
Ranking Objects by Exploiting Relationships:
Computing Top-K over Aggregation

Kaushik Chakrabarti Venkatesh Ganti Jiawei Han Dong Xin*
 Microsoft Research Microsoft Research University of Illinois University of Illinois
kaushik@microsoft.com vganti@microsoft.com hanj@cs.uiuc.edu dongxin@uiuc.edu

ABSTRACT
In many document collections, documents are related to objects
such as document authors, products described in the document, or
persons referred to in the document. In many applications, the goal
is to find such related objects that best match a set of keywords.
The keywords may not necessarily occur in the textual descriptions
of target objects; they occur only in the documents. In order to
answer these queries, we exploit the relationships between the
documents containing the keywords and the target objects related
to those documents. Current keyword query paradigms do not use
these relationships effectively and hence are inefficient for these
queries.

In this paper, we consider a class of queries called the
“object finder” queries. Our goal is to return the top K objects that
best match a given set of keywords by exploiting the relationships
between documents and objects. We design efficient algorithms by
developing early termination strategies in presence of blocking
operators such as group by. Our experiments with real datasets
and workloads demonstrate the effectiveness of our techniques.
Although we present our techniques in the context of keyword
search, our techniques apply to other types of ranked searches
(e.g., multimedia search) as well.

1 INTRODUCTION
In many applications like customer support, digital libraries,

e-commerce, personal information management and health care,
unstructured documents are often related to objects representing
real entities. In a digital library like DBLP, for instance,
unstructured documents like papers have objects like author names,
publication dates and conference/journal names associated with
them. Further, there is an increasing trend of automatically
extracting structured information like details of named entities (e.g.,
names of persons, locations, organizations, products, etc.) from
unstructured documents in order to move it up the value chain [7,
18]. The extracted details, being structured, are more amenable to
complex querying and analysis. Unstructured documents are
therefore usually accompanied by two types of information: (1)
objects, either as attributes of the documents or automatically
extracted from them or both, and (2) relationship information that
describes which document is related to which object (e.g., paper-
author relationship, document-entity relationship).

In many applications, the goal is to find the objects related to
documents that best match a set of keywords. For example, in a
digital library application, one might want to find the top authors in
the areas of “databases” and “information retrieval”. This is
commonly known as the “expert finder” application [15]. A
detailed example in the context of named entities (referred to as
entities) is shown below.
Example 1.1 (Entity Finder): As shown in Figure 1, consider a
database of product reviews. Suppose we extract product names
from the reviews using an entity extractor. The database now has
two distinct classes of objects: reviews with attributes ReviewId
and ReviewText (and possibly other attributes) and Product
Entities with attributes EntityId and EntityName. The relationships
between reviews and entities are represented by a set of <ReviewId,
EntityID> pairs. A pair <d,t> is in that set if the review with id d is
related to the entity with id t which, in this case, means t has been
extracted from d. An application might enable users to search for
entities matching a set of keywords so that they may find products
that best satisfy their desired criteria. In Figure 1, a user might
search the reviews/opinions to find laptops using the keywords
“lightweight” and “business use”. Note that these keywords do not
occur in the names of laptops. Hence, current keyword search
techniques cannot be used to answer such queries.

Such entity finder functionality can be used to search for
different object types (e.g., people, locations, companies, products,
events, etc.) in a variety of domains. In this paper, we abstract out
this functionality and formally define the above class of queries; we
refer to them as “object finder” (OF) queries. First, we isolate two
distinct classes of objects and the relationships among them.
1) Search Objects (SOs): These are searched by the keywords

(e.g., papers in expert finder, reviews in the product finder)
2) Target objects (TOs): These are desired as answers to the

query (e.g., authors in expert finder, entities in entity finder)
The relationships between the search and the target objects are
represented by the set of <SO, TO> pairs as shown in Figure 1. The
goal of an OF query is to return the best K target objects that
“match” a given set of keywords. We address two important
questions. First, how does a target object match a set of keywords?
Second, how do we compute the relevance score of a target object
in order to rank them? Consider the OF query with keywords
“lightweight” and “business use” over the product review database
in Figure 1. Intuitively, we expect the entities ‘Dell Inspiron 700m’
and ‘Sony VAIO’ to qualify as answers since the reviews related to
these entities contain the given keywords. Thus, we need to find the
reviews that contain the keywords using standard full text search
(FTS), and then exploit the relationships between reviews and
entities to find the qualifying entities. The relevance of an entity
depends on how many of the reviews related to it contain the query

 * Work done while visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006…$5.00.

keywords and how well they match with those keywords. Thus, the
relevance score of an entity is an “aggregate” of the FTS scores
(i.e., the keyword match scores returned by FTS) of all related
reviews containing the query keywords. For example, the entity
‘Dell Inspiron 700m’ in Figure 1 is related to two reviews that
contain keyword “lightweight” (d1 and d3) and two reviews that
contain keyword “business use” (d3 and d6). So, the relevance
score ‘Dell Inspiron 700m’ for those keywords is obtained by
aggregating the FTS scores of d1 and d3 for keyword “lightweight”
and those of d3 and d6 for keyword “business use”. In this paper,
we consider a broad class of scoring functions to compute
relevance scores of target objects as aggregations over FTS scores
of the related documents. Our OF query evaluation system would
then return the K target objects with the best scores according to
any chosen scoring function from the above class. Informally, the
problem is to compute the top K target objects with the highest
scores, obtained by aggregating over one or more ranked lists. The
techniques we describe in this paper are applicable to this general
class of queries, where ranked lists are obtained using any indexing
sub-system (not necessarily FTS). However, while describing
techniques in this paper, we assume that search objects are
documents and the indexing sub-system is FTS, which returns a
ranked list of documents for keyword queries.

The requirement that we aggregate (multiple) ranked lists of
object scores prevents us from using existing work, especially the
TA family of algorithms [10,11]. The threshold algorithm (TA)
assumes that an object has a single score in each list. In our case, a
target object can have multiple document scores, which need to be
aggregated, in each list. (See Section 2 for a detailed discussion).

Most relational DBMSs now support FTS functionality.
Hence, OF queries can be implemented in SQL. Figure 4 illustrates
the schematic of such a query plan. SQL evaluations performing
aggregation over FTS scores would be forced to retrieve all the
documents containing the set of query keywords, join them all with
the relationships table to find the related target objects, compute the
aggregate scores of all these target objects, sort them all based on
the score, and return the top K to the user. For large document
collections, FTS may return large numbers of documents causing
this implementation to be very inefficient. The challenge is to
exploit the property that we only require the top K target objects
and terminate early.

In this paper, we develop early termination techniques to
efficiently evaluate the class of OF queries. We build upon existing
infrastructure, FTS and DBMS engines, to support keyword queries
over documents. Our approach is based on the following intuition:
top scoring documents typically contribute the most to the scores of
high scoring target objects. Hence, the target objects related to
these top scoring documents are likely to be the best candidate
matches. We progressively retrieve documents in the decreasing
order of their scores, and maintain upper and lower bound scores
for the related target objects. Using these bounds, we first identify
a superset of the top K target objects. Then, in the second ‘pruning’
phase, we pick a subset of these candidates and compute their exact
scores in order to isolate the exact top K target objects from them.
The challenges in this approach are (i) to compute tight bounds in
the presence of aggregation over FTS scores, and (ii) to minimize
the number of target objects whose exact scores are computed in
the pruning phase. We describe an algorithm that performs the
minimum number of such exact score computations. Overall, the
two-phase approach is very efficient when compared with existing
techniques.

Our contributions in this paper can be summarized as follows.
First, we formally introduce the class of OF queries. Second, we
propose a class of scoring functions to compute the relevance
scores of target objects. Third, we develop efficient early
termination techniques to compute the top K target objects based
on a scoring function within the above class. We present an
extensive experimental study to determine the effectiveness of our
scoring framework and evaluation techniques. Our experiments
show that our early termination approach is often 4 to 5 times faster
than a corresponding SQL implementation.

 The remainder of the paper is organized as follows. In
Section 2, we review related work. In Section 3, we provide an
overview of the OF query evaluation system and present the class
of scoring functions. In Section 4, we discuss the SQL
implementation of OF queries. In Section 5, we present our early
termination algorithms. We discuss a few extensions of our
techniques in Section 6. In Section 7, we present experimental
results. We conclude in Section 8.

2 RELATED WORK
Retrieving text documents containing a given set of query
keywords has been studied extensively in Information Retrieval [3].
We cannot use these techniques to answer OF queries since the
descriptions of target objects usually do not contain the query
keywords. The functionality of returning entities for keyword
queries to enable faster information discovery has been proposed
earlier [8]. However, they do not discuss scoring functions or
evaluation techniques for such queries. Recent work on keyword
search over databases proposes to return ‘joining networks’ of
related tuples that together contain a given set of keywords where
the tuples are related by foreign key-primary key links [1,5,13].
However, these techniques do not consider aggregating the scores
of multiple joining networks in order to identify desired target
objects based on aggregated scores. But, they could be adapted by
restricting the set of ‘valid’ joining networks to those whose central
nodes (the node that connects the keyword nodes) correspond to the
desired target objects. Subsequently, we can group those networks
by the target objects, compute the aggregate scores and return the
top K. This approach is inefficient because first, the number of
such valid networks can become very large leading to high
grouping cost and second, it, like the SQL implementation, does
not have the early termination property.

Relationships
between
reviews and
NEst3d4

t4d5

t1d3
t2d4

t1d6

t2d2
t1d1

EntityIDReviewID

t3d4
t4d5

t1d3
t2d4

t1d6

t2d2
t1d1

EntityIDReviewID

“… lightweight
…business use”

d3

“…expensive …
business use …”

d4

“…business use
...”

d5

“…good price …
business use …”

d6

“…lightweight…
battery life…”

d2

“… portable …
lightweight...”

d1
ReviewTextReviewID

“… lightweight
…business use”

d3

“…expensive …
business use …”

d4

“…business use
...”

d5

“…good price …
business use …”

d6

“…lightweight…
battery life…”

d2

“… portable …
lightweight...”

d1
ReviewTextReviewID

Dell Latitude
D810

t4

Apple
Powerbook G4

t3

Sony VAIOt2

Dell Inspiron
700m

t1

EntityNameEntityID

Dell Latitude
D810

t4

Apple
Powerbook G4

t3

Sony VAIOt2

Dell Inspiron
700m

t1

EntityNameEntityID

Reviews (Search Objects) Product NEs (Target Objects)

m:n

Figure 1: Search objects, target objects and relationships

 Our early termination strategies are motivated by the large
body of work on top-K queries. One of the most notable algorithms
in this area is the TA (threshold algorithm) family of algorithms
[10,11,12,14,16]. TA combines2 the scores of objects in different
lists and computes the top-K objects based on the combined score.
However, it does not consider aggregation of multiple scores within
each list. In our problem, if we know a priori that a target object is
related to at most one document, the subsequent aggregation of
scores per each target object is redundant; we can use TA in this
case to find top-K target objects efficiently. However, in most
scenarios a target object is typically related to multiple documents.
For example, an entity is typically present in multiple documents,
and an author typically writes multiple papers. In such cases, TA
cannot be used.

 Another potential approach is to pre-aggregate the scores of
the target objects for various keywords and materialize them,
thereby taking aggregation out of the picture and reducing the
problem to combining these materialized lists at query time. This
can be done efficiently using the TA algorithm. Such an approach
for authority based ranking of objects is proposed in [4]. This
approach has several limitations. First, it cannot handle selections
on the documents. Second, we found that the pre-aggregation
strategy imposes significant space overhead; it might not be
feasible to maintain the scores of all target objects for all keywords.
Third, this strategy is not applicable to non-keyword ranked
searches like multimedia searches or ranked searches over
structured data.

3 SYSTEM OVERVIEW AND SCORING
FUNCTIONS

We build upon FTS and DBMS systems by indexing documents
using FTS, and by storing and querying the relationship and target
objects in SQL Server. We first present an overview of the
ObjectFinder (OF) query evaluation system to lay the ground for
the subsequent discussion on the class of scoring functions.

3.1 System Overview
Figure 2 shows the overview of our system. We describe the
functionality we assume from each of these systems.

FTS: We index the text content of the documents using an FTS
system (at the preprocessing stage) so that we can support keyword
queries on them at query time. We assume that the FTS system
supports the following query interface: given a single keyword or a
multi-keyword query, it provides “sorted access” to the ranked list
of documents matching with the query, i.e., the application can
retrieve the next best document from the ranked list along with the
score. We refer to these documents scores as DocScores. For clarity
in description, we assume that all documents are indexed by a
single FTS index. Our techniques can also be extended to multiple
FTS indexes that index different sets of documents.

DBMS: We store the target objects and the relationships in the
DBMS in two distinct tables: (i) the target object table T which has
schema <TOId, TOValue> and stores the ids and values of the
target objects, and (ii) the relationships table R which has schema
<DocId, TOId> and stores the document-target object pairs that are

2 TA refers the combination of scores from different lists as “aggregation”;
we refer to this as “combination” in this paper. In this paper, “aggregation”
refers to aggregation of multiple scores for the same object within a list.

related to each other. The application might have multiple types of
target objects (e.g., different types of entities like persons, locations,
products, etc. in the entity finder application) and the user might
specify the desired type in the OF query. This can be implemented
using the above architecture by either storing the target objects and
the relationships for each type in separate T and R tables or by
adding a type column to the tables. For the purposes of description,
we assume only one type of target objects. Our approach can be
extended to take into account static weights and, as discussed
further in Section 6, selections on search and target objects and
static weights associated with target objects [17].

In evaluating the OF query, we focus on obtaining the identifiers of
the top K target objects matching with the keywords; T is used only
for the final lookup of the TOvalues corresponding to those TOIds
before returning to the user. Hence, the ranked lists and R are the
main inputs to the OF evaluation system. Besides sorted access on
the ranked lists from FTS, we require the following two access
methods on R:
1) Random access over R on DocId to find the identifiers of the

target objects related to a given DocId or a given set of DocIds.
2) Random access over R on TOId to find the identifiers of the

documents related to a given TOId.
We assume appropriate physical design for R to make the above
random accesses efficient.

3.2 Class of Scoring Functions
We now describe the class of scoring functions we consider

in this paper. Our OF evaluation system would return the K target
objects with the best scores according to the scoring function
chosen from this class. Informally, each function in this class
computes the score of any target object by aggregating the
DocScores of the documents related to it occurring in those ranked
lists.

Let W = {w1, w2, …, wN} denote the set of N keywords in the
OF query. Let Li denote the ranked list of document identifiers
along with DocScores that would be returned by the FTS system
for the single keyword query {wi}. Let Dt denote the list of
documents related to t. The DocScores of the objects in Dt in the
above lists define the score matrix Mt of t; the cell Mt[i,j] contains
the DocScore of the ith object in Dt in list Lj; it contains 0 if ith
object in Dt is not present in Lj. Let Score(t) denote the relevance
score for the target object t (computed using Mt).

Figure 2: Overview of OF Query Evaluation System

Full Text Search System (FTS)
(indexes all the documents; supports sorted

access on the ranked lists Li)

Keyword
query w1

Ranked list
L1 of
documents
matching w1

Keyword
query w2

Ranked list L2

of documents
matching w2

…
Relationships Table R

t4d5
t1d6

t3d4

t1d3
t2d4

t2d2
t1d1

TOIdDocId

t4d5
t1d6

t3d4

t1d3
t2d4

t2d2
t1d1

TOIdDocId

..

..

“Apple
Powerbook G4”

t3
“Sony VAIO”t2

“Dell Inspiron
700m”

t1
TOValueTOId

..

..

“Apple
Powerbook G4”

t3
“Sony VAIO”t2

“Dell Inspiron
700m”

t1
TOValueTOId

ObjectFinder
Query Evaluation

System

Input from User: keywords
{w1, w2, …wn}; number K
of target objects desired

Output to
User: Top K
target objects

Target Object Table T

Example 2.1 (Score Matrix): Consider the keyword query
{“lightweight”, “business use”} in Example 1.1. Suppose FTS
returned ranked list L1={(d1, 0.8), (d2, 0.6), (d3, 0.3)} for keyword
“lightweight” and ranked list L2={(d5, 0.7), (d4, 0.5), (d3, 0.4), (d6,
0.1)} for keyword “business use”. Consider the target object “Dell
Inspiron 700m”; Dt = {d1, d3, d6}. The score matrix of “Dell
Inspiron 700m” for the above query is shown in Figure 3(a). ■

A general scoring function would take the entire score matrix Mt to
compute Score(t). However, efficiently retrieving the best top K
target objects according to any arbitrary function would be very
hard without fetching all relevant documents and target objects. We
therefore consider the following two classes of functions. These
functions first compute either the row marginals or the column
marginals of the score matrix and then aggregate these marginals.
We use the term ‘marginal’ loosely in that the function for
computing the row or column marginal may not be the sum
function.
1) Row-marginal Class: The overall score Score(t) of the target
object t is computed in 2 steps. In step 1, we combine the scores in
each row of the score matrix of t using a combination function
Fcomb, i.e., for each document d ∈ Dt, we combine its DocScores in
the N lists using Fcomb.

3 In step 2, we aggregate the combined
scores of all the documents in Dt using an aggregation function Fagg

to obtain the overall score. Formally,

Score(t)=
tDdaggF

∈
(Fcomb(DocScore(d,L1),…, DocScore(d, LN))) (1)

where DocScore(d, Lj) denotes the DocScore of the document d ∈
Dt in list Lj (= 0 if d ∉Lj). Applications can define a wide variety of
scoring functions in this class by plugging in different Fcomb and
Fagg; an example of such a scoring function with Fcomb = MIN and
Fagg= SUM applied to the score matrix in Figure 3(a) is shown in
Figure 3(b).
2) Column-marginal Class: Score(t) is computed in 2 steps. In
step 1, we aggregate the scores of each column of the score matrix
of t using an aggregation function Fagg, i.e., for each list, we
aggregate the DocScores of all documents in Dt in that list. In step
2, we combine the aggregate scores of the N lists using a
combination function Fcomb to obtain the overall score. Formally,
Score(t)=

Fcomb(
tDdaggF

∈
(DocScore(d,L1)),…,

tDdaggF
∈

(DocScore(d,LN)))(2)

Again, applications can define a wide variety of scoring functions
in this class by plugging in different Fagg and Fcomb; an example of
such a scoring function with Fagg= SUM and Fcomb = MIN applied to
the score matrix in Figure 3(a) is shown in Figure 3(c).

Properties required of Fagg and Fcomb: Our early termination
techniques are applicable when Fagg and Fcomb satisfy certain
properties. We say that Fcomb is monotonic if Fcomb(x1,…, xn) ≤
Fcomb(y1,…, yn) when xi ≤ yi for all i. We say that Fagg is subset
monotonic if Fagg(S) ≤ Fagg(S’) if S ⊆ S’. This implies that, at any
stage of aggregation, aggregating additional scores cannot decrease
the aggregate score. Sum, count, max, sum_top_D and avg_top_D
are examples of subset monotonic functions where sum_top_D
(avg_top_D) denote sum (average) over the highest D scores in the
set of scores being aggregated; note max is a special case of
sum_top_D with D=1. Avg and min are not subset monotonic, and
hence we cannot support the instantiation of Fagg with avg. Note

3 The number of arguments of Fcomb is fixed once the number of keyword
queries issued against FTS is known. But, the arity may vary across queries.

that we can support avg_top_D which emulates the properties of
average. We say that Fagg distributes over append if Fagg(R1 append
R2) = Fagg(Fagg(R1), Fagg(R2)), where append denotes the ordered
concatenation of lists of tuples. In our case, we invoke this property
over ordered (disjoint) fragments of ranked lists.

Our early termination techniques (described later) can be
applied if (i) Fcomb is monotonic, (ii) Fagg distributes over append
and is subset monotonic.

3.3 Example Instantiations
We now discuss instantiations of scoring functions in order to
model certain semantic notions of matching for target objects.

All Query Keywords Present in each Document: Consider the
match behavior where we say a target object t matches with the
keyword query W iff one or more documents related to t contains
all the keywords in W; higher the number of such documents
related to it and higher their scores, better the match for t. We can
implement this notion using the row-marginal scoring framework
by choosing an Fcomb that conserves the standard propositional
semantics for conjunction like min4 [10] while Fagg can be a subset
monotonic function like sum. An example for this choice of Fcomb

and Fagg is shown in Figure 3(b). “Dell Inspiron 700m” has a non-
zero score because one of the documents related to it (d3) contains
all the keywords and its final score depends only on the combined
keyword score of d3.

The above notion of matching may be restrictive when there
is no document related to t that contains all the keywords. For
example, consider the target object “Sony VAIO” in Figure 1.
None of the documents related to it contains both the keywords
“lightweight” and “business use”. So it is not a match by the above
notion. However, one review related to it contains “lightweight”
and another contains “business use”. Intuitively, it should match
with the query. To handle this, we consider a more relaxed notion
of match.

All Query Keywords Present in Set of Related Documents:
Consider the match behavior where we say t matches with W iff the
documents related to it together cover all the keywords in W, i.e.,
each keyword in W is contained in at least one document related to
t. The more the number of matching objects related to t for each

4 Note that we do not require Fcomb to conserve conjunctive semantics for
our techniques to work; we only require it to be monotonic.

Figure 3: Score Matrix and Classes of Scoring Functions

FAgg(0, 0.4,
0.1) = 0.5

FAgg(0.8, 0.3, 0)
= 1.1

FAgg(0, 0.4,
0.1) = 0.5

FAgg(0.8, 0.3, 0)
= 1.1

(b) Score
Computation for the
row marginal class

(c) Column
marginal
class of
scoring
functions

FComb(0, 0.1) = 0

FComb(0.3, 0.4) = 0.3

FComb(0.8, 0) = 0

FComb(0, 0.1) = 0

FComb(0.3, 0.4) = 0.3

FComb(0.8, 0) = 0

0.40.3d3

0.1

0

Scores in list
for “business

use”

0

0.8

Scores in list
for

“lightweight”

d6

d1

Set of
related

documents

0.40.3d3

0.1

0

Scores in list
for “business

use”

0

0.8

Scores in list
for

“lightweight”

d6

d1

Set of
related

documents

(a) Score Matrix for “Dell Inspiron 700m”

FAgg(0, 0.3, 0) = 0.3FAgg(0, 0.3, 0) = 0.3

Step 1: Compute
combined score
of each row
(Fcomb = MIN)

Step 2: Agg. the
combined scores
(Fagg = SUM)

FComb(1.1, 0.5) =
0.5

FComb(1.1, 0.5) =
0.5

Step 1: Compute agg. score of
each column (Fagg = SUM)

Step 2: Combine the agg.
Scores (Fcomb = MIN)

keyword and the higher those individual keyword match scores, the
better the match for t. Clearly, this definition would return “Sony
VAIO” as a match in Example 1. We can implement this definition
using the column-marginal scoring framework by choosing a subset
monotonic function like sum as Fagg and min as Fcomb. An example
for this choice of Fcomb and Fagg is shown in Figure 3(c); “Dell
Inspiron 700m” has a non-zero score because the set of objects
related to it (i.e., d1, d3 and d6) covers both keywords. Note that
this notion cannot be implemented using the row-marginal
framework.

Pseudo-document Approach: Consider the following simulation
of facilitating keyword search over target objects. Suppose we
associate with each target t object a pseudo-document created by
concatenating all documents that t is related to. We can now index
these pseudo-documents using FTS and directly facilitate keyword
queries over them. Now, the ranked list of “documents” returned by
FTS corresponds to a ranked list of target objects, which is our
desired goal. However, the overall size of the pseudo-document
collection is several times larger because each document is
replicated once per target object it is related to. We can instantiate a
scoring function within our class to often simulate the same effect
as the pseudo-document approach.
Most FTS scoring functions assigning relevance scores to
documents have two components: (i) a function Fscore which scores
a document per query keyword, and (ii) a combination (using a
function Fcomb, say, a linear combination based on IDF weights) of
these scores across all keywords. TF-IDF scoring functions,
commonly used in IR systems, are examples of this type of scoring
functions: Fscore is term frequency (TF) and Fcomb is a linear
combination of document scores per keyword where the
coefficients are determined by the IDF weights of the keywords.
Suppose Fscore distributes over concatenation of documents:
Fscore(d1 concat d2) = Fscore(d1) + Fscore(d2). The term frequency
function is such an example. Under the conditions that Fscore is
additive and Fcomb is fixed (i.e., does not change with document
collection), choosing a function within a column marginal
framework where Fagg is sum, and Fcomb is the combination used by
FTS would achieve the desired functionality.

3.4 Object Finder Problem

Problem statement: Given a list w1,…,wN of query keywords, the
scoring function f in either the row-marginal or the column-
marginal class, the interfaces for keyword queries over FTS and for
random access on the relationships table R on both DocId and
TOId, compute the K target objects with the highest scores.

For the row-marginal class of scoring functions, it is possible to
perform the combination inside the FTS system if FTS supports the
desired combination function. For the match notion where all query
keywords have to be present in each relevant document, we can
submit to FTS a single combined keyword query Q = (w1 AND w2

AND … AND wN). The score Score(t) is then obtained by
aggregating the DocScores of the documents related to t occurring
in the single ranked list returned by FTS for the above AND query:
Score(t) =

tDdaggF
∈

 (DocScoreAND query (d)) (3)

The advantage here is that the combination over the keywords is
performed by FTS and hence can be very efficient. And, such a
strategy may be possible for other types of combinations (e.g.,
disjunction) as well. In this case, the problem for the row marginal
class is the same as that for the column marginal class except that
there is a single combined keyword query, which returns a single

ranked list of documents. For a general combination function that is
not supported by FTS, we obtain a single ranked list corresponding
to the combination query as follows. We issue individual keyword
queries to FTS, combine the ranked lists of documents using an
algorithm such as NRA [11,14], to provide a single combined
ranked list for subsequent aggregation. The problem again reduces
to a column-marginal class with a single combined keyword query.

For the column-marginal class, it is not possible to perform the
combination inside FTS (even if FTS supports the combination
function) since the aggregation over documents needs to be done
first. Hence, we always need to submit individual keyword queries
to FTS. We focus on the column marginal class while describing
our evaluation techniques in Sections 3 and 4; we conduct
experiments with both classes in our experiments section.

4 SQL IMPLEMENTATION
Commercial DBMSs now support FTS functionality by

providing specialized user-defined functions (UDFs) to perform
keyword search on text columns of database tables [9]. Therefore,
we can implement OF queries in SQL using these FTS UDFs.

 Figure 4 shows the execution plan for the column-marginal
class. We join each list individually with the relationships table R
on DocId to get the related target objects. We then group each join
result by TOId and aggregate the DocScores using Fagg. We then do
a full outer join (on TOId) of the aggregation results and compute
the combined score of each target object by combining its
aggregate score from each list using Fcomb. Finally, we order the
TOIds by the combined scores and return the top K TOIds. A
clustered index on R.DocId may help the join with R to be efficient.
Observe that algorithms such as TA may only be applied for the
second join above the group by operators.

As discussed earlier, the presence of blocking operators
(group by and order by) in the plan makes the evaluation wasteful
(cf. Figure 9). Since the user is typically interested in only top K
target object, we can significantly reduce these costs by retrieving
the top documents from the ranked lists “progressively”. Since we
cannot do such progressive evaluation using SQL, we implement
such an approach in middleware.

5 EARLY TERMINATION APPROACH
In this section, we describe our approaches for OF query evaluation.
The idea is to retrieve a small number of the top documents from
each ranked list, get related target objects by looking up the
relationships table R, and determine upper and lower bound scores
for those target objects “seen” so far. Often these bounds can guide

Figure 4: SQL query plan for column marginal class

⋈DocId …

Top K Target Objects

Ranked list of
documents
matching w2

Relationships
Table R

Ranked list of
documents
matching w1

GROUP BY
TOId (Fagg)

Order by score

GROUP BY
TOId (Fagg)

GROUP BY
TOId (Fagg)

⋈DocId

⋈ TOId
(Fcomb)

Relationships
Table R

us in stopping early. We identify two approaches for leveraging
these bounds to stop early.
Generate-only Approach: This approach relies completely on the
bounds and stops when it can determine that it has identified the
best K target objects based on a “stopping condition”. We stop if
the condition is met and continue fetching more documents
otherwise. This technique is similar in flavor to the NRA algorithm
[11]; however, the techniques for computing bounds are different
due to the aggregation operator.
Generate-Prune Approach: This approach has two phases: a
candidate generation phase followed by a pruning phase. During
the generation phase, we use the bounds to identify a superset of
the top K target objects. The condition to check that we have
identified a superset is more relaxed than that in the Generate-only
approach and hence retrieves fewer documents from the ranked
lists and does fewer lookups in R (on DocId). During the pruning
phase, we isolate the subset of the best K target objects.

The algorithm for the Generate-only approach is identical to the
algorithm for the generate phase of the Generate-Prune approach
except for the stopping condition. Therefore, we first describe the
Generate-Prune approach in detail and then discuss the stopping
condition for the Generate-only approach.

5.1 Candidate Generation
The goal of the candidate generation phase is to generate a

superset of the top K target objects. We submit keyword queries,
one for each keyword wi, to FTS and obtain ranked lists L1,…,LN
of documents. We process these lists iteratively. In each iteration,
we retrieve more documents from each ranked list Li and evaluate
the query shown in Figure 5 over the prefixes, denoted by
Prefix(Li), of documents retrieved so far from the Lis. Evaluation of
the query generates the SeenTOs table that contains the current
aggregation scores as well as the lower and upper bound scores of
all target objects related to one or more documents in any Prefix(Li).
Using the SeenTOs table, we check whether or not we can stop
further retrieval from the ranked lists. If so, we identify candidates
from the SeenTOs table, otherwise, we retrieve more documents
from each Li and iterate the above process.

A straight-forward approach is to generate the SeenTOs table
from scratch every time, i.e., re-evaluate the query shown in Figure
5 over the entire prefixes in every iteration. This is wasteful as it
would repeatedly evaluate Group By and combination over the join
result of entire prefixes with the relationships table R. We exploit
the distributive properties of both Fagg and the join operator in order
to evaluate the query incrementally, i.e., in each iteration, we
process just the newly retrieved documents and update the scores in
the SeenTOs table. The algorithm therefore has 5 steps:

 We now discuss each of these steps in detail.

Step 1 (Retrieve Documents): In each iteration, we retrieve the
next chunk Ci of documents from each Li. We retrieve the
documents in chunks in order to reduce the number of join queries
(with R) issued to the DBMS. The choice of the chunk size presents
a tradeoff between the number of “unnecessary” documents (i.e.,

not necessary to generate candidates) retrieved from FTS and
number of join queries issued to DBMS; we choose a chunk size of
100 for all lists in our experiments.

Step 2 (Update SeenTOs): We discuss how to process the new
chunks Ci retrieved in the current iteration incrementally and
update the SeenTOs table. This has two parts: incrementally
computing the Group By and the combination.
Compute Group By incrementally: As shown in Figure 5, the
Group By is computed for each list Li. For each Li, we maintain,
across iterations, the AggResulti table containing the following
information for each target object t related to one or more
documents in Prefix(Li): the number numSeen of documents in
Prefix(Li) related to t and the “current” aggregate score aggScore,
i.e., the aggregate of the DocScores of the documents in Prefix(Li)
related to t. We discuss computing the aggScore column in
AggResulti incrementally; the numSeen column is computed in a
similar fashion. Formally, the aggScores in AggResulti at the end of
any iteration is GroupByTOId(Prefix(Li) ⋈ DocIdR, Fagg(DocScore))
where GroupByA(S, F(B)) denotes Group By over relation S on
column A and aggregation on column B using aggregate function F.
AggResulti is empty at the start of first iteration. The new prefix
after this iteration is (Prefix(Li) append Ci), so the new AggResulti
after this iteration should be: GroupByTOId((Prefix(Li) append Ci)
⋈DocIdR, Fagg(DocScore)). Since both join and Fagg distribute over
append, the new aggScores can be obtained from
GroupByTOId(Prefix(Li) ⋈ DocIdR, Fagg(DocScore)) (the AggResulti

from the previous iteration) and GroupByTOId(Ci ⋈ DocIdR, Fagg-

(DocScore)) (the AggResult for the current chunk). We first
compute the AggResult for the current chunk Ci by joining it with R
and then aggregating on the join result using Fagg. We then merge
the AggResult for the current chunk into the AggResulti table as
follows. For each t in the AggResult for the current chunk, if t is
already present in the AggResulti of previous iteration, we update
the t.aggScore to Fagg(previous t.aggScore, t.aggScore for the
current chunk). Otherwise, we insert t into AggResulti setting
t.aggScore to be that in the current chunk.
To update AggResulti efficiently, we maintain AggResulti as a hash
table keyed on TOId. Therefore, in each iteration, we evaluate the
join and the Group By over the newly retrieved chunks only.
Combine Incrementally: The combined SeenTOs table is a full
outer join on TOId of the AggResulti tables defined above. Since
the AggResulti are anyway in-memory hash tables, we can

1. Retrieve more documents from each Li
2. Update SeenTOs table for the prefixes Prefix(Li) retrieved

so far from the Lis
3. Compute lower and upper bounds
4. Check stopping condition. If satisfied, go to 4; else go

back to 1
5. Identify the candidates among the seen target objects

Figure 5: Query Evaluated over the prefixes Prefix(Li) in
each iteration.

⋈DocId⋈DocId

0.6d3
1.0d1

DocScoreDocId

0.6d3
1.0d1

DocScoreDocId
R

0.5d3
1.0d2

DocScoreDocId

0.5d3
1.0d2

DocScoreDocId
R

GROUP BY TOId
(agg. scores using

Fagg)

COMBINE ON
TOId (comb.

scores using Fcomb)

SeenTOs Table

GROUP BY TOId
(agg. scores using

Fagg)

t4d3
t3d3
t1d2

……

t2d1
t1d1

TOIdDocId

t4d3
t3d3
t1d2

……

t2d1
t1d1

TOIdDocId

t4d3
t3d3
t1d2

……

t2d1
t1d1

TOIdDocId

t4d3
t3d3
t1d2

……

t2d1
t1d1

TOIdDocIdPrefix(Li)
(Docs
retrieved
so far from
L1)

Prefix (L2)
(Docs
retrieved
so far from
L2)

x1
x2

0
1
1
1

num
Seen[2]

0
0.5
0.5
1.0

agg
Score[2]

1
1
1
1

num
Seen[1]

1.0
0.6
0.6
1.0

agg
Score[1]

2.61.0t2
2.21.1t4
2.21.1t3
3.12.0t1

ublbTOId

0
1
1
1

num
Seen[2]

0
0.5
0.5
1.0

agg
Score[2]

1
1
1
1

num
Seen[1]

1.0
0.6
0.6
1.0

agg
Score[1]

2.61.0t2
2.21.1t4
2.21.1t3
3.12.0t1

ublbTOId

performing the outer join simultaneously with the aggregation by
maintaining a unified SeenTOs hash table and updating the
SeenTOs table directly instead of maintaining separate AggResulti

tables. The SeenTOs table contains any target object t present in
any of the AggResulti tables and all the columns in AggResulti
tables, i.e., it contains t’s numSeen and aggScore values for each Li.
We denote these columns as numSeen[i] and aggScore[i]
respectively. If a target object t ∈ SeenTOs is not present in
AggResulti, t.numSeen[i] and t.aggScore[i] are set to 0. To
efficiently update the lower and upper bound scores of target
objects in SeenTOs in each iteration, we maintain SeenTOs as a
hash table keyed on TOId.

Step 3 (Compute bounds): In this step, we take SeenTOs table
generated in Step 2 and compute the lower and upper bound scores
of each target object t in SeenTOs (stored as 2 separate columns in
SeenTOs table). Here, we exploit the subset monotonicity property
of Fagg and the monotonicity property of Fcomb. We first consider the
computation of lower bound score. Since Fagg is subset monotonic,
the “current” aggregate score t.aggScore[i] of t for Li is the lower
bound of t for Li. The combined lower bound score of t, denoted
by t.lb, is the combination of the individual lower bound scores
t.aggScore[i], i.e.,
t.lb = Fcomb (t.aggScore[1],…,t.aggScore[N]).
We now consider the computation of the upper bound score. The
computation of the upper bound scores depends on a crucial
constant B called the cardinality bound. B is the maximum number
of documents in any ranked list Li that can contribute to the score
of any target object t. For the following discussion, we assume B is
known; we discuss its computation in Section 5.1.2. Since there are
t.numseen[i] documents related to t in Prefix(Li), there can be at
most (B - t.numseen[i]) documents in (Li – Prefix(Li)) that can
contribute to the aggregate score of t for Li. Furthermore, the
DocScores of such unseen documents is upper bounded by the
DocScore xi of the last document retrieved from Li as shown in
Figure 5. The upper bound score of t for list Li, denoted by t.ub[i],
is therefore aggregation of the current aggregate score (i.e.,
t.aggScore[i]) and the upper bound of the remaining contribution:

()()timesinumseentBxxFiaggScoretFiubt iiaggagg])[.(,...,,],[.][. −=
The combined upper bound score, denoted by t.ub, is:
t.ub = Fcomb(t.ub[1],…,t.ub[N]).

Step 4 (Stopping Condition): We can stop when there are at least
K objects in SeenTOs whose lower bound scores are higher than
the upper bound score of any unseen target object (i.e., target object
not in SeenTOs). This guarantees that no unseen object can qualify
for the final top K, i.e., SeenTOs is guaranteed to contain the final
top-K target objects. Let UnseenUB denote the upper bound score
of any unseen target object. Using the same logic as t.ub
computation:
UnseenUB = ()),...,,(),...,,...,,(11 timesBxxFtimesBxxFF NNaggaggcomb

Let LB and UB denote the list of all target objects in SeenTOs
sorted in decreasing order of their lower and upper bounds,
respectively and let LBj (UBj) denote the jth largest lb (ub) value in
LB (UB).The stopping condition is: LBK ≥ UnseenUB.

 Step 5 (Identify candidates): In this step, we filter out objects
from SeenTOs which cannot be in the final top K. Consider an
object in SeenTOs whose upper bound score is less than the lower
bounds of at least K target objects. This object cannot be in the
final top K and hence can be filtered out. Let Top(List, X) denote
the top X elements in the list. The set of candidates is defined by

Top(UB, h) where h is the least value which satisfies (i) LBK ≥
UBh+1 and (ii) Top(LB, K) ⊆ Top(UB, h). To ensure Top(LB,K) ⊆
Top(UB,h), we order objects in LB and UB as follows. For any two
objects O and O’, if their lower bound scores (upper bound scores)
are equal, we order them in LB (UB) in the decreasing order of
their upper bound score (lower bound score). If both their upper
bound and lower bound score are same, we rank them based on
their TOId.

Memory Requirement: We assume that the SeenTOs table fits in
memory. If SeenTOs becomes too large, we need to use a disk-
resident hash table.

Lemma 1: With the above ordering rule, if LBK ≥ UBh, then the
final top-K objects are within the top-h objects of UB.

Example 5.1: Consider the OF query whose complete ranked lists
and relationships table R is shown in Figure 6. Let Fagg = SUM,
Fcomb = SUM, B = 2, |Ci| (chunk size) = 1, K = 3. During the first
round, we retrieve (d1, 1.0) from L1 and (d2, 1.0) from L2. We
look them up in R and get (t1, 1.0) and (t2, 1.0) for L1; (t1, 1.0) for
L2. At this stage, x1 = 1.0 and x2 = 1.0; the bounds of target objects
seen so far are (sorted by lb):

 num
Seen[1]

agg
Score[1]

ub[1] num
Seen[2]

agg
Score[2]

ub[2] lb ub

t1 1 1.0 2.0 1 1.0 2.0 2.0 4.0
t2 1 1.0 2.0 0 0 2.0 1.0 4.0

Also, UnseenUB = Fcomb(Fagg(1.0, 1.0), Fagg(1.0, 1.0)) = 4.0. LB3 =
0 (because there are only two target objects in LB list), LB3 not ≥
UnseenUB, so we get more documents. We retrieve (d3, 0.6) from
L1 and (d3, 0.5) from L2. The new join result is (t3, 0.6) and (t4. 0.6)
for L1; (t3, 0.5) and (t4. 0.5) for L2. We compute the bounds for the
target objects seen so far; the stop condition still does not hold. So,
we continue retrieving more documents; we retrieve (d4, 0.2) from
L1 and (d4, 0.3) from L2. We get (t3, 0.2) and (t5. 0.2) for L1; (t3,
0.3) and (t5. 0.3) for L2. At this stage, x1 = 0.2 and x2 = 0.3; the
bounds of target objects seen so far are (sorted by lb):

 num
Seen[1]

agg
Score[1]

ub[1] num
Seen[2]

agg
Score[2]

ub[2] lb ub

t1 1 1.0 1.2 1 1.0 1.3 2.0 2.5
t3 2 0.8 0.8 2 0.8 0.8 1.6 1.6
t4 1 0.6 0.8 1 0.5 0.8 1.1 1.6
t2 1 1.0 1.2 0 0 0.6 1.0 1.8
t5 1 0.2 0.4 1 0.3 0.6 0.5 1.0

UnseenUB = Fcomb(Fagg(0.2, 0.2), Fagg(0.3, 0.3)) = 1.0. LB3 = 1.1 ≥
UnseenUB, so we go to Step 4. h turns out to be 4, the candidate set
is Top(UB, 4) = {t1, t2, t3, t4}. ■

Figure 6: Complete ranked lists and Relationships Table for
Examples

0.2d4
0.2d6
0.1d2
0.1d5

0.6d3
1.0d1

DocScoreDocId

0.2d4
0.2d6
0.1d2
0.1d5

0.6d3
1.0d1

DocScoreDocId

Retrieved
this far
during
generation

(a) Complete Ranked
List L1 for kwd w1

0.3d4
0.3d6
0.2d5
0.1d1

0.5d3
1.0d2

DocScoreDocId

0.3d4
0.3d6
0.2d5
0.1d1

0.5d3
1.0d2

DocScoreDocId

(b) Complete Ranked
List L2 for kwd w2

t4d5
t5d5

t3d4
t5d4

t1d2
t3d3
t4d3

t2d6

t2d1
t1d1

TOIdDocId

t4d5
t5d5

t3d4
t5d4

t1d2
t3d3
t4d3

t2d6

t2d1
t1d1

TOIdDocId

(c) Complete Relationships
Table R

5.1.1 Stopping Condition for Generate-Only Approach
The algorithm for the Generate-Only approach is identical to the
candidate generation algorithm presented above except that the
stopping condition in Step 3 is LBK ≥ UBK+1 and Top(LB, K) =
Top(UB, K) instead of LBK ≥ UnseenUB. That is, we stop when the
K target objects with the highest lower bound scores have lower
bound scores greater than or equal to the upper bound score of any
target object outside those K target objects; these are guaranteed to
be the final K target objects.

Lemma 2: The top-K objects in UB list is the final top-K if and
only if LBK ≥ UBK+1 and Top(LB, K) = Top(UB, K).

5.1.2 Computation of Cardinality Bound B
The bound B on the number of documents in a list Li that can
contribute to the score of a target object may be computed in one of
the following ways: using properties of aggregation functions, data
characteristics, and materialized statistics.
Using Properties of Aggregation Functions: Consider the
example where Fagg is max. Then, B=1. Another bounded
aggregation function is sum_top_D. Recall that sum_top_D
computes the aggregate score of a target object t for list Li by
summing of the DocScores of the top D documents in Li related to t.
In this case, B = D. Sum and Count are examples of aggregation
functions where B is unbounded.
Using Data Characteristics: In many real scenarios, each target is
related to a bounded number of documents. For example, in the
entity finder application, we might know that an entity can appear
in at most M documents or, in the expert finder application, an
author has written at most M papers. This bounds the number of
documents related to a target object t than can occur in Li (referred
to as the frequency of T in Li); so B = M. In cases where both
aggregation function and data are bounded, B is simply the
minimum of the two as shown in table below:

 Fagg=Max Fagg=sum_top_D Fagg unbounded

M bounded B = 1 B = min(D, M) B = M
M unbounded B = 1 B = D B unbounded

Materialized Statistics: In many real scenarios, only a few target
objects have frequency M or close to M. The majority of the target
objects have much lower frequency. A typical distribution of
frequency of target objects in the ranked lists for single keyword
queries is shown in Figure 7. While M is about 200 in the above
example, more than 99% of the target objects have frequency less
than 80. We propose an optimization, referred to as frequent target
object materialization (FTM), to obtain a tight bound on B. The
frequency of a target object is the number of documents it is related
to. For each keyword w, we materialize the target objects with
frequency above a threshold θ in the ranked list returned by FTS

for the single keyword query {w}. We store their TOIds along with
their final aggregated score for w.5 For any keyword w, we know
that the target objects not found in the materialized set for w have
frequency less than or equal to θ. So the bound B for such target
objects is B = min(d, M, θ). The value of the cardinality bound B is
used in the candidate generation algorithm as explained earlier. The
materialized (exact) scores are used as the lower and upper bound
scores for these objects. During the algorithm, we do not update the
bounds for these materialized objects. Note that the FTM
optimization has two-fold benefit: (1) we have the exact scores of
the materialized target objects (t.lb[i] = t.ub[i] = materialized score)
and (2) we have better bounds for the remaining target objects.
Both these factors lead to earlier termination of the algorithm. The
choice of θ offers a tradeoff between efficiency of candidate
generation and space overhead; lower values of θ imply faster
termination but higher space overhead and vice-versa. In our
experiments, we allow space to store an average 1% of the target
objects for each keyword which results in choice of θ = 80.

5.2 Pruning to the Final Top-K
The goal of this phase is to isolate the exact top K target objects
from the superset of candidates identified in the generation phase.
Our main insight is that it is sufficient to compute the exact scores
of a subset of the candidate target objects and then stop. Computing
the exact score of a target object entails queries against the
relationships table R and accessing (DocId, DocScore) pairs in the
lists returned by FTS. The challenge is to compute the exact scores
of as few candidates as possible and still return the top K objects
with exact scores. We now present an algorithm that computes the
score for the smallest possible number of candidate target objects.
In some applications, it is sufficient to return the top K target
objects even if their scores are not exact. In such scenarios, we
show that we can improve the algorithm even further.

5.2.1 Exact Top-K with Exact Scores
When the exact score of the Kth best target object is greater than or
equal to the upper bound scores of any candidate target object
whose score is not yet computed, the current best K target objects
are the overall best K objects. We show that the best pruning
strategy (i.e., the one that computes the exact scores of least
number of target objects) is to iteratively sort the candidate target
objects in the decreasing order of their upper bound scores and
compute exact scores in that order until we can stop. The
pseudocode of the algorithm is shown in Table 1.

We initially mark all candidate target objects as ‘uncomputed’
(Step 1). In Step 2, we sort the candidate target objects in the
decreasing order of their upper bound scores using lower bound
scores to break ties. In Step 3, we stop if all the top K target objects
in UB have exact scores computed and return these K objects. (We
save on computing exact scores of the remaining candidates.) This
is correct because all other candidates have upper bounds less than
these exact scores and hence cannot be better than them. If not, in
Step 4, we compute the exact scores of all ‘uncomputed’ target
objects in UB with the K best upper bounds. We update their upper
bound scores (replace them with exact scores), mark them as
computed, and go back to Step 2.

5 For uncommon keywords, i.e., keywords contained in very few
documents, there are typically no frequent target objects, so nothing is
stored.

Distribution of frequency of target objects in ranked
lists returned by FTS

0

50

100

150

200

250

Target Objects

F
re

qu
en

cy
 in

 ra
nk

ed
 li

st
s

Figure 7: Frequency distribution of target objects

Computing Exact Score of a Candidate Target Object: To
compute the exact score of a candidate t, we first get the set Dt of
documents related to t by looking up R. Subsequently, we obtain
the DocScore of each document in Dt in each list Li and compute
the exact score using Equation 2. Since FTS systems do not usually
provide random access to documents in the ranked lists, we retrieve
all document identifiers with scores from each Li using sorted
access and store them in a hash table or a temporary relation
(depending on the size) keyed on DocId to provide that random
access. However, unlike in the candidate generation phase, these
additional documents retrieved are not joined with R.

Example 5.2: Continuing with Example 5.1, the candidate set is
{t1, t2, t3, t4}. Pruning_Exact_Scores will retrieve all the
remaining documents from each Li shown in Figure 6. After sorting
by upper bound scores, UB = {t1, t2, t3, t4} with upper bound
scores 2.5, 1.8, 1.6, and 1.6 respectively (tie between t3 and t4
broken based on their lower bound scores). Since K=3, the
algorithm computes the exact scores of the top 3 objects in UB, i.e.,
t1, t2 and t3. Their exact scores evaluate to 2.2, 1.6, and 1.6
respectively. We go back to step 2; the top K objects in UB are
again {t1, t2, t3} and their exact scores are already computed. So
the final top-K results are {t1, t2, t3}. ■

Pruning_Exact_Scores compute the exact scores of the minimum
possible number of candidates. The intuition is that no exact
pruning strategy can isolate the final top K objects without
computing the exact scores of the candidates that are in the top K in
UB at any stage of the algorithm.

Theorem 1: Given a set of candidate target objects with correct
upper and lower bound scores, no exact scores pruning strategy can
isolate the final top K with fewer exact score computations than
Pruning_Exact_Scores.

5.2.2 Exact Top-K with Approximate Scores
In some applications, it might be sufficient to return the top K
target objects even if their scores are not exact. In such cases, we
can be more efficient than Pruning_Exact_Scores by computing the
exact scores of fewer candidates. For example, consider the
candidate t1 in Example 5.1. Since its lower bound score (2.0) is
greater than the (K+1)th highest upper bound score (1.4), it is
guaranteed to be in the final top K. Hence, we do not need to
compute its exact score. Note that it was not possible to avoid such
exact score computations in Pruning_Exact_Scores because we
wanted their exact scores. We first identify the set of candidates
whose score must be computed to isolate the final top K target
objects. These are classified into crossing and boundary candidates.

Definition 5.1 (Crossing Objects): A target object is crossing if its
rank in LB is more than K and its rank in UB list is K or less.

Definition 5.2 (Boundary objects): A pair of target objects (A, B)
is called boundary objects if the exact scores of neither A nor B has
been computed, and before their exact score computation:
1) The top K objects in UB and LB are same (i.e., there are no

crossing objects)
2) A is the Kth object in LB list and uth object in UB list (u ≤ K)
3) B is the (K+1)th object in UB and lth object in LB list l ≥ (K+1)
4) LBK < UBK+1 ■

It is sufficient to iteratively compute the exact scores of the
crossing and boundary objects (first A and then, if necessary, B)

until these sets are empty for identifying the top K target objects.
The intuition is as follows. Recall from Section 5.1 that the
necessary and sufficient condition for identifying the final top K is
LBK ≥ UBK+1 and Top(LB, K) = Top(UB, K). Note that this
condition is not satisfied if there are crossing objects or boundary
object pairs. Computing exact scores of non-crossing objects
cannot change the status of a crossing object t because it can only
lower the rank of other objects in UB list (i.e, can only raise t’s
rank in UB list) and raise the rank of other objects in LB list (i.e.,
can only lower t’s rank in LB list). Only computing the exact score
of t can change its status; hence exact scores of crossing objects
must be computed for the stopping condition to hold. Similarly,
computing exact scores of non-boundary objects can only raise the
ranks of boundary objects in UB list and lower their ranks in LB
list. Hence they can either stay as boundary objects or at least one
of them becomes crossing (in which case we must compute its
exact score).

Reducing the number of documents retrieved: We can be more
efficient by updating the bounds of crossing and boundary
candidates based on the documents retrieved so far and checking
the stopping condition in Step 3 instead of computing their exact
scores right away. Thus, we retrieve just enough additional
documents from the lists Li necessary to satisfy the stopping
condition (instead of retrieving all of them as in
Pruning_Exact_Scores), thereby saving FTS costs.

6 DISCUSSION
In this section, we discuss three important issues: the handling of
selection predicates, the choice of aggregation functions, and the
application to other types of ranked search.
Selection predicates on documents: We assume that the ranked
lists Li of documents contain only the objects that satisfy the
selection condition: either by pushing the selection to FTS (if it
supports) or by filtering the documents returned by FTS. Our basic
flow of the algorithms remains unchanged. The bound computation
however may have to be modified when frequency target
materialization (FTM) is used. Note that for the materialized target
objects, we cannot use their materialized exact scores as the lower
bound scores, so the lower bound score is initialized to 0 and
updated during candidate generation like the non-materialized
target objects. We can use their materialized scores as upper bound
scores but they could be weaker because of the presence of
selection predicates. Therefore, we also compute their upper bound
scores during candidate generation like the non-materialized
objects and use the less of the two. Note that the bound θ becomes
weak because the actual frequencies in the ranked list are lower due
to the selection. This may result in weaker upper bound scores for
very selective conditions (cf. Figure 16).
Selection predicates on target objects: For selection predicates on
target objects, we apply an additional filter at the candidate
generation step. We could, in principle, apply it while joining the

Algorithm Prune_Exact_Scores
1. Mark all candidate target objects as ‘uncomputed’.
2. Sort all the candidate target objects by their upper bound scores, get

sorted list UB (break ties based on lower bound scores)
3. If all target objects in top K of UB are computed, return these and stop.
4. Otherwise, compute exact score of all ‘uncomputed’ target objects

within top-K in UB, update their upper bound scores, mark them as
computed, and go to step 2.

Table 1: Pruning Algorithm for Exact top-K, Exact scores

ranked list of documents with the relationships table R. But, that
forces a join with the target objects table T as well. We have not
explored this option in our prototype.
Choice of aggregation function: The materialized scores for
frequent target objects may be useful even if Fagg specified at query
time is different from that used for materialization.
• If we materialize the scores using the SUM aggregation function,

we can use the materialized scores as the upper bound scores for
the class of SUM_TOP_D functions.

• If we also materialize, for each keyword, the frequencies of the
frequent target objects in the corresponding ranked list, we can
use these frequencies (for bounding the B value) to compute the
upper bounds for the materialized objects for any subset
monotonic aggregation function.

Other types of ranked search: Our techniques apply beyond
keyword search paradigms involving FTS, and both our scoring
functions and evaluation techniques apply to other types of ranked
searches (e.g., multimedia search [10, 11], ranked search on
structured attributes [2, 6]). For example, the search objects can be
homes where each home has price and neighborhood information
associated with it. Suppose there is a ‘ranking subsystem’ that
supports ranked search on price, i.e., returns the ranked list of
homes that best ‘match’ a given price. An application might want
to find the top neighborhoods that have homes with price similar to
$350K; we can answer such queries using our techniques. FTS is
substituted with the appropriate ranking subsystem which generates
the ranked lists. Our techniques can subsequently be used.

7 EXPERIMENTS
We now present the results of an extensive empirical study to
evaluate the techniques described in this paper. We conduct our
experiments in the context of the entity finder application presented
in Example 1.1 over a large collection of news articles, using
keyword queries from “Google top sports queries”. The major
findings of our study can be summarized as follows:
1. Faster than SQL: The Generate-Prune approach is 4-5 times

faster than the SQL implementation for small values of K (≤ 25)
and about 2-3 times faster for larger values of K (25-100).

2. Faster than Generate-Only: The Gen-Prune approach
significantly outperforms the Generate-Only approach.

3. Robust to number of keywords and selections: The Generate-
Prune approach is robust to the number of keywords and
selection conditions on documents

4. Intuitive Results: Using anecdotal evidence on a small sample
of queries, we show that the scoring functions we instantiate
produce meaningful results for OF queries.

 All experiments reported in this section were conducted on a
Compaq XW8200 dual-processor machine with 2 XEON 3.2 GHz
processors and 2.5 GB RAM, running Windows 2003 Server.

7.1 Experimental Methodology
Dataset and Preprocessing: Our documents comprise of a
collection of 714,192 news articles from 2003-2004 which we
obtained from MSNBC news portal. We index those news articles
inside SQL Server FTS engine so that we can get ranked lists of
documents for keyword queries using SQL. We extract 3 types of
named entities, viz. PersonNames, OrganizationNames and
LocationNames, from the news articles using a Named Entity
Extractor tool; these entities are our target objects. The tool
extracted 435,838 PersonNames, 93,256 OrganizationNames and
158,246 LocationNames from the above collection. We store the
entities and relationships of each type in separate target object and
relationships tables. The relationships tables for PersonNames,
OrganizationNames and LocationNames have 4,118,256, 798,956
and 3,078,421 tuples respectively. In order to study the benefit of
frequent target materialization (FTM), for certain experiments we
materialize the target objects with frequency above θ = 80 for each
keyword; this choice was based on allowed space overhead of 1%.
 Queries: To get realistic OF queries, we picked the following top
10 sport news queries on Google in 2004 as reported on “Google
Zeitgeist”.

1) Dallas Cowboys 6) Los Angeles Lakers
2) New York Yankees 7) Philadelphia Eagles
3) Chicago Cubs 8) New England Patriots
4) Boston Red Sox 9) Green Bay Packers
5) Atlanta Braves 10) Oakland Raiders

 We specify “PersonName” as the desired entity type for all the
queries. All our measurements are averaged across the 10 queries.
Comparison: We have implemented all the 3 approaches to
evaluate OF queries: SQL implementation, Generate-Prune
approach and Generate-Only approach (abbreviated Gen_Prune
and Gen_Only in plots). We compare these approaches against
each other for both classes of scoring functions. For the row
marginal class, we issue an ‘AND query’ to FTS. For the column
marginal case, we use SUM as combination function Fcomb in all the
experiments. The experiments use SUM as the aggregation
function unless otherwise mentioned; FTM optimization is used in
these cases. We use chunk size |Ci| =100. All the queries were run
with a cold buffer cache.

7.2 Experimental Results
Quality of Answers: While a thorough user study is beyond the
scope of this paper, we present anecdotal evidence that our OF
query semantics and scoring functions produce intuitive results.
Table 2 shows the top 5 results of some entity finder queries on the
news collection. The scoring function used is a column marginal
function with Fagg=SUM and Fcomb=SUM. The results are, not
surprisingly, quite meaningful.
Comparison with SQL: Figure 8 shows the execution times of the
Generate-Prune approach and the SQL implementation for various
values of K for both the column marginal and row marginal classes.
For the column marginal class, the Generate-Prune approach is 4-5
times faster than SQL for small values of K (≤ 25) and about 2-3
times faster for larger values of K (25-100). This establishes that
the early termination property of Generate-Prune leads to

Keywords

Desired Entity
Type

Top 5 Results

New York
Yankees

Person Joe Torre, Alex Rodriguez, Derek Jeter,
Gary Sheffield, Hideki Matsui

Boston Red
Sox

Person David Ortiz, Curt Schilling, Manny
Ramirez, Terry Francoma, Jason Varitek

Los Angeles
Lakers

Person Shaquille Oneal, Phil Jackson, Kobe
Bryant, Karl Malone, Gary Payton

Google
executives

Person Larry Page, Sergey Brin, Eric Schmidt,
Marissa Mayer, David Garrity

Wimbledon
champion

2004

Person Maria Sharapova, Roger Federer, Serena
Williams, Andy Roddick, Lindsay

Davenport

Mobile
phones

Organization Nokia, Motorola, T-Mobile, Sprint,
AT&T Wireless

Table 2: Examples of OF queries and their results

significant reduction of execution cost of OF queries. For the row
marginal class, both approaches are faster compared to the column
marginal case because the combination is pushed down into the
FTS and documents are retrieved/looked up from a single ranked
list. Even in this case, the Gen-Prune approach is 2-3 times faster
compared to SQL.
 Comparison with Generate-Only Approach: Figure 9 compares
the Generate-Prune approach with the Generate-Only approach for
the column marginal framework. The Generate-Prune approach
significantly outperforms the Generate-Only approach for all
values of K but the gap widens for larger values of K. This is
because the Generate-Only approach ends up retrieving a large
number of documents from the ranked lists and looking them up in
the relationships table R (i.e., doing random access to R on DocId)
in order to satisfy the “ideal” stopping condition.6 The Generate-
Prune approach, due to its relaxed stopping condition, retrieves
much fewer documents during the generation phase and hence does
much fewer random accesses to R on DocId. This is confirmed by
Figure 10 which shows the number of random accesses to R on
DocId for the two approaches. We observe this same performance
gap between the two approaches even for small values of K when
the cardinality bound B becomes weak. Figure 11 compares the
two approaches for the SUM_TOP_D aggregation function for
various values of D. We turn off the FTM materialization for this
experiment; so the cardinality bound B = D. Even for K=10,
Generate-Only approach rapidly degrades with increasing D; this is
because it again ends up retrieving a large number of documents
from FTS and looking them up in R to satisfy the “ideal” stop

6 The Generate-Only approach sometimes performs worse than SQL
although it does not retrieve any more search objects or do more joins on
SOId than SQL. This is because SQL does the join in one go while
Generate-Only does it in chunks, thereby incurring higher costs of
communication with server, parsing costs, etc. The execution time of Gen-
Only can be reduced by choosing the chunk size judiciously but is still no
better than SQL.

condition due to the weak upper bounds. The Generate-Prune
approach, on the other hand, is robust due to the relaxed stopping
condition. Note that the Generate-Prune approach has the
additional cost of computing exact scores of candidates but that
cost is small compared to the difference of cost in the generation
phase.
Comparison between Exact Scores and Approximate Scores:
Recall that the Generate-Prune technique returning the top K
objects with approximate scores is expected to reduce cost in 2
ways: (a) compute exact scores of fewer candidate target objects
and (b) retrieve fewer documents from the lists. Figure 13 shows
the savings due to (a); the approximate scores approach compute
exact scores of fewer candidates (by almost 25-50%). Figure 12
shows the savings due to (b); the approximate scores approach
retrieves much fewer documents compared to exact scores which
retrieve all documents (but do not lookup in the relationships table).
However, the surprising result was that their execution times as
shown in Figure 9 are almost identical. Investigating this anomaly,
we found that the SQL UDF we are using to get the ranked lists
from FTS for the various keywords actually gets the whole ranked
list in one go. We confirmed this by varying the number of
documents retrieved from FTS for various keyword queries and
measuring the response times; the execution times are independent
of the number of documents retrieved. Hence, the savings in the
cost due to (b) is not reflected in the execution time. Furthermore,
we found that retrieving the ranked list from FTS accounts for
about half the execution time; the remaining time is evenly split
between the generation and pruning phases. Therefore, in an FTS
which does not retrieve the whole ranked lists in one go, we expect
the approximate scores approach to be even better compared to all
the other approaches including SQL.
Sensitivity to materialization: Figure 14 shows the execution
times of the Gen-Prune approach for various values of θ. Lower the
value of θ, more the number of frequent target objects materialized,
better the upper bound scores, faster the execution.

Figure 8: Execution times of
GENERATE_PRUNE and SQL approaches for
column and row marginal scoring functions

Figure 9: Execution times of GEN_ONLY,
GEN_PRUNE/APPROX SCORES and
GEN_PRUNE/EXACT SCORES

Figure 12: Number of docs retrieved from FTS by
GEN_PRUNE/APPROX SCORES,
GEN_PRUNE/EXACT SCORES and GEN_ONLY

Figure 10: Number of random accesses to
relationships table R on DocId by
GEN_PRUNE and GEN_ONLY approaches

Figure 13: Number of rand. accesses to R
on TOId by GEN_PRUNE/APPROX and
GEN_PRUNE/EXACT SCORES

Figure 11: Execution times of
GEN_PRUNE and GEN_ONLY approaches
for various values of D (sum_top_D)

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

K

E
xe

cu
tio

n
T

im
e

(s
ec

s)

GEN_PRUNE/COL_MARG SQL/COL_MARG

GEN_PRUNE/ROW_MARG SQL/ROW_MARG

0

20

40

60

80

100

0 20 40 60 80 100 120
K

E
xe

cu
tio

n
T

im
e

(s
ec

s)

GEN_PRUNE/APPROX SCORES
GEN_PRUNE/EXACT SCORES
GENERATE_ONLY

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

K

#
 r

a
n

d
 a

cc
 to

 R
 o

n
 D

oc
Id

GEN_PRUNE GENERATE_ONLY

0

10

20

30

40

50

60

70

0 50 100 150
D (sum_top_D)

E
xe

cu
tio

n
tim

e
(s

ec
s)

GEN_PRUNE (K = 10) GENERATE_ONLY (K=10)

0
10000
20000
30000
40000
50000
60000
70000
80000

0 20 40 60 80 100 120
K

#
 d

o
cs

 r
et

rie
ve

d
 fr

o
m

 F
T

S

GEN_PRUNE/APPROX SCORE
GEN_PRUNE/EXACT SCORE
GENERATE_ONLY

0

100

200

300

400

500

0 20 40 60 80 100 120

K

ra

nd
 a

cc
 to

 R
 o

n
 T

O
Id

GEN_PRUNE/APPROX SCORES

GEN_PRUNE/EXACT SCORES

Sensitivity to number of keywords: Figure 15 shows the
execution times of the Gen-Prune approach and SQL
implementation for different number of keywords in the OF query.
We used the 2 and 3 keyword queries from the ‘Google top sports
queries’ in addition to some 1 and 4 keyword queries from “Google
Zeitgeist”. The Gen-Prune is more robust to the number of
keywords since it does partial retrieval on the ranked lists; SQL, on
the other hand, has to retrieve more lists of documents and lookup
more documents in the relationships table and hence becomes even
more expensive.
 Sensitivity to selections on documents: Figure 16 compares the
execution times of the SQL implementation, Gen-Prune approach
with Fagg=SUM (with FTM optimization) and Gen-Prune approach
with Fagg=SUM_TOP_D (without FTM optimization) in presence
of selection conditions on documents. We pose a range selection
condition on the ‘date’ attribute of the news articles and vary its
selectivity by changing the date ranges. For selectivity < 10%, the
execution times are identical for the 3 approaches. This is because
the cardinality bound B based on θ, although correct, is too weak in
presence of selective search conditions; hence the Gen-Prune
approach ends up retrieving as many documents from FTS as SQL.
For selectivity > 10%, the Gen-Prune approach outperforms SQL
because the bounds start getting stronger resulting in earlier
terminations. The Gen-Prune with Fagg= SUM_TOP_D performs
better than the Fagg=SUM case. This is because, in the former case,
the bound B comes from D which is unaffected by selections while,
in the latter case, it comes from θ which is weakened by selections.
We observe that the Gen_Prune with Fagg=SUM has a bell-shaped
curve because the weak bounds have the most impact when the
selectivities are high but not high enough for the bounds to be tight.

8 CONCLUSIONS
 In many applications, the goal is to find the top K objects related
to documents that best match a set of keywords. We introduced the
class of object finder queries and defined its semantics. We present
two broad classes of scoring functions, which exploit relationships
between documents and objects, to compute the relevance score of
the target objects for a given set of keywords. Our query evaluation
system would return the K target objects with the highest scores.
We present early termination techniques to efficiently evaluate
these queries. Our experiments show that our approach is 4-5 faster
than the SQL implementation that does not have this early
termination property.

9 ACKNOWLEDGEMENTS
We thank Raghav Kaushik for his insightful comments on our
work. We thank Saliha Azzam and Kevin Humphreys of the
Microsoft Natural Language Group for providing us the entity

extractor and Gary Nease of MSNBC for providing us the news
dataset.

10 REFERENCES
[1] S. Agrawal, S. Chaudhuri and G. Das. DBExplorer: A System
for Keyword Search over Relational Databases. In Proc. of ICDE,
2002.
[2] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis. Automated
Ranking of Database Query Results. In Proc. of CIDR, 2003.
[3] R. Baeza_yates and B. Ribiero-Neto, Modern Information
Retrieval, ACM Press, 1999.
[4] A. Balmin, V. Hristidis and Y. Papakonstantinou, ObjectRank:
Authority-Based Keyword Queries in Databases, In Proc. of VLDB,
2004.
[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti and S.
Sudarshan, Keyword Searching and Browsing in Databases using
BANKS, In Proc. of ICDE, 2002.
[6] S. Chaudhuri and L. Gravano, Evaluating Top-k Selection
Queries, In Proc. of VLDB, 1999.
[7] S. Chaudhuri, R. Ramakrishnan and G. Weikum, Integrating
DB and IR Technologies: What is the Sound of One Hand
Clapping?, In Proc. of CIDR, 2005.
[8] J. Conrad and M. H. Utt, A System for Discovering
Relationships by Feature Extraction from Text Databases, In Proc.
of SIGIR, 1994.
[9] S. Dessloch and N. Mattos, Integrating SQL Databases With
Content-Specific Search Engines. In Proc. of VLDB, 1997.
[10] R. Fagin, Combining fuzzy information from multiple systems.
In Journal of Computer and System Sciences, 1999.
[11] R. Fagin, A. Lotem and M. Naor, Optimal Aggregation
Algorithms for Middleware, In Journal of Computer and System
Sciences, 2003.
[12] U. Guntzer, W. Balke and W. Kieβling, Optimizing Multi-
Feature Queries for Image Databases. In Proc. of VLDB, 2000.
[13] V. Hristidis and Y. Papakonstantinou, DISCOVER: Keyword
Search in Relational Databases, In Proc. of VLDB Conference,
2002
 [14] I. Ilyas, W. Aref and A. Elmagarmid, Supporting Top-k Join
Queries in Relational Databases. In Proc. of VLDB, 2003.
[15] D. Mattox, Expert Finder. MITRE Publications, ‘The Edge’,
http://www.mitre.org/news/the_edge/june_98/third.html, Jun 1998
[16] S. Nepal and M. V. Ramakrishna, Query Processing Issues in
Image (Multimedia) Databases, In Proc. of ICDE, 1999.
[17] Z.Nie, Y. Zhang, J. Wen and W. Ma, “Object-Level Ranking:
Bringing Order to Web Objects”, In Proc. of WWW, 2005.
[18] E. Voorhees, Introduction to Information Extraction and
Message Understanding Conferences,
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/

0

5
10

15
20

25

30
35

40

0 1 2 3 4 5
keywords

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

SQL GEN_PRUNE (k=10)

GEN_PRUNE (k=20) GEN_PRUNE (k=50)

Figure 15: Sensitivity of GEN_PRUNE
and SQL approaches to the number of
keywords

Figure 16: Sensitivity of GEN_PRUNE and
SQL approaches to selectivity of selection
conditions on search objects

0

5

10

15

20

25

30

50 100 150 200 250
Theta

E
xe

ct
io

n
 T

im
e

 (
se

cs
)

K = 10 K = 20 K = 30 K = 50

Figure 14: Sensitivity of GEN_PRUNE
approach to number of frequent target
objects materialized (θ)

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2

Selectivity

E
xe

cu
tio

n
T

im
e

(s
ec

s)

SQL GEN_PRUNE/SUM GEN_PRUNE/SUM_TOP_50

