  a multiple of  v, vanish. Thus, we see from 

u: = J  y = K E D  y : ~ - -  1 K 2 ~ D  y, 

that u ~  o too, and 

(H0 '  " ' ' '  U 2 M -  l) T =KoXoDo(Yo , ' " ,  Y 2 M -  l )  T" (2) 

By the same argument,  q~(Y)~o.  
This means that ~ o  is an invariant subspace of  J and that Jo :  = K o  ZoDo is a 

matrix representation (with respect to a particular basis) of  the restriction Jl~o of 
J to ~ o .  Since Jo  is exactly the F-derivative of  an iteration function '~o 
belonging to another  conformal  mapping  problem satisfying assumption (SD) 
with v = 1 (and N:  = M), we may assume v = 1 for the rest of the proof. 

We call an y satisfying (3.6a) an odd vector. If  y is odd, then x : =  log p(t + y) 
is called even since Xk=X2N_ k, k = l  . . . . .  N. This implies that  ~ x c l R  2n, while 
the components  of  K Z ~ - x  are purely imaginary. Hence ~ ( y ) = ~ - l K L r  ~ x  
fulfills (3.6a) too. We conclude that  , l~(SP)c~  and that 5 ~ is an invariant 
subspace of  J,  cf. L e m m a  3.5. In fact, for y~5  "~ we get 

~ ( y )  = (0, Z1, Z 2 . . . . .  Z N - 1 '  O, - - Z N  _ 1 . . . . .  - -  Z1)  T' 

where 
$: = (z 1 . . . . .  zN -- 1)r = qb s (~): = Ks Ls (~), 

K s being an (N - 1) • (N + 1)-matrix and Ls:  IR N- 1 ~ IRN+ i a nonlinear  opera tor :  

K ~((Kr)k~' j=0 ,  N; k = l  . . . . .  N - t ;  ( 
S)k~:=((Kz)kj+(Kz)k, EN_ j, j , k = l  . . . . .  N - l ;  

Ls@) : = (log p(0), log p(t 1 + Yl) . . . . .  log p(t N_ 1 + YN- 1), log p(n)) T. 

The F-derivative o f  4~ s at ~*, which is a matrix representation of Jl~,  is 

Js  = K T D T ,  (3) 

where K v and D r are now square matrices of order  N - 1 defined by 

(KT)ki:=(Kz)kj+(Kz)k, EN_j, j , k = l  . . . . .  N - l ,  
(4) 

D r : = d i a g  (tk + Y*) 
/ k =  1 . . . . .  N -  1 

The basic tool  for the p roof  of  Theorem 3.4 is the following 
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L e m m a l .  Assume that ak>O , k = l  . . . . .  N - l ,  in (1), and define 
matrices S, Dsin, f)x, Dz,  tZls, and Hz ,  all o f  order N -  1, by 

O 

1 - a 2  

0 
Then 

(S)kj : = s ing  tk) = s i n ( / k  n/N) ,  

D qn: = diag(sin t 1 . . . . .  sin t N _  - 1), 

I)~: = diag( ak]/~,~)k = ~ ..... N--l, 

0 (r 2 
�9 . , .  

- -  GN-- 2 0 O'N 2 

--(IN-- 1 0 

j , k = l  . . . .  , N - l ,  

Dr :  - S l ) z S -  1, 

D ~ - I N T D s i n D z = S H z  s 1 = 2 S H z S  ' 

the square 

(5) 

and this matrix  is skew-symmetric.  

Proof  The matr ix  S is symmetric,  and as is known from the finite sine t ransform 
[1], S --1 = (2 /N)S .  This justifies the equality sign at right in (5). It is easy to 
verify that  

H z =  ~ 1 
0 / 0 " 2 0 "  3 . 

- .  - . o  

o/ 
So, Hz  and S H z S  are skew-symmetr ic .  

Due  to (1), K z c o s j t = f f - 1 R s  ~ c o s j t = a i s i n j t ,  

K x [ c o s ( j - 1 ) t - c o s ( / + l ) t J = a ~ _ l s i n ( j - 1 ) t - a j + l s i n ( / + l ) t ,  j = I , . . . , N - 1 .  

Here,  the vector  in brackets  is even and bo th  its first and its N- th  c o m p o n e n t  
vanish. Hence, we get as well 

KT[COS(j-- 1 ) i - c o s G +  1)i] = % _  1 s i n G -  1 ) i - % +  ~ sinG-t- 1)i,  j =  1, .. . ,  N -  1, 

where i :  = ( t  1 . . . .  , tN__ 1) r. Finally, since 

(Dsi n S)k j = sin t k sinj  t k = �89 [cos G -  1) t k - c o s  (j + 1) tk] 

(for k , j = l  . . . . .  N - 1 ) ,  it follows tha t  

(K r _ t s i ng  - 1) t k s ing  + 1) tk] = ( S I ~ r ) k j ,  Dsin S)k j - -g[O' j_  1 --0"j+ 1 

K r Dsi . = SI:Iz S -  i = Sl)~ H s  l )~  1S- 1 = Dz S H z S -  1D i 1, 

which shows that  the equali ty at left in (5) holds. [ ]  
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In view of  (3) and  our  previous  a rguments  Theorem 3.4 is jus t  a coro l la ry  of  

Lemma 2. I f  either D T = D s i "  or D x = I  and D r is any diagonal matrix [not neces- 
sarily the one defined by (4)] with either no negative or no positive element, then 
K T D T has purely imaginary eigenvalues. 

Proof If  D T has str ict ly posi t ive d iagona l  elements,  it can be wri t ten in the form 

D r = D s i o D ~ ,  

where  D R is a posi t ive definite d iagona l  matr ix,  too. We assume s k # 0 ,  k 
= 1, . . . , N - 1  and  use (5) and  DR D~ -t - -D~-IDR (where one of  the matr ices  is 
equal  to I) to conc lude  that  

2 
G : = ~  D R S H x S D  R = D a D  i tKTD~i, D x D  R =D~- ~DRKTDTD ~ 1Dr (6) 

is a skew-symmet r ic  matr ix ,  which is s imilar  to K r D  r.  Thus,  KTD T has pure ly  
imaginary  eigenvalues.  Since these eigenvalues depend  cont inuous ly  on the 
e lements  of  D T and  ~ = J ~ X ~ - ~ ,  they are  still pure ly  imaginary  if some 
d iagona l  e lements  vanish.  (Note  that  we may  still define D R and G in this case, 
but  tha t  G is no more  s imi lar  to KTDT. ) [ ]  

Final ly ,  we would  like to s ta te  the re la ted 

Lemma 3. Ilgrll =< lIKxtl. 

Proof Let D r : = I ,  D : =  diag(0,  1 . . . .  ,1,  0, - 1, . . . ,  - 1). Assuming  y e a  p we get IJyll 

= 1 / ~  llYtl and  

u = K x D  ye=>fi = K T D r  ~. 
Hence,  

IJKTDryI[ }IKsD Yll 
IIKrl[ : m a x  - max 

~ .0  [l~[I y~S~' \ {o} IlylJ 

=< [IKxD[[ =< [tK~ll IIDI] = IIKx]l. [ ]  
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