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Abstract

A new data-based method of estimation and variable selection in linear statistical
models is proposed. This method is based on a generalized maximum entropy formalism,
and makes use of both sample and non-sample information in determining a basis for
coe$cient shrinkage and extraneous variable identi"cation. In contrast to tradition,
shrinkage and variable selection are achieved on a coordinate-by-coordinate basis, and
the procedure works well for both ill- and well-posed statistical models. Analytical
asymptotic results are presented and sampling experiments are used as a basis for
determining "nite sample behavior and comparing the sampling performance of the new
estimation rule with traditional competitors. Solution algorithms for the non-linear
inversion problem that results are simple to implement. ( 2001 Elsevier Science S.A.
All rights reserved.

JEL classixcation: C13; C14; C5

Keywords: Shrinkage estimator; Maximum entropy; Extraneous variables; Squared
error loss; Data weighted prior; Subset selection

1. Introduction

Given a "nite and non-experimental data set economists face two basic
decisions. The "rst is the decision about the set of non-extraneous variables and
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related functions to include in the design matrix. The second is the choice of the
estimation rule to be used in recovering estimates of the unknowns in the
corresponding parameterized model. Traditionally, the model selection and
estimation problems have been separated (Kempthorne, 1987) where the choice
of the estimation rule is done after the choice of model and variable selection. In
reality, however, the two decisions are interdependent as the sampling perfor-
mance of the estimation procedure is conditioned by the model selection choice.

The objective of this paper is to construct an estimation rule that simulta-
neously considers the problems of statistical variable selection and parameter
estimation. This semi-parametric estimation rule has its roots in information
theory and builds on the generalized maximum entropy (GME) and generalized
cross-entropy (GCE) estimation rules proposed by Golan et al. (1996). Two
main properties of this proposed estimation and variable selection rule are
worth noting. The "rst is that this method makes use of both sample and
non-sample (prior) information on a coordinate basis. The second is that the
prior for each coordinate (or variable) is determined endogenously during the
optimization. That is, the optimization is done simultaneously with respect to
both the posterior and an endogenously determined weight imposed on a con-
vex combination of informative and non-informative priors.

The statistical model and variable selection rules are speci"ed and reviewed in
Section 2. The traditional maximum entropy formalism and the GCE estimators
are reviewed in Section 3. In Section 4, the proposed #exible data weighted prior
(DWP) estimation rule is formulated and its corresponding sampling character-
istics are discussed. In Section 5, some sampling experiments are reported. These
experiments demonstrate the empirical risk and variable identi"cation perfor-
mance of the DWP estimator. Section 6 summarizes and concludes this paper.

2. The problem } background and a brief review

To make exposition easier, consider the traditional linear statistical model.
Let us assume that we are unable to directly measure the unknown K-dimen-
sional parameter vector b. Instead, we observe a ¹-dimensional vector of noisy
sample observations y"(y

1
,y

2
,2, y

T
)@ that are consistent with the underlying

data generation process model

y"Xb#e, (2.1)

where X is a "xed (¹]K) full column rank design matrix known to the
experimenter. Further, it is assumed that

Assumption A1. b3B where B is a convex set.
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1Among the more common methods are the C
p

(Mallows, 1973) and the Akaike's (1974)
Information Criterion, AIC. For example, if h(K)"2K/¹ and MG(K

0
)"Ey!Xb

K0
E2, Eq. (2.2)

reduces to the AIC. For more discussion of the statistical properties of these criteria see for example
Shibata (1981) and Zhang (1992). Other criteria, such as Schwarz's (1978) Criterion SC or the Zheng
and Loh (1995) generalization of C

p
as well as cross validation (Breiman and Spector, 1992; Stone,

1974) and penalized likelihood (Sin and White, 1996) are quite commonly used.

Example 1. B"Mb3RKDb
k
3(z

6 k
, z6

k
), k"1, 2,2,KN.

Given the data generation process described by (2.1), the objective is to derive
an estimator that uses minimum assumptions on the likelihood structure and
simultaneously identi"es the extraneous variables on a coordinate-wise basis.
Before developing this estimator, we brie#y review some of the current variable
selection criteria and models.

Within the context of statistical model (2.1), the variable selection problem
may be described in the following way. An investigator has a single and
non-experimental sample of data that is known to have the linear functional
form of (2.1). Suppose that some covariates are unrelated to the prediction of y,
so the true relationship may be characterized by a lower-dimensional parameter
space b

0
. Consequently, we visualize a K-dimensional parameter space that

includes the set of K
0

relevant variables, plus an additional possible K!K
0

extraneous variables with coe$cients of zero. Thus, the design matrix consistent
with the data generation process is a proper subset of the included variables. In
terms of variable selection, there are 2K possible models that can be obtained
from the general model (2.1). However, in most cases we employ our knowledge
from economic theory to reduce our choice, of possible models, only to those
remaining variables that include some uncertainties.

Traditionally, there are two elements in the criterion function for the various
variable selection procedures. One element involves a measure of &goodness of
"t' while the other involves a penalty for complexity, which is a function of the
number of variables K

0
in one of the competing models. Following Zheng and

Loh (1995), let MG(K
0
) be the measure of goodness of "t for the competing

model K
0
, then the various sampling theory estimators KI

0
are asymptotically

equivalent to

KI
0
"argmin

0xK0xK

MMG(K
0
)#h(K)p( 2N, (2.2)

where p( 2 is a consistent estimate of p2 and h(K) is some non-linear function (e.g.,
Hocking, 1976; Amemiya, 1980; Laud and Ibrahim, 1995; Mallows, 1973; Miller,
1990; Mitchell and Beauchamp, 1988).1 For a recent review and development of
both parametric and non-parametric approaches to variable selection, within
a general discrimination framework, see Lavergne (1998).
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2For a good review and recent developments of the Bayes factors within Bayesian testing and
model selection see Berger and Mortera (1999).

In most cases, however, we have some prior knowledge and/or non-sample
information that come from economic theory and from understanding our data.
The variable selection methods discussed above do not &quantify' this know-
ledge. But some of this knowledge (priors) may be quanti"ed and incorporated
directly. This is addressed in the Bayesian approach to model selection, which
also involves setting prior probabilities over the large class of models being
considered together with setting the corresponding priors for the parameters of
each model (see, for example, Zellner and Vandaele, 1975; George and McCul-
loch, 1993; Geweke, 1994; Kass and Raftery, 1995; Zellner, 1996b).2 The model
developed here also uses prior information, but introduces this knowledge in
a di!erent way. This is discussed in the next section.

3. A cross-entropy estimator } review, background and motivation

As an alternative to traditional frequentist shrinkage, pre-test and Bayes
estimators for the location vector in (2.1), Golan et al. (1996) proposed, for both
the symmetric and non-symmetric cases and for both well- and ill-posed prob-
lems, a new shrinkage estimation rule. This estimation rule is based on the
entropy measure of Shannon (1948), a reformulation of the maximum entropy
(ME) formalism of Jaynes (1957a, b; 1984), Levine (1980), Shore and Johnson
(1980), Skilling (1989) and CsiszaH r (1991), and the cross entropy principle of
Gokhale and Kullback (1978), Good (1963), and Kullback (1959). Before devel-
oping the new entropy-based variable selection model, a brief review and
background, for both the ME and GME, are presented.

3.1. The classic maximum entropy model

To provide a basis for understanding the philosophy of the ME approach,
consider the following example. Let H"Mh

1
, h

2
,2, h

M
N be a "nite set and p

be a probability mass function on H. The Shannon's information criterion,
called entropy, is H(p)"!+M

i/1
p
i
log p

i
with 0 log 0,0. This information

criterion measures the uncertainty, or informational content, in H which is
implied by p. The entropy-uncertainty measure H(p) reaches a maximum when
p
1
"p

2
"2"p

M
"1/M and a minimum with a point mass function. Given

the entropy measure and structural constraints in the form of moments of the
data (distribution), Jaynes (1957a, b) proposed the maximum entropy (ME)
method, which is to maximize H(p) subject to these structural constraints. If no
constraints (data) are imposed, H(p) reaches its maximum value and the distri-
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bution of the p's is a uniform one. Thus, if we have partial information in the
form of some moment conditions, >

t
(t"1, 2,2,¹), where ¹(M, the max-

imum entropy principle prescribes choosing the p(h
i
) that maximizes H(p)

subject to the given constraints (moments) of the problem. The solution to this
underdetermined problem is

p( (h
i
)JexpG!+

t

j
t
>

t
(h

i
)H, (3.1)

where j are the ¹ Lagrange multipliers.
If prior information, q

i
, concerning the unknown p

i
exists, then one alterna-

tive to the ME approach is to minimize the Kullback}Leibler (K}L) entropy
distance between the post-data weights and the priors (Gokhale and Kullback,
1978). Under this criterion, known as cross entropy (CE), the problem of
recovering p, may be formulated as minimizing the CE subject to the relevant
structural constraints (moments). The resulting solution is

p8 (h
i
)Jq

i
expG+

t

j
t
>

t
(h

i
)H. (3.2)

When the prior information q
i
has uniform mass, the optimal solutions of the

ME and CE problems are identical.
To relate the ME formalism to the more familiar linear model (2.1), consider

a special case of this model where B of Assumption A1 is
B"Mb3R1Db

k
3[0, 1],+

k
b
k
"1N and e"0. Thus,

y"Xb,Xp (3.3)

and p is a K-dimensional proper probability distribution. The ME formulation
is

ME"G
p("argmaxG!+

k

p
k
log p

kH
s.t. y"Xp and+

k

p
,
"1.

(3.4)

Similarly, the CE formulation is just

CE"G
p8 "argminG+

k

p
k
log (p

k
/q

k
)H

s.t. y"Xp and +
k

p
,
"1,

(3.5)

where I(p, q)"+
k
p
k
log(p

k
/q

k
) is the Kullback}Leibler information, or CE,

measure.
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The exact CE solution is

p8
k
"

q
k
expA+T

i/1
jI
i
x
ikB

+
k
q
k
expA+T

i/1
jI
i
x
ikB

,

q
k
expA+T

i/1
jI
i
x
ikB

X
,

q
k
exp(g8

k
)

X(g8 )
(3.6)

for some natural K-dimensional vector g. The dual CE counterpart is

Inf
p|P

I(p, q)"Sup
j|D

Mj@y!logX(X@j)N"Sup
j|D

Mj@y!F(g)N (3.7)

for F(g)"log X(g) and where P"Mp:Xp"yN is a set of proper (normalized)
distributions satisfying the linear constraints (3.3), and D is the set
Mj3RT:X(X@j)@RN. Having solved for jI , one gets

p8 "
LF(g8 )
Lg8

. (3.8)

3.2. The linear GCE model

Building on the above, we go back to model (2.1) and Assumption A1. Let
z
k

of Example 1 be an M-dimensional vector z
k
,(z

6 k
, z6

k
)"(z

k1
,2, z

kM
)@ for all

k. Instead of searching directly for the point estimates b, we view b as the
expected value over some reference set B. To do so, let p

k
be an M-dimensional

proper probability distribution de"ned on the set z
k

such that

b
k
"+

m

p
km

z
km

,Ep
k
[z

k
] orb"E

P
[z]. (3.9)

In this way the observed data y are viewed as the mean process z with
a probability distribution P that is de"ned on B(or z

k
's). Before proceeding, it

helps to assume

Assumption A2. e3< where < is a symmetric around zero convex set.

Example 2. <"Me3RTDe
t
3(v

6
, v6 ), t"1, 2,2,¹N.

Thus, similar to the b's above, each error term is rede"ned as

e
t
"+

j

w
tj
v
j
,E

wt
[*] or e"E

W
[*]. (3.10)
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3Since for uniform prior distributions the GCE solution reduces to the GME solution, only the
GCE method is presented here. But unlike traditional Bayes estimators, we always specify the
support spaces that bound the possible parameter space.

Having reparameterized b and e, the linear model can be speci"ed as
y
t
"+K

k/1
+M

m/1
z
km

p
km

x
tk
#+

j
v
j
w
tj
, or y"XE

P
[z]#E

W
[*], and the GCE

rule is

GCE"G
p8 "argmin

p,w

+
k

+
m

p
km

log(p
km

/q
km

)#+
t

+
j

w
tj

log(w
tj
/u

tj
)

s.t. y"XE
P
[z]#E

W
[*]; +

m

p
,.

"1; +
j

w
tj
"1.

(3.11)

The solution is

p8
km

"

q
km

expA+t
jI
t
z
km

x
tkB

+
m
q
km

expA+t
jI
t
z
km

x
tkB

,

q
km

expA+t
jI z

km
x
tkB

X
k
(jI )

(3.12)

and

w8
tj
"

u
tj

exp(jI
t
v
j
)

+
j
u
tj

exp(jI
t
v
j
)
,

u
tj

exp(jI
t
v
j
)

W
t
(jI )

, (3.13)

where the prior weights for p
k

are q
k
"(q

k1
,2, q

kM
)@ and the corresponding

prior weights for w, consistent with the set of discrete points *, are
u
t
"(u

t1
,2, u

tJ
)@. With these estimates we proceed to calculate the point esti-

mates bI
k
,+

m
z
km

p8
km

and e8
t
,+

j
v
j
w8

tj
.

Finally, the dual GCE is

Inf I(p, w; q, u)
p|P, w|W

"Sup
j|D Gj@y!+

k

logX
k
(X@j)!+

t

logW
t
(j)H. (3.14)

Solving the dual yields the optimal j, which in turn yields the point estimates via
(3.12) and (3.13). Finally, the Hessian matrix of the GCE problem is positive
de"nite for p, wA0, and thus satis"es the su$cient condition for a unique global
minimum.3

3.3. Discussion

In terms of the speci"cation of z
k

and *, it is traditional to assume that the
elements of b and e are "nite, and that b

k
and e

t
are drawn from a "nite sample

and are usually bounded (see Assumptions A1 and A2). Furthermore, most
sciences have a conceptual base for identifying and de"ning a relevant set of
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4For a detailed comparison and discussion of other entropy and non-entropy regularization
methods, as well as the maximum entropy on the mean, see for example Donoho et al. (1992), Golan
et al. (1996, Chapter 8) and Bercher et al. (1996).

5For other non-Bayesian methods see for example the recent work on the empirical likelihood
(e.g., Owen, 1990; Qin and Lawless, 1994), weighted least squares and the GMM (e.g., Hellerstein
and Imbens, 1999; Imbens et al., 1998).

variables, along with the characteristics of the corresponding parameters consis-
tent with a particular problem or data generation process. For example, equality
and inequality constraints on b

k
commonly arise in many econometric and

other scienti"c applications, and theory or prior empirical results permit the
parameters to be signed or speci"ed within a bounded range [a, b]. In econ-
omics, behavioral and technical coe$cients such as marginal productivity,
marginal propensity to consume or price elasticities may be classi"ed as non-
negative or positive and naturally bounded. In terms of *, one possibility is to
use the sample (empirical) variance of y and the three-sigma rule. This is the
approach taken here.

Next, one may ask how sensitive are the estimates to the speci"cation of z
k
.

The simple answer is that as long as the center of these supports remain
unchanged, say zero, the estimates are practically insensitive to changes in the
boundary points of the supports. For example, let z

k
"(!C, 0,C)@ for each k.

Then, a symmetric change of these supports to z
k
"(!100C, 0, 100C)@ has

practically no signi"cant e!ect on the estimated b's. Since in this work the
objective is to identify the extraneous and the non-extraneous variables, the
choice of zero as the center point of the supports, for each k, seems to be natural.
However, it is emphasized that for small data sets, the estimates may be sensitive
to a change in the center of the supports z.

3.4. Comparison with other estimation rules

First, we note that, unlike the usual Stein-like estimators (e.g., Stein, 1955,
1981; James and Stein, 1960; Judge and Bock, 1978; Brown, 1966; Bock, 1988),
the GME}GCE estimators shrink estimates on a coordinate-by-coordinate
basis. For example, if the support vector z

k
is centered at zero, the coe$cients

close to zero receive maximum shrinkage.4
Second, we note that the GCE formulation, that leads to post-data means, has

many of the characteristics of the standard Bayesian conjugate analysis where
the posterior mean is a matrix-weighted combination of the prior means and the
OLS estimates. In the GCE approach however, the posterior means are
weighted combinations of the data and the priors within the supports. Conse-
quently, the posterior means are always within the bounds of the supports Z
and *.5
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Finally, it is important to note the relationship between the GCE}GME
entropy-based estimation rules and Zellner's seminal BMOM approach (e.g.,
Zellner, 1996a, 1997; Tobias and Zellner, forthcoming). Like the GCE method,
the objective behind the BMOM method is to estimate the unknown parameters
with minimum assumptions on the likelihood function. As stated by Zellner
(1997, p. 86), `The BMOM approach is particularly useful when there is
di$culty in formulating an appropriate likelihood function. Without a likeli-
hood function, it is not possible to pursue traditional likelihood and Bayesian
approaches to estimation and testing. Using a few simple assumptions, the
BMOM approach permits calculation of post-data means, variances and other
moments of parameters and future observationsa.

In the BMOM approach one starts by maximizing the continuous entropy
function (of a density function) subject to some ¹ side conditions (moments) and
normalization. This yields the average log-height of the density function, which
is the least informative density given these side conditions. Thus, under the
BMOM approach one works with the most uninformed, that is maxent, post-
data density for the parameters. A further advantage of the BMOM approach is
that many types of side conditions can be (and have been) utilized in order to
obtain post-data densities for parameters and future observations. These side
conditions include bounds on the parameters' values, bounds on the error terms'
ranges, inequality restrictions, fractile conditions, and moment conditions. For
more innovative applications of the BMOM see, for example, LaFrance (1999)
and the discussion in Zellner (1999). For a full comparison of the traditional Bayes
and the BMOM approaches see Zellner (1997, Table 1) and for an information
theoretic derivation of Bayes' Theorem that provides a link between maximum
entropy procedures and Bayes' Theorem see Zellner (1988) and Soo" (1996).

Even though the basic objectives of the BMOM and the GCE are similar, they
di!er in their inputs. Following Zellner, the basic inputs in the BMOM are the (i)
data, (ii) prior information, (iii) mathematical form of the model, (iv) moments of
the parameters and future values, and (v) the Maxent principle. The two basic
di!erences in the GCE inputs are in the way prior information is incorporated
and the assumption (input) on the moments of the parameters and future values.
Speci"cally, under the GCE rule, the prior information is incorporated via three
routes: the support spaces (z and *), the priors in the objective functional (q and
u) and other restrictions that may enter as additional equality/inequality con-
straints. Further, the GCE rule is speci"ed such that each data point enters
directly in the optimization (rather than a quadratic form of the data or the
moments' input). Therefore, the moment requirement can be thought of as
a &weak' moments' requirement in the sense that the sample's moments may be
di!erent (up to a certain distance which is data dependent) from the underlying
population's moments. Obviously, our choice of an estimator is problem and
data speci"c and strongly depends on the amount of information we have with
respect to a speci"c problem, model and data.
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6For other approaches with similar objective see for example the Bayes}Stein estimators for the
normal k-means reviewed and developed in Zellner and Vandaele (1975).

4. A 6exible, prior, data-based estimator

In this section the GCE estimator is extended so that it embraces both
the model identi"cation and estimation objectives discussed earlier. To
accomplish this task the GCE estimator is reformulated such that the
extraneous variables are identi"ed and the b parameter space may be truncated,
or all variables are retained but the coe$cients of extraneous variables are
shrunk toward zero.6

Given the objective of identifying possible extraneous variables, we specify the
discrete support space z

k
for each b

k
to be symmetric around zero and employ

the GCE estimator with a unit mass prior on zero. While e!ective for identifying
extraneous variables, as an estimator of b under a squared error loss measure,
this does not lead to a minimax rule. If, on the other hand, we wish to have
estimators that, under a squared error loss measure, are minimax and thus
superior to traditional estimators over all, or part, of the parameter space,
the GCE estimator that uses uniform priors (or similarly, the GME) is a
good rule. However, if our objective is to shrink but not necessarily eliminate
the extraneous variables, and simultaneously produce an estimator that has
a good sampling performance over the whole range of the possible parameter
space, then we may combine the GME and GCE (or the GCE with uniform
priors and the GCE with spike priors) estimators. This is the formulation
proposed here.

We start by specifying each z
k

and * to be symmetric around zero, with large
lower and upper bounds for z and the three-empirical-sigma-rule for *, so that
b
k

and e
t
are contained in a "xed interval with arbitrarily high probability. We

also specify, as a possible alternative for each b
k
, a &spike' prior, with a point

mass at z
km

"0, for each k"1, 2,2,K. Thus, a #exible, data-based prior is
speci"ed such that for each b

k
coordinate either a spike prior at the z

km
"0,

a uniform prior over the discrete support space z
k
, or any convex combination of

the two can result. The goal is to produce a natural adaptive statistical method
that is data based and free of subjective choices except for the bounds on the
support spaces. Because we are interested in a formulation that puts pressure on
the data by including both uniform and spike prior alternatives, or some convex
combination of the two, we are not able to make use of the conventional cross
entropy formalism. Consequently, given the problem at hand, and within the
entropy approach, we consider an extended entropy formulation. But because
the q

k
prior alternatives cannot be introduced as structural constraints, we must

"nd a way to introduce them in the objective function. To accomplish this,
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consider the following variant of the GCE formulation of Section 3:

Min
p,pc,w

I(p, pc, w),+
k

(1!c
k
)A+

m

p
km

log p
kmB/[(1!c

k
)(!logM)#c

k
m]

#+
k

c
k
+
m

p
km

log(p
km

/q
km

)#+
k,h

pc
kh

log(pc
kh

/qc
kh

)

#+
xt,j

w
tj

log(w
tj
/u

tj
) (4.1)

s.t.

y
t
"+

k,m

z
km

p
km

x
tk
#+

j

v
j
w

tj
(4.2)

and

+
m

p
km

"1,+
h

pc
kh
"1,+

j

w
tj
"1 (4.3)

and where the prior weight (prior mixture) c
k

is

c
k
,+

h

zc
h
pc
kh

(4.4)

with zc
1
"0 and zc

H
"1 always and where m,!+

m
q
km

log q
km

. Further, except
for the point mass prior q

k
, all other priors (i.e., qc and u

t
) are specixed to be

uniform.

4.1. The criterion

Having speci"ed the new data-weighted prior (DWP) estimation rule, we now
discuss the explicit structure of the objective function (4.1). There are four parts
to this objective function. Just as in Section 3 (the upper part of Eq. (3.11)), the
last element on the right-hand side (RHS) of (4.1) is the entropy of the noise
component. Since * is speci"ed to be symmetric, and equally spaced, support
around zero, this part of the objective function shrinks the noise components
toward zero. The bounds for the errors' supports are just $3p6

y
where p6

y
is the

empirical standard deviation of the sample. The "rst two elements on the RHS
of (4.1) relate to the uniform and informative (spike) priors respectively, with
corresponding weight c

k
3[0, 1], where c

k
"0 implies use of a uniform (uninfor-

mative) prior, while c
k
"1 implies use of a spike prior. In terms of the "rst RHS

element, as noted in Section 3, when using a uniform prior over the support
points there is no need to specify this prior explicitly. The third element in the
objective function relates to the total entropy of the weights c. Finally, the "rst
element of the objective function is scaled by the convex combination of the
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negative of the entropy of the priors. If, for example, c
k
"0, then it is scaled by

the negative entropy of the uniform distribution (for coordinate k), which is
!ln(M). If, on the other hand, c

k
"1, then it is scaled by m,!+

m
q
km

log q
km

,
which equals zero i! q

k
is a spike prior. This scaling, or normalization, is needed

because without it, the "rst two elements are of di!erent magnitude and sign.
Thus, without this normalization, the uniform prior always takes over, and the
DWP reduces to the GME. This is because the "rst element of the objective
function is always non-positive, while the second element is always non-nega-
tive. With this scaling, however, the two parts of the objective can &communicate'
in the sense that both are of the same sign and magnitude, and there is
a data-based choice of the prior for each coordinate that is most consistent with
the sample information. In this way this estimator simultaneously chooses the
mixture of the two alternative priors on a coordinate-by-coordinate basis and
uses this information, along with the data, to determine the shrinkage and to
provide estimates of the unknown parameters. We note in conclusion that if one
wishes to avoid the scaling carried in (4.1), the "rst component on the RHS of
(4.1) can be substituted for the GCE with uniform priors. However, the formula-
tion used here, is computationally superior and more e$cient.

4.2. Solution and properties of the estimator

The solution to the optimization problem (4.1)}(4.3) yields

p8
km

"

qc8 k @Ak

km
expA(1/A

k
)+

t
jI
t
x
tk
z
kmB

+
m
qc8 k @Ak

km
expA(1/A

k
)+

t
jI
t
x
tk
z
kmB

, (4.5)

w8
tj
"

u
tj

exp(jI
t
v
j
)

+
j
u
tj

exp(jI
t
v
j
)
,

u
tj

exp(jI
t
v
j
)

W
t
(jI )

(4.6)

and

c8
k
,+

h

p8
kh

zc
h
, (4.7)

where j re#ects the ¹-Lagrange multipliers for the data equations (4.2) and
A

k
,1!c8

k
/((c8

k
!1)logM#c8

k
m)#c8

k
. As before (3.9) and (3.10) provide the

basis for recovering estimates of b and e. As c
k
P0 the designated prior becomes

more uniform, with the estimates approaching those of the GME estimator. For
large values of c

k
(above 0.49), the GCE estimator with an informative (in our

case, point mass on zero) prior takes over.
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The following conditions ensure consistency and asymptotic normality of the
DWP estimation and variable selection rule:

(i) The errors' support * is symmetric around zero (see Assumption A2).
(ii) The support space z

k
spans the true value of each one of the unknown

parameters b. Further, the support has a "nite lower and upper bounds
z
k1

and z
kM

, respectively (see Assumption A1).
(iii) The errors are iid.
(iv) lim

T?=
¹~1X@X exists and is non-singular.

The proof of consistency and asymptotic normality follows directly from the
empirical likelihood approach (Owen, 1990, 1991; Qin and Lawless, 1994; Golan
and Judge, 1996). Similarly, these proofs can be established by following Mittel-
hammer and Cardell (1996).

In general, under the above four conditions, J¹(bK !b) $
P N(0, Q

DWP
) where

Q
DWP

"p2[lim¹~1(X@X)~1] is the asymptotic covariance matrix for the DWP.
Since b is a continuous function of j (the Lagrange multipliers) this statement is
an immediate extension of Qin and Lawless (1994, Lemma 1 and Theorem 1).
Finally, p( 2"[1/(¹!K)]+

t
e( 2
t

with e(
t
"+

j
v
j
w(
tj

is a consistent estimator of the
variance.

4.3. Diagnostics and inference

Given this testing basis, we propose a test to compare the restricted DWP
model with the unrestricted one. With identical, and symmetric around zero,
supports z and * for both problems, we follow Owen (1990, 1991), Qin and
Lawless (1994), and Golan and Judge (1996) and de"ne an empirical entropy (or
expected log-likelihood) ratio statistic

l
E
,¸

E(b0 )
!¸

E(bI ) , (4.8)

where ¸
E(b0 )

applies to the optimal value of the DWP estimator's objective
function when restricting b"b

0
"0, while ¸

E(bI ) is the optimal value of the
DWP estimator's objective function when the b's are not restricted (i.e., model
4.1}4.3). Under the null, 2l

E
is asymptotically distributed as a s2

(K)
. Similarly,

one can test the hypothesis whether each one of the K covariates is extraneous.
In that case, the entropy-ratio statistic 2l

E
has a limiting distribution of s2

(1)
.

We now use the DWP rule to provide a normalized (information) entropy
measure, which will be used as the criterion for identifying and eliminating the
extraneous variables from the design matrix. Let the normalized entropy for
each coordinate k be

S(p8
k
),

!+M
m/1

p8
km

log p8
km

logM
, (4.9)
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where S(p8
k
)"1 implies maximum uncertainty and S(p8

k
)"0 implies full cer-

tainty.
Next, we can relate the normalized entropy, or information measure, S, with

the s2 statistic. We start by pointing out that each component of (4.1) is a basic
cross-entropy measure for some proper set of probabilities. Ignoring the c's for
simplicity sake, let p8

km
be any appropriate estimator of p

km
and let Mp8

k
N be a set

of M probabilities over the M-dimensional support space z
k

for each one of the
K coordinates. Then, we de"ne the statistics

I(p8 ; q),
K
+
k/1

M
+

m/1

p8
km

log(p8
km

/q
km

) (4.10)

and

s2
(M~1)

,M
M
+

m/1

1

q
km

(p8
km

!q
km

)2 for each k"1, 2,2,K. (4.11)

A second-order approximation of I(p8 ; q) is just the entropy-ratio statistic for
evaluating p8 vs. q discussed above. That is, for each k,

I(p8
k
; q

k
)+

1

2

M
+

m/1

1

q
km

(p8
km

!q
km

)2 for each k"1, 2,2, K, (4.12)

so 2M times the entropy-ratio statistic corresponds to s2
(M~1)

. Given this
relationship, we use the normalized entropy measure, for each covariate k, in
order to test the hypothesis H

0
:b

k
"0 for each k. Thus, s2

(M~1)
"2MI(p8

k
; q

k
)

for the spike priors q
k
.

Based on the above we can de"ne some rules to identify the extraneous
variables. First, the following variable selection rule is de"ned. If
[1!S(p8

k
)]*0.99, then variable k is classi"ed as extraneous. Conversely, if

[1!S(p8
k
)](0.99, then a real classi"cation of the variable is suggested. An

S(p8
k
)"0.99 as opposed to 1.0 is used to allow for insigni"cant computer

rounding e!ects.
Alternatively, a second identi"cation criterion is proposed. This criterion is

based on the weight c(
k

in (4.1). If for a particular variable c8
k
(0.5, then

a non-extraneous variable is identi"ed. As c8
k

decreases, the strength of this
identi"cation is increased. Conversely, a c8

k
*0.5 suggests the variable belongs

in the extraneous category.
Finally, we relate our choice of 1!S(p8

k
)*0.99 to the s2 measure which, in

that case, yields

s2
(M~1)

"2MI(p8
k
; qu

k
)"2M ln(M)[1!S(p8

k
)], (4.13)

where qu
k
"1/M for all m"1, 2,2, M. Thus, for M"5 (the number of support

points used in all the experiments presented in the following sections), the 0.99
rule implies s2"15.9'(s2

(4)
)c"13.3 for a"0.01.
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4.4. Comparison with the ML approach

Having speci"ed an estimator with a variable selection component and
demonstrated its asymptotic properties, it is possible to compare its sampling
performance with other conventional estimation rules and with other variable
selection criteria. To achieve this comparison, instead of working with each data
point directly, it is possible to follow common practice and transform the data
representation (4.2) to a moment representation

X@y"X@Xb#X@e"X@XZp#X@<w, (4.2a)

where all previous de"nitions of b and e follow and < is a matrix composed of
the ¹ vectors *.

Lemma 1. If we let *"0 and substitute the K pure moment conditions
X@y"X@XZp for the ¹ data-consistency equations (4.2) then, under restriction
(ii), the resulting estimates of problem (4.1)}(4.3) are equivalent to the least-
squares (ML) estimates.

This proof is immediate since the constraints X@y"X@XZp, that must be
satis"ed, are just the "rst-order conditions for the least-squares (ML) estimates.

Lemma 2. For any "nite data set, the approx var(bI
k(DWP)

))approx var(bI
k(GCE)

)
for all k.

The logic for the proof is as follows. Golan et al. (1996, Chapter 7) show that
for all *O0, the approx var(bI

k(GCE)
)(approx var(bK

k(LS@ML)
) for all "nite data sets

and for all k. Following their logic, for expository purposes, let X be an
orthonormal matrix and the error covariance +

e
"p2I

T
. Under these assump-

tions the approximate DWP covariance is

CovbI
(DWP)

"p8 2+I
z
(+I

z
#+I

v
)~2+I

z
+p8 2(X@X)~1, (4.14)

where &I
z

and &I
v

are the respective covariances for p8 and w8 . The kth element of
(4.14) is

<ar(bI
k(DWP)

)"p8 2A
p8 2
z

p8 2
z
#p8 2

v
B

2
, (4.15)

where at the limit, p8 2
v
"0, and (4.14) is just the LS(ML) variance p( 2. To compare

the DWP and GCE variances for the kth element, we need to evaluate p8 2
z
, which

is just

p8 2
z
"+

m

p8
km

z
km

!A+
m

p8
km

z
kmB

2
. (4.16)
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7For a nice discussion of the AIC criterion and its relationship to the CE criterion and other
information criteria, within the model selection, see Lavergne (1998).

8 In future work we will investigate the predicitive performance of these estimation rules where the
parameters of each method are restricted to fall within the same bounds.

Variance (4.16) reaches its maximum at a given z
k

for p8
km

"1/M, for all
m"1, 2,2, M. In Section 3, given the data constraints, the GCE objective
(with uniform priors) makes the estimates p(

km
as uniform as possible. Alter-

natively, the spike priors in the DWP estimator make the p8
km

the least
possible uniform given the data. Consequently, the less uniform the p8

km
, the

smaller p8 2
z

in (4.16). This establishes the relationship approx var(bI
k(DWP)

))ap-
prox var(bK

k(GCE)
).

To summarize, most variable selection models (criteria) require choosing
among 2k di!erent models while imposing some unknown smoothing function
(Zheng and Loh, 1995) or smoothing parameter (e.g., C

p
and AIC). Alterna-

tively, the DWP is a data-driven penalty function estimator that is based on
weak distributional assumptions. It does not require 2k steps and/or a pre-
speci"ed smoothing parameter. It is a one-step estimation rule that requires the
pre-speci"ed support spaces. Finally, note that both the popular AIC variable
selection rule and DWP are based on the Kullback}Leibler information (cross
entropy) measure. If we make use of the pure moment condition (4.2a) within the
DWP problem (4.1)}(4.3), then it is easy to show a proportional relationship
between the DWP and an AIC criterion for each of the 2k models.7

5. Sampling experiments

In this section we report some results of Monte Carlo sampling experiments
to indicate the small sample performance of the DWP estimator and, under
a squared error loss measure, compare it with other relevant traditional and
shrinkage estimators. For the estimator comparisons, we continue to consider
the multivariate estimation problem where the ML estimator is d0(b) and has
risk o(b, db)"p2 tr (X@X)~1. We note here that in this work we restrict ourselves
to the squared error loss measure and do not attempt to analyze predictive
performance.8 For a comprehensive comparison of the predictive powers of
GME and some Bayesian methods (MELO and BMOM) see the recent work of
Perlo! and Shen (1999).

5.1. The symmetric case

In order to provide an experiment that involves a mean square prediction
error loss and a comparison with the well-known positive rule Stein shrinkage
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estimator, we use the orthonormal K-mean linear statistical model

y"Xb#e"XS~1@2S1@2b#e"A h#e, (5.1)

where S1@2 is a positive-de"nite symmetric matrix with S1@2S1@2"S"X@X,
A@A"I

K
and h"S1@2b. In the experiment e&N(0, p2I

T
), p"1 and K"4. The

risk

E[(hI !h)@(hI !h)]"E[(bI !b)@X@X(bI !b)] (5.2)

yields a weighted loss function in terms of b and results in the mean square
prediction error criterion that is often used in econometrics to evaluate perfor-
mance. The parameter space investigated is h"cd

i
, where d @

1
"(h

1
, 0, 0, 0),

d @
2
"(h

1
, h

2
, 0, 0) and d @

3
"(h

1
, h

2
, h

3
, 0). The scalar c is chosen so that the

parameter vector length (h@h)1@2"0, 1, 2,2, 66. For selected values of the
(h@h)1@2 parameter space, 5000 samples of size ¹"10, 30 and 100 were generated
and empirical estimator risks under a Ed(y)!hE2 measure were obtained. For
the DWP estimator, z@

k
"(!100,!50, 0, 50, 100) and *@"(!3p6

y
, 0, p6

y
) where

p6
y

is the empirical standard deviation of each sample. Further, q@
k
"(0, 0, 1, 0, 0)

for each k, which means we are putting point mass at zero for each h in the case
of the GCE estimator, and u@"(0.33, 0.33, 0.33) for each t. For comparison
purposes, the risk for the ML, positive rule Stein (PRS), GME and GCE
estimators are reported. To make the ML approach fully comparable to the
DWP, we need to use the constrained ML where the constraints speci"ed (for
each b) are the lower and upper bounds of z. But because we use very wide
bounds, the constrained solution is equivalent to the unconstrained solution
and therefore we refer to it as ML.

The risk for the PRS over the (h@h)1@2 parameter space was numerically
evaluated using an algorithm by Bohrer and Yancey (1984). The z

k
and * sup-

port spaces noted above are also used for the GME and GCE estimators. It is
worth noting that the support spaces for z

k
where chosen to re#ect very wide

bounds. Increasing these bounds did not change the estimates.

5.1.1. Experiment 1 } d @
1
"(h

1
, 0, 0, 0)

5.1.1.1. Variable identixcation. First, we focus on the variable selection objec-
tive with a design matrix involving one non-extraneous and three extraneous
variables (Table 1). The last three columns of Table 1 provide information that
forms a basis for identifying the correct design matrix for di!erent points in the
(h@h)1@2 parameter space. The column labeled c8 identi"es the weight between the
uniform and the point mass prior for each coordinate at each point in the (h@h)1@2
parameter space. Note at the origin the weight is 0.5, which signi"es that the
informative prior with point mass at zero is the active prior. This choice remains
active over the whole (h@h)1@2 parameter space for the extraneous variables. For
the non-extraneous variable, as (h@h)1@2 increases, the weight on the point mass
prior decreases and "nally all weight is allocated to the uniform prior.
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Using the normalized entropy measure, column 5 reports the probability of
correctly identifying each of the variables. Note at the origin, where all coordi-
nates are extraneous, and the point mass prior is consistent with the location
parameters, the probability of correct identi"cation is about 0.98. Over the
parameter space this identi"cation probability is maintained for the extraneous
variables. For the non-extraneous variable x

1
, over the range (h@h)1@23(1, 2), the

DWP rule under"ts, and the probability of correct variable identi"cation is on
average less than 0.5. However, for (h@h)1@2*3, the probability of correct
identi"cation, on average, approaches 1.0. In terms of the normalized entropy
measure, these results mirror those reported under the c8 column. For the
non-extraneous variable, x

1
, the normalized entropy measure, which re#ects the

probability of being an extraneous variable, decreases as (h@h)1@2 increases, and
thus reinforces the c8

k
measure in identifying this variable from its extraneous

counterparts. One reason for these nice results is that when all but a single
variable are extraneous, a model that identi"es these extraneous variables
correctly, must also identify the single non-extraneous variable correctly. The
next set of experiments investigate the more complex case of more than a single
non-extraneous variable.

5.1.1.2. Empirical risks. In this section, we assume that an investigator wishes
to use the DWP formulation as an estimator that shrinks but does not eliminate.
To show the statistical consequences of this rule, we present in Fig. 1 empirical
risks over the (h@h)1@2 parameter space. As a basis of comparison, we present the
corresponding risks for the ML and PRS estimators. The comparison with the
PRS points out the risk implications of Stein-like estimators where all coordi-
nates are shrunk by the same amount versus estimators such as GCE, GME and
DWP, where shrinkage may vary from coordinate to coordinate. Thus, in this
experiment we contrast the performance of the estimators where extraneous
variables exist and are shrunk but not identi"ed and removed. Variability
and bias results for this experiment (for the DWP) are presented in column 2 of
Table 1.

Under this sample design the GCE estimator is risk superior to the PRS
estimator over the whole range of the (h@h)1@2 parameter space. At the origin the
empirical risks of the PRS estimator and the GCE estimator, with spike prior at
zero, are 1.472 and 0.53, respectively. From this point in the (h@h)1@2 parameter
space the risk of the positive part Stein increases sharply, reaches 2.8 at 10 and
"nally becomes equal to the ML risk of 4.0 around (h@h)1@2"60. Alternatively,
the GCE empirical risk increases more slowly and "nally reaches 3.37 as (h@h)1@2
approaches 60. Consequently, in these sampling experiments the GCE estimator
is risk superior, over the range of the h parameter space, to both the ML and
PRS estimators. If, instead of using a point mass prior at zero, we had used
a uniform prior over the elements in q

k
, the empirical risk of the GME estimator

is about 3.90 over the whole (h@h)1@2 parameter space.
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Fig. 1. Empirical risk functions for the ML, GME, GCE, PRS and DWP estimators.

9These experiments were repeated for di!erent sample sizes but to save space are not reported
here. For example, for ¹"30 the MSE for the DWP is about 3.2 time smaller than that of the ML
over the whole parameter space. For ¹"100, the DWP maintains its superiority as well. In this
case it is between 2.5 and 3.2 times smaller than the ML over the parameter space.

Alternatively, the empirical risk of the DWP estimator is 0.246 at the origin
where all variable coordinates are correctly shrunk toward zero, and then
reaches a maximum of 2.61 at (h@h)1@2"3, where h

1
continues to be shrunk

toward zero and the bias is a major part of the risk component. From there on
the risk decreases sharply and stabilizes at about 1.20 for the remainder of the
parameter space. In this range of the parameter space, where h

1
is shrunk

relatively little, the coe$cients of the extraneous variables h
2
, h

3
and h

4
con-

tinue to have a maximum shrinkage toward zero. The DWP estimator identi"es
and shrinks the extraneous variables correctly and is superior to all the other
estimators over the whole parameter space.9

Finally, it is important to remember that under the GME, GCE and DWP
rules, speci"c bounds are imposed on all of the parameters' values. Naturally,
these bounds may have a signi"cant impact on the sampling results. Such
bounds can of course be introduced in traditional Bayes and other sampling
theory approaches. To provide a fair comparison, the bounds used in this paper
covered a very large range of the parameter spaces such that the restricted and
unrestricted ML yielded the same results. Nevertheless, one should keep in mind
that the use of bounds can cause moments to exist and eliminate outlying
estimates. For example, Perlo! and Shen (1999) show that when estimating
c"1/b with b restricted to the range 0(a(b(b, this restriction precludes
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Fig. 2. Empirical risk functions for the DWP estimator for di!erent levels of extraneous variables.

estimates of b to take on values that are close to zero, implying that the e!ect on
the estimated values could be quite large. Consequently, the results presented
here should be interpreted with these quali"cations in mind. To summarize,
there is a need for much more research in order to identify and establish the
exact impact of imposing bounds on the properties of any estimator. As the
method developed here, as well as the GME/GCE, uses pre-speci"ed bounds on
the parameters, the e!ects of these bounds on the estimator's properties is
a subject for future studies.

5.1.2. Experiment 2 } d@
3
"(h

1
, h

2
, h

3
, 0)

The previous experiment pretty much tells the estimation and variable selec-
tion story because the DWP results evolve on a coordinate-by-coordinate basis.
Thus, risk and variable selection results for any mix of non-extraneous and
extraneous in the full design matrix can be approximated from the results of
Section 5.1.1 .

To give a sense of the risk results for di!erent ratios of non-extraneous
to extraneous variables, we present the empirical risk functions for the
DWP and ML rules in Fig. 2. Note that, over a small portion of the parameter
space (for small values of h

k
), the DWP rule with 25% extraneous variables

under"ts and is inferior to the ML and Stein rules. However, over most
of the (h@h)1@2 parameter space, the DWP rule is risk superior. Finally, in terms
of variable selection, the c8

k
weight parameter and the normalized entropy

measure work as in Section 5.1.1.1. Both the non-extraneous and extraneous
variables are identi"ed, over the range of the h parameter space, with probabilit-
ies *0.95.
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10All results discussed in this Section are available, upon request, from the author.
11For example, the commonly used &Longley' aggregated employment data (Longley, 1967) have

a condition number of approximately 11,100; a highly collinear case. Our choice of 90 is completely
arbitrary with the objective of maintaining a very moderate, but yet realistic, level of collinearity.

5.1.3. Experiment 3 } the s2 error distribution
To demonstrate the robustness of the DWP estimator in a non-Gaussian

setting, we repeated the experimental design of Section 5.1 with s2
(4)

random
errors, normalized to have a unit variance. The results for this case (not reported
here)10 are similar in structure and magnitude to those presented in Fig. 1 and
Table 1. In terms of identifying the extraneous and non-extraneous variables,
the DWP mirrors the results reported in Table 1. In particular, at least 93% of
the extraneous variables are identi"ed over all points in the (h@h)1@2 parameter
space.

5.2. The non-symmetric case

5.2.1. Experiment 4 } high condition number
Consider for this experiment the general linear statistical model y"Xb#e,

where the ML estimator db is distributed as N
K
(b,p2(X@X)~1), and X@X is

a positive-de"nite matrix. For constructing the design matrix we use the condi-
tion number's de"nition i(X@X)"n

1
/n

2
which is the ratio of the largest and

smallest singular values of the design matrix X, with columns scaled to unit
length. As i(X@X) increases, traditional estimators, such as the ML estimator,
become unstable and have low precision. For a review of di!erent regularization
methods that exhibit relatively good risk characteristics see, for example, Hoerl
and Kennard (1970), O'Sullivan (1986), Breiman (1995), Tibshirani (1996), and
Titterington (1985).

The sampling experiment for the non-symmetric case is similar to Experi-
ment 1, reported in Section 5.1.1. However, to re#ect a design matrix more in
line with data that are by and large non-experimentally generated, instead of
a condition number of i(X@X)"1 for the design matrix, we now specify a very
moderate condition number of i(X@X)"90.11 Under the SEL, the ML risk is
approximately 47.5 and the iterative ridge estimator risk is approximately 14.1.
The risk performance of the DWP and GCE rules mirrors that for the well-
posed case, where i(X@X)"1. The DWP risk starts at about 0.21, increases to
a maximum of 2.18 for (b@b)1@2"2, and decreases rapidly to 1.0 from about
(b@b)1@2"12 in the parameter space. Unlike the DWP, the GCE risk increases
monotonically with (b@b)1@2 and is unbounded (or bounded by the support space
Z). Selected points on the parameter space for the DWP estimator are reported
in Table 2. Note in comparing the MSE for the well-posed design matrix in
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Fig. 3. Empirical risk functions for the DWP, ML and GME with t(3) errors and di!erent levels of
extraneous variables.

Table 1 to the moderately ill-posed design of Table 2, that the performance of
the DWP rule actually improves as the condition number i(X@X) increases.

The results of this case are basically similar in nature to the empirical risk
results of Fig. 2 and are in each case, greatly superior to the risk results for the
ML and ridge estimators. The risk results from experiments with higher and
lower condition numbers were virtually the same as those reported in the table
and are not reported here.

In terms of identifying extraneous variables, the sampling performance for the
case of a i(X@X)"90 design is reported in Table 2. Again, the results for the
ill-posed case, mirror those of the well-posed case reported in Table 1. Note
the probability (or frequency) of identifying the extraneous variables exceeds
0.95 in all cases.

5.2.2. Experiment 5 } ill-conditioned design and t
3

error distribution
Within the linear model and the above framework, in this experiment we

investigate the small sample performance of a moderately ill-conditioned design
matrix and a non-normal error process. The design matrix consists of K"4
covariates, generated such that x

4
"x

1
#0.15e*, where e* is a normal (0, 1)

random vector. This experiment follows George and McCulloch (1993). The
errors are generated from a student-t distribution with three degrees of freedom,
normalized to a unit variance. The results plotted in Fig. 3 exhibit, in general, the
risk behavior of the previous experiments. The ML empirical risk is 46.167 and
the GME risk is 38.43. Thus, the DWP estimator exhibits superior risk perfor-
mance over the range of (b@b)1@2 parameter space. If c8 or S are used as variable
selection measures, the performance of the experiments in the previous sections
is duplicated.
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Table 3
Empirical risks of a range of competing estimators for the symmetric case

Empirical risk of

M¸ h` AIC SC C
p

D=P

Model 1 8.77 8.18 8.50 8.73 8.64 7.25
Model 2 8.89 8.63 8.03 8.40 8.88 7.00

12Due to the larger size of each sample (relative to most of the previous experiments), the
sampling experiment is performed for 500 samples rather than for 5000 samples for each point on the
parameter space.

Table 4
Variable selection results of the DWP estimator for the symmetric case

Model Estimator Frequency of identifying correctly Risk

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

Model 1 DWP 1.00 0.99 0.94 0.89 0.39 0.83 0.82 0.80 0.77 7.25
Model 2 DWP 1.00 1.00 0.93 0.73 0.39 0.81 0.82 0.82 0.82 7.00

5.3. Experiment 6

To include experiments where the design matrix has more variables, we report
two experiments that duplicate those carried out by Judge et al. (1987). The
experiments involve the linear statistical model y"Ah#e with nine location
parameters, four extraneous variables, a (20]9) design matrix A, where
A@A"I

9
, an error process, e, distributed as N(0,p2I

20
) with p2"1 and 500

replications.12 The supports z
k

and * are speci"ed as before. The "rst experi-
ment, Model 1, involves the location vector h"(5, 4, 3, 2, 1, 0, 0, 0, 0,)@ and the
second, Model 2, involves h"(10, 8, 3, 2, 1, 0, 0, 0, 0,)@.

Table 3 compares the empirical risk of six estimators: ML; DWP; the positive
part Stein (1981), h`, that shrinks all coe$cients toward zero; AIC (Akaike,
1974), SC (Schwarz, 1978); and C

p
(Mallows, 1973). The ML estimator is close to

the theoretical risk of 9. The traditional and the Stein h` variable selection
estimators have empirical risks that are superior to the ML but are signixcantly
inferior to the DWP that shrinks but does not eliminate variables. In terms of
variables selection, the DWP results are presented in Table 4.
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The results presented here are consistent with the earlier experiments where
the higher the parameter space (h@h)1@2, the better the DWP performs relative
to the other estimators. Further, increasing the (h@h)1@2 to 37 where
b"(25, 20, 15, 10, 5, 0, 0, 0, 0)@ yields risk of 6.32 while the risk for h` practically
equals the ML risk, which is 8.8. In terms of variable identi"cation, the non-
extraneous variables are always identi"ed while the extraneous variables are
identi"ed at least 80% of the time.

6. Summary remarks

In this work a new simultaneous variable selection and estimation rule is
developed and investigated. This new rule provides a basis for identifying the
non-extraneous and extraneous variables in the design matrix of a linear
statistical model and simultaneously yields good estimates. The result is
a simple, consistent, one-stage estimator, based on one sample of data and
a K variable design speci"cation that leads to a basis for semi-parametric
entropy-based inference. This data-based procedure is based on weak distribu-
tional assumptions and it performs well for both ill and well-posed problems,
non-Gaussian error distributions and small samples of data. In this approach
coe$cient shrinkage and variable elimination are data determined and done on
an individual coordinate basis. Further, the choice of prior is data based and
endogenously determined. Consequently, the method provides a simple way of
introducing and evaluating prior information in the estimation and variable
selection process. In contrast to other shrinkage-variable selection procedures,
that require a tuning parameter for variable identi"cation and/or determining
the degree of shrinkage, upper and lower bounds on the estimated parameters
are speci"ed here.

This method is applicable to a wide range of econometric-statistical models
(linear and non-linear) and #exible enough to simultaneously cope with a variety
of model speci"cation uncertainties. Solution algorithms for these types of
non-linear inversion problems are available and easy to implement.
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