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ABSTRACT 
In many document collections, documents are related to objects 
such as document authors, products described in the document, or 
persons referred to in the document. In many applications, the goal 
is to find such related objects that best match a set of keywords. 
The keywords may not necessarily occur in the textual descriptions 
of target objects; they occur only in the documents. In order to 
answer these queries, we exploit the relationships between the 
documents containing the keywords and the target objects related 
to those documents. Current keyword query paradigms do not use 
these relationships effectively and hence are inefficient for these 
queries.  

In this paper, we consider a class of queries called the 
“object finder” queries. Our goal is to return the top K objects that 
best match a given set of keywords by exploiting the relationships 
between documents and objects. We design efficient algorithms by 
developing early termination strategies in presence of blocking 
operators such as group by. Our experiments with real datasets 
and workloads demonstrate the effectiveness of our techniques. 
Although we present our techniques in the context of keyword 
search, our techniques apply to other types of ranked searches 
(e.g., multimedia search) as well. 

1 INTRODUCTION 
In many applications like customer support, digital libraries, 

e-commerce, personal information management and health care, 
unstructured documents are often related to objects representing 
real entities.  In a digital library like DBLP, for instance, 
unstructured documents like papers have objects like author names, 
publication dates and conference/journal names associated with 
them. Further, there is an increasing trend of automatically 
extracting structured information like details of named entities (e.g., 
names of persons, locations, organizations, products, etc.) from 
unstructured documents in order to move it up the value chain [7, 
18].  The extracted details, being structured, are more amenable to 
complex querying and analysis. Unstructured documents are 
therefore usually accompanied by two types of information: (1) 
objects, either as attributes of the documents or automatically 
extracted from them or both, and (2) relationship information that 
describes which document is related to which object (e.g., paper-
author relationship, document-entity relationship). 

In many applications, the goal is to find the objects related to 
documents that best match a set of keywords. For example, in a 
digital library application, one might want to find the top authors in 
the areas of “databases” and “information retrieval”. This is 
commonly known as the “expert finder” application [15]. A 
detailed example in the context of named entities (referred to as 
entities) is shown below.   
Example 1.1 (Entity Finder): As shown in Figure 1, consider a 
database of product reviews. Suppose we extract product names 
from the reviews using an entity extractor. The database now has 
two distinct classes of objects: reviews with attributes ReviewId 
and ReviewText (and possibly other attributes) and Product 
Entities with attributes EntityId and EntityName. The relationships 
between reviews and entities are represented by a set of <ReviewId, 
EntityID> pairs. A pair <d,t> is in that set if the review with id d is 
related to the entity with id t which, in this case, means t has been 
extracted from d. An application might enable users to search for 
entities matching a set of keywords so that they may find products 
that best satisfy their desired criteria. In Figure 1, a user might 
search the reviews/opinions to find laptops using the keywords 
“lightweight” and “business use”. Note that these keywords do not 
occur in the names of laptops. Hence, current keyword search 
techniques cannot be used to answer such queries.  

Such entity finder functionality can be used to search for 
different object types (e.g., people, locations, companies, products, 
events, etc.) in a variety of domains. In this paper, we abstract out 
this functionality and formally define the above class of queries; we 
refer to them as “object finder” (OF) queries. First, we isolate two 
distinct classes of objects and the relationships among them.   
1) Search Objects (SOs): These are searched by the keywords 

(e.g., papers in expert finder, reviews in the product finder) 
2) Target objects (TOs): These are desired as answers to the 

query (e.g., authors in expert finder, entities in entity finder) 
The relationships between the search and the target objects are 
represented by the set of <SO, TO> pairs as shown in Figure 1. The 
goal of an OF query is to return the best K target objects that 
“match” a given set of keywords. We address two important 
questions. First, how does a target object match a set of keywords? 
Second, how do we compute the relevance score of a target object 
in order to rank them? Consider the OF query with keywords 
“lightweight” and “business use” over the product review database 
in Figure 1. Intuitively, we expect the entities ‘Dell Inspiron 700m’ 
and ‘Sony VAIO’ to qualify as answers since the reviews related to 
these entities contain the given keywords. Thus, we need to find the 
reviews that contain the keywords using standard full text search 
(FTS), and then exploit the relationships between reviews and 
entities to find the qualifying entities. The relevance of an entity 
depends on how many of the reviews related to it contain the query 
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keywords and how well they match with those keywords. Thus, the 
relevance score of an entity is an “aggregate” of the FTS scores 
(i.e., the keyword match scores returned by FTS) of all related 
reviews containing the query keywords. For example, the entity 
‘Dell Inspiron 700m’ in Figure 1 is related to two reviews that 
contain keyword “lightweight” (d1 and d3) and two reviews that 
contain keyword “business use” (d3 and d6). So, the relevance 
score ‘Dell Inspiron 700m’ for those keywords is obtained by 
aggregating the FTS scores of d1 and d3 for keyword “lightweight” 
and those of d3 and d6 for keyword “business use”. In this paper, 
we consider a broad class of scoring functions to compute 
relevance scores of target objects as aggregations over FTS scores 
of the related documents. Our OF query evaluation system would 
then return the K target objects with the best scores according to 
any chosen scoring function from the above class. Informally, the 
problem is to compute the top K target objects with the highest 
scores, obtained by aggregating over one or more ranked lists. The 
techniques we describe in this paper are applicable to this general 
class of queries, where ranked lists are obtained using any indexing 
sub-system (not necessarily FTS). However, while describing 
techniques in this paper, we assume that search objects are 
documents and the indexing sub-system is FTS, which returns a 
ranked list of documents for keyword queries.  

The requirement that we aggregate (multiple) ranked lists of 
object scores prevents us from using existing work, especially the 
TA family of algorithms [10,11]. The threshold algorithm (TA) 
assumes that an object has a single score in each list. In our case, a 
target object can have multiple document scores, which need to be 
aggregated, in each list. (See Section 2 for a detailed discussion). 

Most relational DBMSs now support FTS functionality. 
Hence, OF queries can be implemented in SQL. Figure 4 illustrates 
the schematic of such a query plan. SQL evaluations performing 
aggregation over FTS scores would be forced to retrieve all the 
documents containing the set of query keywords, join them all with 
the relationships table to find the related target objects, compute the 
aggregate scores of all these target objects, sort them all based on 
the score, and return the top K to the user. For large document 
collections, FTS may return large numbers of documents causing 
this implementation to be very inefficient. The challenge is to 
exploit the property that we only require the top K target objects 
and terminate early.  

In this paper, we develop early termination techniques to 
efficiently evaluate the class of OF queries. We build upon existing 
infrastructure, FTS and DBMS engines, to support keyword queries 
over documents. Our approach is based on the following intuition: 
top scoring documents typically contribute the most to the scores of 
high scoring target objects. Hence, the target objects related to 
these top scoring documents are likely to be the best candidate 
matches. We progressively retrieve documents in the decreasing 
order of their scores, and maintain upper and lower bound scores 
for the related target objects. Using these bounds, we first identify 
a superset of the top K target objects. Then, in the second ‘pruning’ 
phase, we pick a subset of these candidates and compute their exact 
scores in order to isolate the exact top K target objects from them. 
The challenges in this approach are (i) to compute tight bounds in 
the presence of aggregation over FTS scores, and (ii) to minimize 
the number of target objects whose exact scores are computed in 
the pruning phase. We describe an algorithm that performs the 
minimum number of such exact score computations. Overall, the 
two-phase approach is very efficient when compared with existing 
techniques.   

Our contributions in this paper can be summarized as follows. 
First, we formally introduce the class of OF queries. Second, we 
propose a class of scoring functions to compute the relevance 
scores of target objects. Third, we develop efficient early 
termination techniques to compute the top K target objects based 
on a scoring function within the above class. We present an 
extensive experimental study to determine the effectiveness of our 
scoring framework and evaluation techniques. Our experiments 
show that our early termination approach is often 4 to 5 times faster 
than a corresponding SQL implementation.  

 The remainder of the paper is organized as follows. In 
Section 2, we review related work. In Section 3, we provide an 
overview of the OF query evaluation system and present the class 
of scoring functions. In Section 4, we discuss the SQL 
implementation of OF queries. In Section 5, we present our early 
termination algorithms. We discuss a few extensions of our 
techniques in Section 6. In Section 7, we present experimental 
results. We conclude in Section 8. 

2 RELATED WORK 
Retrieving text documents containing a given set of query 
keywords has been studied extensively in Information Retrieval [3]. 
We cannot use these techniques to answer OF queries since the 
descriptions of target objects usually do not contain the query 
keywords. The functionality of returning entities for keyword 
queries to enable faster information discovery has been proposed 
earlier [8]. However, they do not discuss scoring functions or 
evaluation techniques for such queries. Recent work on keyword 
search over databases proposes to return ‘joining networks’ of 
related tuples that together contain a given set of keywords where 
the tuples are related by foreign key-primary key links [1,5,13]. 
However, these techniques do not consider aggregating the scores 
of multiple joining networks in order to identify desired target 
objects based on aggregated scores. But, they could be adapted by 
restricting the set of ‘valid’ joining networks to those whose central 
nodes (the node that connects the keyword nodes) correspond to the 
desired target objects. Subsequently, we can group those networks 
by the target objects, compute the aggregate scores and return the 
top K. This approach is inefficient because first, the number of 
such valid networks can become very large leading to high 
grouping cost and second, it, like the SQL implementation, does 
not have the early termination property. 
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Figure 1: Search objects, target objects and relationships 



 Our early termination strategies are motivated by the large 
body of work on top-K queries. One of the most notable algorithms 
in this area is the TA (threshold algorithm) family of algorithms 
[10,11,12,14,16]. TA combines2 the scores of objects in different 
lists and computes the top-K objects based on the combined score. 
However, it does not consider aggregation of multiple scores within 
each list. In our problem, if we know a priori that a target object is 
related to at most one document, the subsequent aggregation of 
scores per each target object is redundant; we can use TA in this 
case to find top-K target objects efficiently. However, in most 
scenarios a target object is typically related to multiple documents. 
For example, an entity is typically present in multiple documents, 
and an author typically writes multiple papers. In such cases, TA 
cannot be used.  

 Another potential approach is to pre-aggregate the scores of 
the target objects for various keywords and materialize them, 
thereby taking aggregation out of the picture and reducing the 
problem to combining these materialized lists at query time. This 
can be done efficiently using the TA algorithm. Such an approach 
for authority based ranking of objects is proposed in [4]. This 
approach has several limitations. First, it cannot handle selections 
on the documents. Second, we found that the pre-aggregation 
strategy imposes significant space overhead; it might not be 
feasible to maintain the scores of all target objects for all keywords. 
Third, this strategy is not applicable to non-keyword ranked 
searches like multimedia searches or ranked searches over 
structured data.  

3 SYSTEM OVERVIEW AND SCORING 
FUNCTIONS 

We build upon FTS and DBMS systems by indexing documents 
using FTS, and by storing and querying the relationship and target 
objects in SQL Server. We first present an overview of the 
ObjectFinder (OF) query evaluation system to lay the ground for 
the subsequent discussion on the class of scoring functions.  

3.1 System Overview 
Figure 2 shows the overview of our system. We describe the 
functionality we assume from each of these systems.  
 
FTS: We index the text content of the documents using an FTS 
system (at the preprocessing stage) so that we can support keyword 
queries on them at query time. We assume that the FTS system 
supports the following query interface: given a single keyword or a 
multi-keyword query, it provides “sorted access” to the ranked list 
of documents matching with the query, i.e., the application can 
retrieve the next best document from the ranked list along with the 
score. We refer to these documents scores as DocScores. For clarity 
in description, we assume that all documents are indexed by a 
single FTS index. Our techniques can also be extended to multiple 
FTS indexes that index different sets of documents. 
 
DBMS: We store the target objects and the relationships in the 
DBMS in two distinct tables: (i) the target object table T which has 
schema <TOId, TOValue> and stores the ids and values of the 
target objects, and (ii) the relationships table R which has schema 
<DocId, TOId> and stores the document-target object pairs that are 

                                                 
2 TA refers the combination of scores from different lists as “aggregation”; 
we refer to this as “combination” in this paper. In this paper, “aggregation” 
refers to aggregation of multiple scores for the same object within a list. 

related to each other. The application might have multiple types of 
target objects (e.g., different types of entities like persons, locations, 
products, etc. in the entity finder application) and the user might 
specify the desired type in the OF query. This can be implemented 
using the above architecture by either storing the target objects and 
the relationships for each type in separate T and R tables or by 
adding a type column to the tables. For the purposes of description, 
we assume only one type of target objects. Our approach can be 
extended to take into account static weights and, as discussed 
further in Section 6, selections on search and target objects and 
static weights associated with target objects [17]. 
  
In evaluating the OF query, we focus on obtaining the identifiers of 
the top K target objects matching with the keywords; T is used only 
for the final lookup of the TOvalues corresponding to those TOIds 
before returning to the user. Hence, the ranked lists and R are the 
main inputs to the OF evaluation system. Besides sorted access on 
the ranked lists from FTS, we require the following two access 
methods on R:  
1) Random access over R on DocId to find the identifiers of the 

target objects related to a given DocId or a given set of DocIds.  
2) Random access over R on TOId to find the identifiers of the 

documents related to a given TOId.  
We assume appropriate physical design for R to make the above 
random accesses efficient.   

3.2  Class of Scoring Functions 
We now describe the class of scoring functions we consider 

in this paper. Our OF evaluation system would return the K target 
objects with the best scores according to the scoring function 
chosen from this class. Informally, each function in this class 
computes the score of any target object by aggregating the 
DocScores of the documents related to it occurring in those ranked 
lists.   

Let W = {w1, w2, …, wN} denote the set of N keywords in the 
OF query. Let Li denote the ranked list of document identifiers 
along with DocScores that would be returned by the FTS system 
for the single keyword query {wi}. Let Dt denote the list of 
documents related to t. The DocScores of the objects in Dt in the 
above lists define the score matrix Mt of t; the cell Mt[i,j] contains 
the DocScore of the ith object in Dt in list Lj; it contains 0 if ith 
object in Dt is not present in Lj. Let Score(t) denote the relevance 
score for the target object t (computed using Mt). 

Figure 2: Overview of OF Query Evaluation System 
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Example 2.1 (Score Matrix): Consider the keyword query 
{“lightweight”, “business use”} in Example 1.1. Suppose FTS 
returned ranked list L1={(d1, 0.8), (d2, 0.6), (d3, 0.3)} for keyword 
“lightweight” and ranked list L2={(d5, 0.7), (d4, 0.5), (d3, 0.4), (d6, 
0.1)} for keyword “business use”. Consider the target object “Dell 
Inspiron 700m”; Dt = {d1, d3, d6}. The score matrix of “Dell 
Inspiron 700m” for the above query is shown in Figure 3(a).      ■ 
 
A general scoring function would take the entire score matrix Mt to 
compute Score(t). However, efficiently retrieving the best top K 
target objects according to any arbitrary function would be very 
hard without fetching all relevant documents and target objects. We 
therefore consider the following two classes of functions. These 
functions first compute either the row marginals or the column 
marginals of the score matrix and then aggregate these marginals. 
We use the term ‘marginal’ loosely in that the function for 
computing the row or column marginal may not be the sum 
function.  
1) Row-marginal Class: The overall score Score(t) of the target 
object t is computed in 2 steps.  In step 1, we combine the scores in 
each row of the score matrix of t using a combination function 
Fcomb, i.e., for each document d ∈ Dt, we combine its DocScores in 
the N lists using Fcomb.

3 In step 2, we aggregate the combined 
scores of all the documents in Dt using an aggregation function Fagg 

to obtain the overall score. Formally,  

Score(t)=
tDdaggF

∈
(Fcomb(DocScore(d,L1),…, DocScore(d, LN))) (1)     

where  DocScore(d, Lj) denotes the DocScore of the document d ∈ 
Dt in list Lj (= 0 if d ∉Lj). Applications can define a wide variety of 
scoring functions in this class by plugging in different Fcomb and 
Fagg; an example of such a scoring function with Fcomb = MIN and 
Fagg= SUM applied to the score matrix in Figure 3(a) is shown in 
Figure 3(b). 
2) Column-marginal Class: Score(t) is computed in 2 steps. In 
step 1, we aggregate the scores of each column of the score matrix 
of t using an aggregation function Fagg, i.e., for each list, we 
aggregate the DocScores of all documents in Dt in that list. In step 
2, we combine the aggregate scores of the N lists using a 
combination function Fcomb to obtain the overall score. Formally, 
Score(t)= 

Fcomb(
tDdaggF

∈
(DocScore(d,L1)),…,

tDdaggF
∈

(DocScore(d,LN)))(2)  

Again, applications can define a wide variety of scoring functions 
in this class by plugging in different Fagg and Fcomb; an example of 
such a scoring function with Fagg= SUM and Fcomb = MIN applied to 
the score matrix in Figure 3(a) is shown in Figure 3(c). 

 
Properties required of Fagg and Fcomb: Our early termination 
techniques are applicable when Fagg and Fcomb satisfy certain 
properties. We say that Fcomb is monotonic if Fcomb(x1,…, xn) ≤ 
Fcomb(y1,…, yn) when xi ≤ yi for all i. We say that Fagg is subset 
monotonic if Fagg(S) ≤ Fagg(S’) if S ⊆ S’. This implies that, at any 
stage of aggregation, aggregating additional scores cannot decrease 
the aggregate score. Sum, count, max, sum_top_D and avg_top_D 
are examples of subset monotonic functions where sum_top_D 
(avg_top_D) denote sum (average) over the highest D scores in the 
set of scores being aggregated; note max is a special case of 
sum_top_D with D=1. Avg and min are not subset monotonic, and 
hence we cannot support the instantiation of Fagg with avg. Note 

                                                 
3 The number of arguments of Fcomb is fixed once the number of keyword 
queries issued against FTS is known. But, the arity may vary across queries.   

that we can support avg_top_D which emulates the properties of 
average. We say that Fagg distributes over append if Fagg(R1 append 
R2) = Fagg(Fagg(R1), Fagg(R2)), where append denotes the ordered 
concatenation of lists of tuples. In our case, we invoke this property 
over ordered (disjoint) fragments of ranked lists. 

Our early termination techniques (described later) can be 
applied if (i) Fcomb is monotonic, (ii) Fagg distributes over append 
and is subset monotonic. 

3.3 Example Instantiations 
We now discuss instantiations of scoring functions in order to 
model certain semantic notions of matching for target objects.  
 
All Query Keywords Present in each Document: Consider the 
match behavior where we say a target object t matches with the 
keyword query W iff one or more documents related to t contains 
all the keywords in W; higher the number of such documents 
related to it and higher their scores, better the match for t. We can 
implement this notion using the row-marginal scoring framework 
by choosing an Fcomb that conserves the standard propositional 
semantics for conjunction like min4  [10] while Fagg can be a subset 
monotonic function like sum. An example for this choice of Fcomb 

and Fagg is shown in Figure 3(b). “Dell Inspiron 700m” has a non-
zero score because one of the documents related to it (d3) contains 
all the keywords and its final score depends only on the combined 
keyword score of d3.   

The above notion of matching may be restrictive when there 
is no document related to t that contains all the keywords. For 
example, consider the target object “Sony VAIO” in Figure 1. 
None of the documents related to it contains both the keywords 
“lightweight” and “business use”. So it is not a match by the above 
notion. However, one review related to it contains “lightweight” 
and another contains “business use”. Intuitively, it should match 
with the query. To handle this, we consider a more relaxed notion 
of match.  

 
All Query Keywords Present in Set of Related Documents: 
Consider the match behavior where we say t matches with W iff the 
documents related to it together cover all the keywords in W, i.e., 
each keyword in W is contained in at least one document related to 
t. The more the number of matching objects related to t for each 

                                                 
4 Note that we do not require Fcomb to conserve conjunctive semantics for 
our techniques to work; we only require it to be monotonic. 

Figure 3: Score Matrix and Classes of Scoring Functions 
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keyword and the higher those individual keyword match scores, the 
better the match for t. Clearly, this definition would return “Sony 
VAIO” as a match in Example 1. We can implement this definition 
using the column-marginal scoring framework by choosing a subset 
monotonic function like sum as Fagg and min as Fcomb. An example 
for this choice of Fcomb and Fagg is shown in Figure 3(c); “Dell 
Inspiron 700m” has a non-zero score because the set of objects 
related to it (i.e., d1, d3 and d6) covers both keywords. Note that 
this notion cannot be implemented using the row-marginal 
framework.  
 
Pseudo-document Approach: Consider the following simulation 
of facilitating keyword search over target objects. Suppose we 
associate with each target t object a pseudo-document created by 
concatenating all documents that t is related to. We can now index 
these pseudo-documents using FTS and directly facilitate keyword 
queries over them. Now, the ranked list of “documents” returned by 
FTS corresponds to a ranked list of target objects, which is our 
desired goal. However, the overall size of the pseudo-document 
collection is several times larger because each document is 
replicated once per target object it is related to. We can instantiate a 
scoring function within our class to often simulate the same effect 
as the pseudo-document approach.  
Most FTS scoring functions assigning relevance scores to 
documents have two components: (i) a function Fscore which scores 
a document per query keyword, and (ii) a combination (using a 
function Fcomb, say, a linear combination based on IDF weights) of 
these scores across all keywords. TF-IDF scoring functions, 
commonly used in IR systems, are examples of this type of scoring 
functions: Fscore is term frequency (TF) and Fcomb is a linear 
combination of document scores per keyword where the 
coefficients are determined by the IDF weights of the keywords. 
Suppose Fscore distributes over concatenation of documents: 
Fscore(d1 concat d2) = Fscore(d1) + Fscore(d2). The term frequency 
function is such an example. Under the conditions that Fscore is 
additive and Fcomb is fixed (i.e., does not change with document 
collection), choosing a function within a column marginal 
framework where Fagg is sum, and Fcomb is the combination used by 
FTS would achieve the desired functionality.  

3.4 Object Finder Problem 

Problem statement: Given a list w1,…,wN of query keywords, the 
scoring function f in either the row-marginal or the column-
marginal class, the interfaces for keyword queries over FTS and for 
random access on the relationships table R on both DocId and 
TOId, compute the K target objects with the highest scores. 
 
For the row-marginal class of scoring functions, it is possible to 
perform the combination inside the FTS system if FTS supports the 
desired combination function. For the match notion where all query 
keywords have to be present in each relevant document, we can 
submit to FTS a single combined keyword query Q = (w1 AND w2 

AND … AND wN). The score Score(t) is then obtained by 
aggregating the DocScores of the documents related to t occurring 
in the single ranked list returned by FTS for the above AND query:  
Score(t) = 

tDdaggF
∈

 ( DocScoreAND query (d) )                          (3) 

The advantage here is that the combination over the keywords is 
performed by FTS and hence can be very efficient. And, such a 
strategy may be possible for other types of combinations (e.g., 
disjunction) as well. In this case, the problem for the row marginal 
class is the same as that for the column marginal class except that 
there is a single combined keyword query, which returns a single 

ranked list of documents. For a general combination function that is 
not supported by FTS, we obtain a single ranked list corresponding 
to the combination query as follows. We issue individual keyword 
queries to FTS, combine the ranked lists of documents using an 
algorithm such as NRA [11,14], to provide a single combined 
ranked list for subsequent aggregation. The problem again reduces 
to a column-marginal class with a single combined keyword query.  
 
For the column-marginal class, it is not possible to perform the 
combination inside FTS (even if FTS supports the combination 
function) since the aggregation over documents needs to be done 
first. Hence, we always need to submit individual keyword queries 
to FTS. We focus on the column marginal class while describing 
our evaluation techniques in Sections 3 and 4; we conduct 
experiments with both classes in our experiments section. 

4 SQL IMPLEMENTATION 
Commercial DBMSs now support FTS functionality by 

providing specialized user-defined functions (UDFs) to perform 
keyword search on text columns of database tables [9]. Therefore, 
we can implement OF queries in SQL using these FTS UDFs.  

 Figure 4 shows the execution plan for the column-marginal 
class. We join each list individually with the relationships table R 
on DocId to get the related target objects. We then group each join 
result by TOId and aggregate the DocScores using Fagg. We then do 
a full outer join (on TOId) of the aggregation results and compute 
the combined score of each target object by combining its 
aggregate score from each list using Fcomb. Finally, we order the 
TOIds by the combined scores and return the top K TOIds. A 
clustered index on R.DocId may help the join with R to be efficient. 
Observe that algorithms such as TA may only be applied for the 
second join above the group by operators.  

As discussed earlier, the presence of blocking operators 
(group by and order by) in the plan makes the evaluation wasteful 
(cf. Figure 9). Since the user is typically interested in only top K 
target object, we can significantly reduce these costs by retrieving 
the top documents from the ranked lists “progressively”. Since we 
cannot do such progressive evaluation using SQL, we implement 
such an approach in middleware.  

5  EARLY TERMINATION APPROACH 
In this section, we describe our approaches for OF query evaluation. 
The idea is to retrieve a small number of the top documents from 
each ranked list, get related target objects by looking up the 
relationships table R, and determine upper and lower bound scores 
for those target objects “seen” so far. Often these bounds can guide 

Figure 4: SQL query plan for column marginal class 
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us in stopping early. We identify two approaches for leveraging 
these bounds to stop early. 
Generate-only Approach: This approach relies completely on the 
bounds and stops when it can determine that it has identified the 
best K target objects based on a “stopping condition”. We stop if 
the condition is met and continue fetching more documents 
otherwise. This technique is similar in flavor to the NRA algorithm 
[11]; however, the techniques for computing bounds are different 
due to the aggregation operator.  
Generate-Prune Approach: This approach has two phases: a 
candidate generation phase followed by a pruning phase. During 
the generation phase, we use the bounds to identify a superset of 
the top K target objects. The condition to check that we have 
identified a superset is more relaxed than that in the Generate-only 
approach and hence retrieves fewer documents from the ranked 
lists and does fewer lookups in R (on DocId). During the pruning 
phase, we isolate the subset of the best K target objects.  
 
The algorithm for the Generate-only approach is identical to the 
algorithm for the generate phase of the Generate-Prune approach  
except for the stopping condition. Therefore, we first describe the 
Generate-Prune approach in detail and then discuss the stopping 
condition for the Generate-only approach.  
 

5.1 Candidate Generation 
The goal of the candidate generation phase is to generate a 

superset of the top K target objects. We submit keyword queries, 
one for each keyword wi, to FTS and obtain ranked lists L1,…,LN 
of documents. We process these lists iteratively. In each iteration, 
we retrieve more documents from each ranked list Li and evaluate 
the query shown in Figure 5 over the prefixes, denoted by 
Prefix(Li), of documents retrieved so far from the Lis. Evaluation of 
the query generates the SeenTOs table that contains the current 
aggregation scores as well as the lower and upper bound scores of 
all target objects related to one or more documents in any Prefix(Li). 
Using the SeenTOs table, we check whether or not we can stop 
further retrieval from the ranked lists. If so, we identify candidates 
from the SeenTOs table, otherwise, we retrieve more documents 
from each Li and iterate the above process.  

A straight-forward approach is to generate the SeenTOs table 
from scratch every time, i.e., re-evaluate the query shown in Figure 
5 over the entire prefixes in every iteration. This is wasteful as it 
would repeatedly evaluate Group By and combination over the join 
result of entire prefixes with the relationships table R. We exploit 
the distributive properties of both Fagg and the join operator in order 
to evaluate the query incrementally, i.e., in each iteration, we 
process just the newly retrieved documents and update the scores in 
the SeenTOs table. The algorithm therefore has 5 steps: 

 We now discuss each of these steps in detail. 
 
Step 1 (Retrieve Documents): In each iteration, we retrieve the 
next chunk Ci of documents from each Li. We retrieve the 
documents in chunks in order to reduce the number of join queries 
(with R) issued to the DBMS. The choice of the chunk size presents 
a tradeoff between the number of “unnecessary” documents (i.e., 

not necessary to generate candidates) retrieved from FTS and 
number of join queries issued to DBMS; we choose a chunk size of 
100 for all lists in our experiments. 
 
Step 2 (Update SeenTOs): We discuss how to process the new 
chunks Ci retrieved in the current iteration incrementally and 
update the SeenTOs table. This has two parts: incrementally 
computing the Group By and the combination.  
Compute Group By incrementally: As shown in Figure 5, the 
Group By is computed for each list Li. For each Li, we maintain, 
across iterations, the AggResulti table containing the following 
information for each target object t related to one or more 
documents in Prefix(Li): the number numSeen of documents in 
Prefix(Li) related to t and the “current” aggregate score aggScore, 
i.e., the aggregate of the DocScores of the documents in Prefix(Li) 
related to t. We discuss computing the aggScore column in 
AggResulti incrementally; the numSeen column is computed in a 
similar fashion. Formally, the aggScores in AggResulti at the end of 
any iteration is GroupByTOId(Prefix(Li) ⋈ DocIdR, Fagg(DocScore)) 
where  GroupByA(S, F(B)) denotes Group By over relation S on 
column A and aggregation on column B using aggregate function F. 
AggResulti is empty at the start of first iteration. The new prefix 
after this iteration is (Prefix(Li) append Ci), so the new AggResulti 
after this iteration should be: GroupByTOId((Prefix(Li) append Ci)  
⋈DocIdR, Fagg(DocScore)). Since both join and Fagg distribute over 
append, the new aggScores can be obtained from 
GroupByTOId(Prefix(Li) ⋈ DocIdR, Fagg(DocScore)) (the AggResulti 

from the previous iteration) and GroupByTOId(Ci ⋈ DocIdR, Fagg-

(DocScore)) (the AggResult for the current chunk). We first 
compute the AggResult for the current chunk Ci by joining it with R 
and then aggregating on the join result using Fagg. We then merge 
the AggResult for the current chunk into the AggResulti table as 
follows. For each t in the AggResult for the current chunk, if t is 
already present in the AggResulti of previous iteration, we update 
the t.aggScore to Fagg(previous t.aggScore, t.aggScore for the 
current chunk). Otherwise, we insert t into AggResulti setting 
t.aggScore to be that in the current chunk.  
To update AggResulti efficiently, we maintain AggResulti as a hash 
table keyed on TOId. Therefore, in each iteration, we evaluate the 
join and the Group By over the newly retrieved chunks only.  
Combine Incrementally: The combined SeenTOs table is a full 
outer join on TOId of the AggResulti tables defined above. Since 
the AggResulti are anyway in-memory hash tables, we can 

1. Retrieve more documents from each Li  
2. Update SeenTOs table for the prefixes Prefix(Li) retrieved 

so far from the Lis 
3. Compute lower and upper bounds 
4. Check stopping condition. If satisfied, go to 4; else go 

back to 1 
5. Identify the candidates among the seen target objects 

Figure 5: Query Evaluated over the prefixes Prefix(Li) in 
each iteration. 
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performing the outer join simultaneously with the aggregation by 
maintaining a unified SeenTOs hash table and updating the 
SeenTOs table directly instead of maintaining separate AggResulti 

tables. The SeenTOs table contains any target object t present in 
any of the AggResulti tables and all the columns in AggResulti 
tables, i.e., it contains t’s numSeen and aggScore values for each Li. 
We denote these columns as numSeen[i] and aggScore[i] 
respectively. If a target object t ∈ SeenTOs is not present in 
AggResulti, t.numSeen[i] and t.aggScore[i] are set to 0. To 
efficiently update the lower and upper bound scores of target 
objects in SeenTOs in each iteration, we maintain SeenTOs as a 
hash table keyed on TOId.  
 
Step 3 (Compute bounds): In this step, we take SeenTOs table 
generated in Step 2 and compute the lower and upper bound scores 
of each target object t in SeenTOs (stored as 2 separate columns in 
SeenTOs table). Here, we exploit the subset monotonicity property 
of Fagg and the monotonicity property of Fcomb. We first consider the 
computation of lower bound score. Since Fagg is subset monotonic, 
the “current” aggregate score t.aggScore[i] of t for Li is the lower 
bound of t for Li.  The combined lower bound score of t, denoted 
by t.lb, is the combination of the individual lower bound scores 
t.aggScore[i], i.e.,  
t.lb =  Fcomb (t.aggScore[1],…,t.aggScore[N]). 
We now consider the computation of the upper bound score. The 
computation of the upper bound scores depends on a crucial 
constant B called the cardinality bound. B is the maximum number 
of documents in any ranked list Li that can contribute to the score 
of any target object t. For the following discussion, we assume B is 
known; we discuss its computation in Section 5.1.2. Since there are 
t.numseen[i] documents related to t in Prefix(Li), there can be at 
most (B - t.numseen[i]) documents in (Li – Prefix(Li)) that can 
contribute to the aggregate score of t for Li. Furthermore, the 
DocScores of such unseen documents is upper bounded by the 
DocScore xi of the last document retrieved from Li as shown in 
Figure 5. The upper bound score of t for list Li, denoted by t.ub[i], 
is therefore aggregation of the current aggregate score (i.e., 
t.aggScore[i]) and the upper bound of the remaining contribution:  

( )( )timesinumseentBxxFiaggScoretFiubt iiaggagg ])[.(,...,,],[.][. −=
The combined upper bound score, denoted by t.ub, is: 
t.ub = Fcomb(t.ub[1],…,t.ub[N]).  
 
Step 4 (Stopping Condition): We can stop when there are at least 
K objects in SeenTOs whose lower bound scores are higher than 
the upper bound score of any unseen target object (i.e., target object 
not in SeenTOs). This guarantees that no unseen object can qualify 
for the final top K, i.e., SeenTOs is guaranteed to contain the final 
top-K target objects. Let UnseenUB denote the upper bound score 
of any unseen target object. Using the same logic as t.ub 
computation:  
UnseenUB = ( )),...,,(),...,,...,,( 11 timesBxxFtimesBxxFF NNaggaggcomb

 

Let LB and UB denote the list of all target objects in SeenTOs 
sorted in decreasing order of their lower and upper bounds, 
respectively and let LBj (UBj) denote the jth largest lb (ub) value in 
LB (UB).The stopping condition is: LBK ≥ UnseenUB.  
 
 Step 5 (Identify candidates): In this step, we filter out objects 
from SeenTOs which cannot be in the final top K. Consider an 
object in SeenTOs whose upper bound score is less than the lower 
bounds of at least K target objects. This object cannot be in the 
final top K and hence can be filtered out. Let Top(List, X) denote 
the top X elements in the list. The set of candidates is defined by 

Top(UB, h) where h is the least value which satisfies (i) LBK ≥ 
UBh+1 and (ii) Top(LB, K) ⊆ Top(UB, h). To ensure Top(LB,K) ⊆ 
Top(UB,h), we order objects in LB and UB as follows. For any two 
objects O and O’, if  their lower bound scores (upper bound scores) 
are equal, we order them in LB (UB) in the decreasing order of 
their upper bound score (lower bound score). If both their upper 
bound and lower bound score are same, we rank them based on 
their TOId. 
 
Memory Requirement: We assume that the SeenTOs table fits in 
memory. If SeenTOs becomes too large, we need to use a disk-
resident hash table. 
 
Lemma 1: With the above ordering rule, if LBK ≥ UBh, then the 
final top-K objects are within the top-h objects of UB. 
 
Example 5.1: Consider the OF query whose complete ranked lists 
and relationships table R is shown in Figure 6. Let Fagg = SUM, 
Fcomb = SUM, B = 2, |Ci| (chunk size) = 1, K = 3. During the first 
round, we retrieve (d1, 1.0) from L1 and (d2, 1.0) from  L2. We 
look them up in R and get (t1, 1.0) and (t2, 1.0) for L1; (t1, 1.0) for 
L2. At this stage, x1 = 1.0 and  x2 = 1.0; the bounds of target objects 
seen so far are (sorted by lb): 

 num 
Seen[1] 

agg 
Score[1] 

ub[1] num 
Seen[2] 

agg 
Score[2] 

ub[2] lb ub 

t1 1 1.0 2.0 1 1.0 2.0 2.0 4.0 
t2 1 1.0 2.0 0 0 2.0 1.0 4.0 

 
Also, UnseenUB = Fcomb(Fagg(1.0, 1.0), Fagg(1.0, 1.0)) = 4.0. LB3 = 
0 (because there are only two target objects in LB list), LB3 not ≥ 
UnseenUB, so we get more documents. We retrieve (d3, 0.6) from 
L1 and (d3, 0.5) from L2. The new join result is (t3, 0.6) and (t4. 0.6) 
for L1; (t3, 0.5) and (t4. 0.5) for L2. We compute the bounds for the 
target objects seen so far; the stop condition still does not hold. So, 
we continue retrieving more documents; we retrieve (d4, 0.2) from 
L1 and (d4, 0.3) from L2. We get (t3, 0.2) and (t5. 0.2) for L1; (t3, 
0.3) and (t5. 0.3) for L2. At this stage, x1 = 0.2 and x2 = 0.3; the 
bounds of target objects seen so far are (sorted by lb): 

 num 
Seen[1] 

agg 
Score[1] 

ub[1] num 
Seen[2] 

agg 
Score[2] 

ub[2] lb ub 

t1 1 1.0 1.2 1 1.0 1.3 2.0 2.5 
t3 2 0.8 0.8 2 0.8 0.8 1.6 1.6 
t4 1 0.6 0.8 1 0.5 0.8 1.1 1.6 
t2 1 1.0 1.2 0 0 0.6 1.0 1.8 
t5 1 0.2 0.4 1 0.3 0.6 0.5 1.0 

 
UnseenUB = Fcomb(Fagg(0.2, 0.2), Fagg(0.3, 0.3)) = 1.0. LB3 = 1.1 ≥ 
UnseenUB, so we go to Step 4. h turns out to be 4, the candidate set 
is Top(UB, 4) = {t1, t2, t3, t4}. ■ 

Figure 6: Complete ranked lists and Relationships Table for 
Examples 
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5.1.1 Stopping Condition for Generate-Only Approach 
The algorithm for the Generate-Only approach is identical to the 
candidate generation algorithm presented above except that the 
stopping condition in Step 3 is LBK ≥ UBK+1 and Top(LB, K) = 
Top(UB, K) instead of LBK ≥ UnseenUB. That is, we stop when the 
K target objects with the highest lower bound scores have lower 
bound scores greater than or equal to the upper bound score of any 
target object outside those K target objects; these are guaranteed to 
be the final K target objects.  
 
Lemma 2: The top-K objects in UB list is the final top-K if and 
only if LBK ≥ UBK+1  and Top(LB, K) = Top(UB, K).  

 
5.1.2 Computation of Cardinality Bound B 
The bound B on the number of documents in a list Li that can 
contribute to the score of a target object may be computed in one of 
the following ways: using properties of aggregation functions, data 
characteristics, and materialized statistics.  
Using Properties of Aggregation Functions: Consider the 
example where Fagg is max. Then, B=1. Another bounded 
aggregation function is sum_top_D. Recall that sum_top_D 
computes the aggregate score of a target object t for list Li by 
summing of the DocScores of the top D documents in Li related to t. 
In this case, B = D. Sum and Count are examples of aggregation 
functions where B is unbounded. 
Using Data Characteristics: In many real scenarios, each target is 
related to a bounded number of documents. For example, in the 
entity finder application, we might know that an entity can appear 
in at most M documents or, in the expert finder application, an 
author has written at most M papers. This bounds the number of 
documents related to a target object t than can occur in Li (referred 
to as the frequency of T in Li); so B = M. In cases where both 
aggregation function and data are bounded, B is simply the 
minimum of the two as shown in table below: 

 Fagg=Max Fagg=sum_top_D Fagg unbounded 

M bounded B = 1 B = min(D, M) B = M 
M unbounded B = 1 B = D B unbounded 

 
Materialized Statistics: In many real scenarios, only a few target 
objects have frequency M or close to M. The majority of the target 
objects have much lower frequency. A typical distribution of 
frequency of target objects in the ranked lists for single keyword 
queries is shown in Figure 7. While M is about 200 in the above 
example, more than 99% of the target objects have frequency less 
than 80. We propose an optimization, referred to as frequent target 
object materialization (FTM), to obtain a tight bound on B. The 
frequency of a target object is the number of documents it is related 
to. For each keyword w, we materialize the target objects with 
frequency above a threshold θ in the ranked list returned by FTS 

for the single keyword query {w}. We store their TOIds along with 
their final aggregated score for w.5 For any keyword w, we know 
that the target objects not found in the materialized set for w have 
frequency less than or equal to θ. So the bound B for such target 
objects is B = min(d, M, θ). The value of the cardinality bound B is 
used in the candidate generation algorithm as explained earlier. The 
materialized (exact) scores are used as the lower and upper bound 
scores for these objects. During the algorithm, we do not update the 
bounds for these materialized objects. Note that the FTM 
optimization has two-fold benefit: (1) we have the exact scores of 
the materialized target objects (t.lb[i] = t.ub[i] = materialized score) 
and (2) we have better bounds for the remaining target objects. 
Both these factors lead to earlier termination of the algorithm. The 
choice of θ offers a tradeoff between efficiency of candidate 
generation and space overhead; lower values of θ imply faster 
termination but higher space overhead and vice-versa. In our 
experiments, we allow space to store an average 1% of the target 
objects for each keyword which results in choice of θ = 80. 
 

5.2 Pruning to the Final Top-K 
The goal of this phase is to isolate the exact top K target objects 
from the superset of candidates identified in the generation phase. 
Our main insight is that it is sufficient to compute the exact scores 
of a subset of the candidate target objects and then stop. Computing 
the exact score of a target object entails queries against the 
relationships table R and accessing (DocId, DocScore) pairs in the 
lists returned by FTS. The challenge is to compute the exact scores 
of as few candidates as possible and still return the top K objects 
with exact scores. We now present an algorithm that computes the 
score for the smallest possible number of candidate target objects. 
In some applications, it is sufficient to return the top K target 
objects even if their scores are not exact. In such scenarios, we 
show that we can improve the algorithm even further.  

5.2.1 Exact Top-K with Exact Scores 
When the exact score of the Kth best target object is greater than or 
equal to the upper bound scores of any candidate target object 
whose score is not yet computed, the current best K target objects 
are the overall best K objects. We show that the best pruning 
strategy (i.e., the one that computes the exact scores of least 
number of target objects) is to iteratively sort the candidate target 
objects in the decreasing order of their upper bound scores and 
compute exact scores in that order until we can stop. The 
pseudocode of the algorithm is shown in Table 1.   
 
We initially mark all candidate target objects as ‘uncomputed’ 
(Step 1). In Step 2, we sort the candidate target objects in the 
decreasing order of their upper bound scores using lower bound 
scores to break ties. In Step 3, we stop if all the top K target objects 
in UB have exact scores computed and return these K objects. (We 
save on computing exact scores of the remaining candidates.) This 
is correct because all other candidates have upper bounds less than 
these exact scores and hence cannot be better than them. If not, in 
Step 4, we compute the exact scores of all ‘uncomputed’ target 
objects in UB with the K best upper bounds. We update their upper 
bound scores (replace them with exact scores), mark them as 
computed, and go back to Step 2. 
 

                                                 
5  For uncommon keywords, i.e., keywords contained in very few 
documents, there are typically no frequent target objects, so nothing is 
stored.  
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Computing Exact Score of a Candidate Target Object: To 
compute the exact score of a candidate t, we first get the set Dt of 
documents related to t by looking up R. Subsequently, we obtain 
the DocScore of each document in Dt in each list Li and compute 
the exact score using Equation 2. Since FTS systems do not usually 
provide random access to documents in the ranked lists, we retrieve 
all document identifiers with scores from each Li using sorted 
access and store them in a hash table or a temporary relation 
(depending on the size) keyed on DocId to provide that random 
access. However, unlike in the candidate generation phase, these 
additional documents retrieved are not joined with R. 
 
Example 5.2: Continuing with Example 5.1, the candidate set is 
{t1, t2, t3, t4}. Pruning_Exact_Scores will retrieve all the 
remaining documents from each Li shown in Figure 6. After sorting 
by upper bound scores, UB = {t1, t2, t3, t4} with upper bound 
scores 2.5, 1.8, 1.6, and 1.6 respectively (tie between t3 and t4 
broken based on their lower bound scores). Since K=3, the 
algorithm computes the exact scores of the top 3 objects in UB, i.e., 
t1, t2 and t3. Their exact scores evaluate to 2.2, 1.6, and 1.6 
respectively. We go back to step 2; the top K objects in UB are 
again {t1, t2, t3} and their exact scores are already computed.  So 
the final top-K results are {t1, t2, t3}.  ■ 
 
Pruning_Exact_Scores compute the exact scores of the minimum 
possible number of candidates. The intuition is that no exact 
pruning strategy can isolate the final top K objects without 
computing the exact scores of the candidates that are in the top K in 
UB at any stage of the algorithm.  
 
Theorem 1: Given a set of candidate target objects with correct 
upper and lower bound scores, no exact scores pruning strategy can 
isolate the final top K with fewer exact score computations than 
Pruning_Exact_Scores. 

5.2.2 Exact Top-K with Approximate Scores  
In some applications, it might be sufficient to return the top K 
target objects even if their scores are not exact. In such cases, we 
can be more efficient than Pruning_Exact_Scores by computing the 
exact scores of fewer candidates. For example, consider the 
candidate t1 in Example 5.1. Since its lower bound score (2.0) is 
greater than the (K+1)th highest upper bound score (1.4), it is 
guaranteed to be in the final top K. Hence, we do not need to 
compute its exact score. Note that it was not possible to avoid such 
exact score computations in Pruning_Exact_Scores because we 
wanted their exact scores. We first identify the set of candidates 
whose score must be computed to isolate the final top K target 
objects. These are classified into crossing and boundary candidates.  
 
Definition 5.1 (Crossing Objects): A target object is crossing if its 
rank in LB is more than K and its rank in UB list is K or less. 
 

Definition 5.2 (Boundary objects): A pair of target objects (A, B) 
is called boundary objects if the exact scores of neither A nor B has 
been computed, and before their exact score computation: 
1) The top K objects in UB and LB are same (i.e., there are no 

crossing objects) 
2) A is the Kth object in LB list and uth object in UB list (u ≤ K) 
3) B is the (K+1)th object in UB and lth object in LB list l ≥ (K+1) 
4) LBK < UBK+1                                                                         ■ 

 
It is sufficient to iteratively compute the exact scores of the 
crossing and boundary objects (first A and then, if necessary, B) 

until these sets are empty for identifying the top K target objects. 
The intuition is as follows. Recall from Section 5.1 that the 
necessary and sufficient condition for identifying the final top K is 
LBK ≥ UBK+1 and Top(LB, K) = Top(UB, K). Note that this 
condition is not satisfied if there are crossing objects or boundary 
object pairs. Computing exact scores of non-crossing objects 
cannot change the status of a crossing object t because it can only 
lower the rank of other objects in UB list (i.e, can only raise t’s 
rank in UB list) and raise the rank of other objects in LB list (i.e., 
can only lower t’s rank in LB list). Only computing the exact score 
of t can change its status; hence exact scores of crossing objects 
must be computed for the stopping condition to hold. Similarly, 
computing exact scores of non-boundary objects can only raise the 
ranks of boundary objects in UB list and lower their ranks in LB 
list. Hence they can either stay as boundary objects or at least one 
of them becomes crossing (in which case we must compute its 
exact score).  
 
Reducing the number of documents retrieved: We can be more 
efficient by updating the bounds of crossing and boundary 
candidates based on the documents retrieved so far and checking 
the stopping condition in Step 3 instead of computing their exact 
scores right away. Thus, we retrieve just enough additional 
documents from the lists Li necessary to satisfy the stopping 
condition (instead of retrieving all of them as in 
Pruning_Exact_Scores), thereby saving FTS costs. 

6 DISCUSSION 
In this section, we discuss three important issues: the handling of 
selection predicates, the choice of aggregation functions, and the 
application to other types of ranked search. 
Selection predicates on documents: We assume that the ranked 
lists Li of documents contain only the objects that satisfy the 
selection condition: either by pushing the selection to FTS (if it 
supports) or by filtering the documents returned by FTS. Our basic 
flow of the algorithms remains unchanged. The bound computation 
however may have to be modified when frequency target 
materialization (FTM) is used. Note that for the materialized target 
objects, we cannot use their materialized exact scores as the lower 
bound scores, so the lower bound score is initialized to 0 and 
updated during candidate generation like the non-materialized 
target objects. We can use their materialized scores as upper bound 
scores but they could be weaker because of the presence of 
selection predicates. Therefore, we also compute their upper bound 
scores during candidate generation like the non-materialized 
objects and use the less of the two. Note that the bound θ becomes 
weak because the actual frequencies in the ranked list are lower due 
to the selection. This may result in weaker upper bound scores for 
very selective conditions (cf. Figure 16).   
Selection predicates on target objects: For selection predicates on 
target objects, we apply an additional filter at the candidate 
generation step. We could, in principle, apply it while joining the 

Algorithm Prune_Exact_Scores 
1. Mark all candidate target objects as ‘uncomputed’.  
2. Sort all the candidate target objects by their upper bound scores, get 

sorted list UB (break ties based on lower bound scores) 
3. If all target objects in top K of UB are computed, return these and stop. 
4. Otherwise, compute exact score of  all ‘uncomputed’ target objects 

within top-K in UB, update their upper bound scores, mark them as 
computed, and go to step 2. 

Table 1: Pruning Algorithm for Exact top-K, Exact scores 



ranked list of documents with the relationships table R. But, that 
forces a join with the target objects table T as well. We have not 
explored this option in our prototype. 
Choice of aggregation function: The materialized scores for 
frequent target objects may be useful even if Fagg specified at query 
time is different from that used for materialization.   
• If we materialize the scores using the SUM aggregation function, 

we can use the materialized scores as the upper bound scores for 
the class of SUM_TOP_D functions. 

• If we also materialize, for each keyword, the frequencies of the 
frequent target objects in the corresponding ranked list, we can 
use these frequencies (for bounding the B value) to compute the 
upper bounds for the materialized objects for any subset 
monotonic aggregation function. 

Other types of ranked search: Our techniques apply beyond 
keyword search paradigms involving FTS, and both our scoring 
functions and evaluation techniques apply to other types of ranked 
searches (e.g., multimedia search [10, 11], ranked search on 
structured attributes [2, 6]). For example, the search objects can be 
homes where each home has price and neighborhood information 
associated with it. Suppose there is a ‘ranking subsystem’ that 
supports ranked search on price, i.e., returns the ranked list of 
homes that best ‘match’ a given price. An application might want 
to find the top neighborhoods that have homes with price similar to 
$350K; we can answer such queries using our techniques. FTS is 
substituted with the appropriate ranking subsystem which generates 
the ranked lists. Our techniques can subsequently be used.  

7 EXPERIMENTS 
We now present the results of an extensive empirical study to 
evaluate the techniques described in this paper. We conduct our 
experiments in the context of the entity finder application presented 
in Example 1.1 over a large collection of news articles, using 
keyword queries from “Google top sports queries”.  The major 
findings of our study can be summarized as follows: 
1.  Faster than SQL: The Generate-Prune approach is 4-5 times 

faster than the SQL implementation for small values of K (≤ 25) 
and about 2-3 times faster for larger values of K (25-100).  

2. Faster than Generate-Only: The Gen-Prune approach 
significantly outperforms the Generate-Only approach. 

3. Robust to number of keywords and selections: The Generate-
Prune approach is robust to the number of keywords and 
selection conditions on documents 

4.  Intuitive Results: Using anecdotal evidence on a small sample 
of queries, we show that the scoring functions we instantiate 
produce meaningful results for OF queries. 

 All experiments reported in this section were conducted on a 
Compaq XW8200 dual-processor machine with 2 XEON 3.2 GHz 
processors and 2.5 GB RAM, running Windows 2003 Server.  

7.1 Experimental Methodology 
Dataset and Preprocessing: Our documents comprise of a 
collection of 714,192 news articles from 2003-2004 which we 
obtained from MSNBC news portal. We index those news articles 
inside SQL Server FTS engine so that we can get ranked lists of 
documents for keyword queries using SQL. We extract 3 types of 
named entities, viz. PersonNames, OrganizationNames and 
LocationNames, from the news articles using a Named Entity 
Extractor tool; these entities are our target objects. The tool 
extracted 435,838 PersonNames, 93,256 OrganizationNames and 
158,246 LocationNames from the above collection. We store the 
entities and relationships of each type in separate target object and 
relationships tables. The relationships tables for PersonNames, 
OrganizationNames and LocationNames have 4,118,256, 798,956 
and 3,078,421 tuples respectively. In order to study the benefit of 
frequent target materialization (FTM), for certain experiments we 
materialize the target objects with frequency above θ = 80 for each 
keyword; this choice was based on allowed space overhead of 1%.  
 Queries: To get realistic OF queries, we picked the following top 
10 sport news queries on Google in 2004 as reported on “Google 
Zeitgeist”.  

1) Dallas Cowboys 6)  Los Angeles Lakers 
2) New York Yankees 7) Philadelphia Eagles 
3) Chicago Cubs  8) New England Patriots 
4) Boston Red Sox 9) Green Bay Packers 
5) Atlanta Braves 10) Oakland Raiders 

 We specify “PersonName” as the desired entity type for all the 
queries. All our measurements are averaged across the 10 queries. 
Comparison: We have implemented all the 3 approaches to 
evaluate OF queries: SQL implementation, Generate-Prune  
approach and Generate-Only  approach (abbreviated Gen_Prune 
and Gen_Only in plots). We compare these approaches against 
each other for both classes of scoring functions. For the row 
marginal class, we issue an ‘AND query’ to FTS. For the column 
marginal case, we use SUM as combination function Fcomb in all the 
experiments. The experiments use SUM as the aggregation 
function unless otherwise mentioned; FTM optimization is used in 
these cases. We use chunk size |Ci|  =100. All the queries were run 
with a cold buffer cache. 

7.2 Experimental Results 
Quality of Answers: While a thorough user study is beyond the 
scope of this paper, we present anecdotal evidence that our OF 
query semantics and scoring functions produce intuitive results. 
Table 2 shows the top 5 results of some entity finder queries on the 
news collection. The scoring function used is a column marginal 
function with Fagg=SUM and Fcomb=SUM. The results are, not 
surprisingly, quite meaningful. 
Comparison with SQL: Figure 8 shows the execution times of the 
Generate-Prune approach and the SQL implementation for various 
values of K for both the column marginal and row marginal classes. 
For the column marginal class, the Generate-Prune approach is 4-5 
times faster than SQL for small values of K (≤ 25) and about 2-3 
times faster for larger values of K (25-100). This establishes that 
the early termination property of Generate-Prune leads to 

Keywords 
 

Desired Entity 
Type 

Top 5 Results 

New York 
Yankees 

Person Joe Torre, Alex Rodriguez, Derek Jeter, 
Gary Sheffield, Hideki Matsui 

Boston Red 
Sox 

Person David Ortiz, Curt Schilling, Manny 
Ramirez, Terry Francoma, Jason Varitek 

Los Angeles 
Lakers 

Person Shaquille Oneal, Phil Jackson, Kobe 
Bryant, Karl Malone, Gary Payton 

Google 
executives 

Person Larry Page, Sergey Brin, Eric Schmidt, 
Marissa Mayer, David Garrity 

Wimbledon 
champion 

2004 

Person Maria Sharapova, Roger Federer, Serena 
Williams, Andy Roddick, Lindsay 

Davenport 

Mobile 
phones 

Organization Nokia, Motorola, T-Mobile, Sprint, 
AT&T Wireless 

Table 2: Examples of OF queries and their results 



significant reduction of execution cost of OF queries. For the row 
marginal class, both approaches are faster compared to the column 
marginal case because the combination is pushed down into the 
FTS and documents are retrieved/looked up from a single ranked 
list. Even in this case, the Gen-Prune approach is 2-3 times faster 
compared to SQL. 
 Comparison with Generate-Only Approach: Figure 9 compares 
the Generate-Prune approach with the Generate-Only approach for 
the column marginal framework. The Generate-Prune approach 
significantly outperforms the Generate-Only approach for all 
values of K but the gap widens for larger values of K. This is 
because the Generate-Only approach ends up retrieving a large 
number of documents from the ranked lists and looking them up in 
the relationships table  R (i.e., doing random access to R on DocId) 
in order to satisfy the “ideal” stopping condition.6 The Generate-
Prune approach, due to its relaxed stopping condition, retrieves 
much fewer documents during the generation phase and hence does 
much fewer random accesses to R on DocId. This is confirmed by 
Figure 10 which shows the number of random accesses to R on 
DocId for the two approaches. We observe this same performance 
gap between the two approaches even for small values of K when 
the cardinality bound B becomes weak. Figure 11 compares the 
two approaches for the SUM_TOP_D aggregation function for 
various values of D. We turn off the FTM materialization for this 
experiment; so the cardinality bound B = D. Even for K=10, 
Generate-Only approach rapidly degrades with increasing D; this is 
because it again ends up retrieving a large number of documents 
from FTS and looking them up in R to satisfy the “ideal” stop 

                                                 
6 The Generate-Only approach sometimes performs worse than SQL 
although it does not retrieve any more search objects or do more joins on 
SOId than SQL. This is because SQL does the join in one go while 
Generate-Only does it in chunks, thereby incurring higher costs of 
communication with server, parsing costs, etc. The execution time of Gen-
Only can be reduced by choosing the chunk size judiciously but is still no 
better than SQL. 

condition due to the weak upper bounds. The Generate-Prune 
approach, on the other hand, is robust due to the relaxed stopping 
condition. Note that the Generate-Prune approach has the 
additional cost of computing exact scores of candidates but that 
cost is small compared to the difference of cost in the generation 
phase.  
Comparison between Exact Scores and Approximate Scores: 
Recall that the Generate-Prune technique returning the top K 
objects with approximate scores is expected to reduce cost in 2 
ways: (a) compute exact scores of fewer candidate target objects 
and (b) retrieve fewer documents from the lists. Figure 13 shows 
the savings due to (a); the approximate scores approach compute 
exact scores of fewer candidates (by almost 25-50%). Figure 12 
shows the savings due to (b); the approximate scores approach 
retrieves much fewer documents compared to exact scores which 
retrieve all documents (but do not lookup in the relationships table). 
However, the surprising result was that their execution times as 
shown in Figure 9 are almost identical. Investigating this anomaly, 
we found that the SQL UDF we are using to get the ranked lists 
from FTS for the various keywords actually gets the whole ranked 
list in one go. We confirmed this by varying the number of 
documents retrieved from FTS for various keyword queries and 
measuring the response times; the execution times are independent 
of the number of documents retrieved. Hence, the savings in the 
cost due to (b) is not reflected in the execution time. Furthermore, 
we found that retrieving the ranked list from FTS accounts for 
about half the execution time; the remaining time is evenly split 
between the generation and pruning phases. Therefore, in an FTS 
which does not retrieve the whole ranked lists in one go, we expect 
the approximate scores approach to be even better compared to all 
the other approaches including SQL.  
Sensitivity to materialization: Figure 14 shows the execution 
times of the Gen-Prune approach for various values of θ. Lower the 
value of θ, more the number of frequent target objects materialized, 
better the upper bound scores, faster the execution. 

Figure 8: Execution times of 
GENERATE_PRUNE and SQL approaches for 
column and row marginal scoring functions

Figure 9: Execution times of GEN_ONLY, 
GEN_PRUNE/APPROX SCORES and 
GEN_PRUNE/EXACT SCORES 

Figure 12: Number of docs retrieved from FTS by 
GEN_PRUNE/APPROX SCORES, 
GEN_PRUNE/EXACT SCORES and GEN_ONLY

Figure 10: Number of random accesses to 
relationships table R on DocId by 
GEN_PRUNE and GEN_ONLY approaches

Figure 13: Number of rand. accesses to R 
on TOId by GEN_PRUNE/APPROX and 
GEN_PRUNE/EXACT SCORES

Figure 11: Execution times of 
GEN_PRUNE and GEN_ONLY approaches 
for various values of D (sum_top_D)
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Sensitivity to number of keywords: Figure 15 shows the 
execution times of the Gen-Prune approach and SQL 
implementation for different number of keywords in the OF query. 
We used the 2 and 3 keyword queries from the ‘Google top sports 
queries’ in addition to some 1 and 4 keyword queries from “Google 
Zeitgeist”. The Gen-Prune is more robust to the number of 
keywords since it does partial retrieval on the ranked lists; SQL, on 
the other hand, has to retrieve more lists of documents and lookup 
more documents in the relationships table and hence becomes even 
more expensive. 
 Sensitivity to selections on documents: Figure 16 compares the 
execution times of the SQL implementation, Gen-Prune approach 
with Fagg=SUM (with FTM optimization) and Gen-Prune approach 
with Fagg=SUM_TOP_D (without FTM optimization) in presence 
of selection conditions on documents. We pose a range selection 
condition on the ‘date’ attribute of the news articles and vary its 
selectivity by changing the date ranges. For selectivity < 10%, the 
execution times are identical for the 3 approaches. This is because 
the cardinality bound B based on θ, although correct, is too weak in 
presence of selective search conditions; hence the Gen-Prune 
approach ends up retrieving as many documents from FTS as SQL. 
For selectivity > 10%, the Gen-Prune approach outperforms SQL 
because the bounds start getting stronger resulting in earlier 
terminations. The Gen-Prune with Fagg= SUM_TOP_D performs 
better than the Fagg=SUM case. This is because, in the former case, 
the bound B comes from D which is unaffected by selections while, 
in the latter case, it comes from θ which is weakened by selections. 
We observe that the Gen_Prune with Fagg=SUM has a bell-shaped 
curve because the weak bounds have the most impact when the 
selectivities are high but not high enough for the bounds to be tight.  

8 CONCLUSIONS 
 In many applications, the goal is to find the top K objects related 
to documents that best match a set of keywords. We introduced the 
class of object finder queries and defined its semantics. We present 
two broad classes of scoring functions, which exploit relationships 
between documents and objects, to compute the relevance score of 
the target objects for a given set of keywords. Our query evaluation 
system would return the K target objects with the highest scores. 
We present early termination techniques to efficiently evaluate 
these queries. Our experiments show that our approach is 4-5 faster 
than the SQL implementation that does not have this early 
termination property.  
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and SQL approaches to the number of 
keywords 

Figure 16: Sensitivity of GEN_PRUNE and 
SQL approaches to selectivity of selection 
conditions on search objects
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