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Abstract

Papadatos (1995) provided sharp bounds for the variances of order statistics in population variance

units. This paper presents similar results for the variances of kth record values.
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1 Introduction.

Let {Xn}, n ≥ 1, be a sequence of independent and identically distributed random variables with

continuous distribution function F and finite variance σ2. For arbitrarily fixed positive integer k, we

form the sequence of kth greatest order statistics {Xn+1−k:n}, n ≥ k, which is nondecreasing. We

define kth record statistics R
(k)
n , according to the definition introduced by Dziubdziela and Kopociński

[6], in the following way:

R(k)
n = X

L
(k)
n :L

(k)
n +k−1

, n ≥ 0, (1)
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where L
(k)
n are the nth occurrence times of kth records defined as:

L
(k)
0 = 1,

L
(k)
n+1 = min{j > L(k)

n : X
L

(k)
n :L

(k)
n +k−1

< Xj:j+k−1}.

It is well known (cf. [1], [10]) that the distribution function on the nth value of kth record is a

composition

G(F (x)) = G(k)
n (F (x))

of the parent function F with the distribution function

G(k)
n (x) = 1− (1− x)k

n∑
j=0

(− ln(1− x))j kj

j!
(2)

of the respective record values from the standard uniform sequence. Therefore

ER(k)
n =

1∫
0

F−1(x) g(k)
n (x) dx, (3)

where

g(k)
n (x) =

kn+1

n!
[− ln(1− x)]n (1− x)k−1, k ≥ 1, n ≥ 0.

is density function of the nth value of kth record of the i.i.d. standard uniform sequence and F−1 is

the quantile function of the original distribution function F .

The aim of paper is to find the maximum of the variance of kth record statistics in terms of

population variance units, i.e. to determine the best constant σ2
n(k) in

V arR(k)
n ≤ σ2

n(k)· σ2, n ≥ 1, k ≥ 1, (4)

where σ2
n(k) depends on k and n only. If k = 1, a finite constant cannot be founded which is concluded

from the example presented below. Theorem 1 provides optimal finite constants for the other cases

and describes distributions which attain the bounds.

The theory of record and kth record values is still developing. We can mention a few results concerning

the bounds on the moments. Using the Schwarz inequality, Nagaraja [11] presented the mean -

variance bounds on the expectations of standard records for the case of i.i.d. sequences with general

and symmetric distributions. Grudzień and Szynal [7] derived analogous non sharp bounds for kth

records. Sharp bounds for the moments of kth record values based on greatest convex minorants

(Moriguti’s method) were obtained by Raqab [14]. Raqab [15] also derived pth absolute moment

bounds on the expectations of first records in general and symmetric populations based on the Hölder
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inequality. Similar results for the kth records are given in Raqab and Rychlik [16]. Expectations of

the second records from symmetric populations are evaluated in Raqab and Rychlik [17]. Rychlik [18]

and Danielak [3] presented bounds for the differences of adjacent and nonadjacent classic records,

respectively, coming from various families of parent distributions. Similar results for kth records are

given in Danielak and Raqab [4, 5]. By now, no bounds have been presented on the variances of

records. Our methods of proof are similar to those of Papadatos [12] who obtained analogous bounds

on the variances of arbitrary order statistics, improving the results of Young [19] and Lin and Huang

[8]. Papadatos [13] refined his results for the case of symmetric populations.

2 Main results

We first show that σ2
n(1) = +∞. To this end it suffices to consider i.i.d. random variables with the

distribution function

F (x) = 1− e2

x2(lnx)
3
2

, x ≥ e,

and density function

f(x) =
e2(4 ln x + 3)

2x3(lnx)
5
2

, x > e.

Elementary calculations show that V arX1 < ∞ and V arR
(1)
n = ∞, n = 1, 2 , ..., which gives the

desired statement. The distribution is a modification of an example in Nagaraja [11,p. 177].

Considering the cases k ≥ 2, we first introduce the following notation. Set

f1(x) =
G(x)

x
, 0 < x < 1, (5)

f2(y) =
1−G(y)

1− y
, 0 < y < 1, (6)

f(x, y) = f1(x) · f2(y) =
G(x)(1−G(y))

x(1− y)
, 0 < x ≤ y < 1, (7)

and

f(u) = f(u, u) =
G(u)(1−G(u))

u(1− u)
, 0 < u < 1, (8)

where G(x) = G
(k)
n (x), k ≥ 2, n ≥ 1, is given in (2).

Lemma 1 (cf. Papadatos 1995, Lemma 2.1) Let k > 1 and n ≥ 1. There exist unique numbers

ρ1 = ρ1(k, n), ρ2 = ρ2(k, n) such that

0 < ρ1 < 1− e
− n

k−1 < ρ2 < 1
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and

(i) f1(x) =
G(x)

x
strictly increases in (0, ρ2) and strictly decreases in (ρ2, 1),

(ii) f2(y) =
1−G(y)

1− y
strictly increases in (0, ρ1) and strictly decreases in (ρ1, 1).

Moreover,

(iii) sup
0≤x≤y≤1

G(x)[1−G(y)]
x(1− y)

= max
ρ1≤u≤ρ2

G(u)[1−G(u)]
u(1− u)

.

Proof. (i) Consider function f1(x) given in the form (5). Then

f ′1(x) =
x g(x)−G(x)

x2
.

The derivative of the numerator

[xg(x)−G(x)]′ = xg′(x) =
kn+1

n!
(− ln(1− x))n−1x (1− x)k−2[n + (k − 1) ln(1− x)]

is positive if x < 1− e
− n

k−1 and negative if x > 1− e
− n

k−1 . Furthermore

lim
x→0+

(xg(x)−G(x)) = 0 and lim
x→1−

(xg(x)−G(x)) = −1.

Hence function f ′1(x) has a unique zero at ρ2 = ρ2(k, n) ∈ (1 − e
− n

k−1 , 1) and f ′1(x) > 0 for

x ∈ (0, ρ2) and f ′1(x) < 0 for x ∈ (ρ2, 1). Therefore function f1(x) strictly increases in (0, ρ2) and

decreases in (ρ2, 1).

(ii) Similarly we can show that function f2(y) defined in (6) strictly increases in (0, ρ1) and strictly

decreases in (ρ1, 1) for a unique ρ1 = ρ1(k, n) such that

0 < ρ1 < 1− e
− n

k−1 .

Indeed,

f ′2(y) =
−g(y)(1− y) + 1−G(y)

(1− y)2
.

The derivative of the numerator

[−g(y)(1− y) + 1−G(y)]′ = (y−1)g′(y) =
kn+1

n!
(− ln(1−y))n−1(1−y)k−1[−n−(k−1) ln(1−y)]

is positive if y > 1− e
− n

k−1 and negative if y < 1− e
− n

k−1 . Furthermore

lim
x→0+

(−g(y)(1− y) + 1−G(y)) = 1 and lim
x→1−

(−g(y)(1− y) + 1−G(y)) = 0.
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Hence function f ′2(y) has a unique zero at ρ1 = ρ1(k, n) ∈ (1 − e
− n

k−1 , 1) and f ′2(y) > 0 for

y ∈ (0, ρ1) and f ′2(y) < 0 for y ∈ (ρ1, 1). Therefore function f1(y) strictly increases in (0, ρ1) and

decreases in (ρ1, 1).

(iii) Consider the set

{(x, y) : 0 ≤ x ≤ y ≤ 1} ⊂ A ∪B ∪ C,

where

A = {(x, y) : 0 ≤ x ≤ ρ1, 0 ≤ y ≤ 1},

B = {(x, y) : 0 ≤ x ≤ 1, ρ2 ≤ y ≤ 1},

C = {(x, y) : ρ1 ≤ x, y ≤ ρ2}.

If 0 ≤ x ≤ ρ1 and 0 ≤ y ≤ 1, then

G(x)[1−G(y)]
x(1− y)

≤ G(x)[1−G(ρ1)]
x(1− ρ1)

≤ G(ρ1)[1−G(ρ1)]
ρ1(1− ρ1)

.

If 0 ≤ x ≤ 1 and ρ2 ≤ y ≤ 1, then

G(x)[1−G(y)]
x(1− y)

≤ G(ρ2)[1−G(y)]
ρ2(1− y)

≤ G(ρ2)[1−G(ρ2)]
ρ2(1− ρ2)

.

In the case ρ1 ≤ x ≤ ρ2 and ρ1 ≤ y ≤ ρ2, we have

G(x)[1−G(y)]
x(1− y)

≤ G(x)[1−G(x)]
x(1− x)

and
G(x)[1−G(y)]

x(1− y)
≤ G(y)[1−G(y)]

y(1− y)
.

Therefore

sup
0≤x≤y≤1

G(x)[1−G(y)]
x(1− y)

= max
ρ1≤u≤ρ2

G(u)[1−G(u)]
u(1− u)

.

The supremum of the right side of this equality is attained, because function f(u) given in (8) is

continuous in the closed interval [ρ1, ρ2]. 2

Definition 1 For k ≥ 2, n ≥ 1, we define

σ2
n(k) = max

ρ1≤x≤ρ2

[
G(x) (1−G(x))

x (1− x)

]
=

G(x0)[1−G(x0)]
x0(1− x0)

for some ρ1 ≤ x0 ≤ ρ2.
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Theorem 1 Put k ≥ 2 and n ≥ 1. Let R
(k)
n be the nth value of the kth record from an i.i.d. sequence

of random variables with an arbitrary distribution function F with a finite variance σ2. Then we have

V arR(k)
n ≤ σ2

n(k)· σ2. (9)

Equality is attained in (9) if F (x) is a two point distribution function

F (x) =


0 x < a

x0 a ≤ x < b

1 b ≤ x

(10)

for some a < b, where x0 = x0(k, n) is a point in [ρ1, ρ2] such that the function f(x) =
G(x) (1−G(x))

x (1− x)
attains its maximum σ2

n(k).

Precisely, bounds (9) are attained in limit by the sequences of continuous distributions which tend

weakly to (10).

Proof. From the Hoeffding identity for the covariance of a pair of random variables X , Y that

has the form

Cov(X, Y ) =

+∞∫
−∞

+∞∫
−∞

[H(x, y)−H(x,∞)H(∞, y)] dydx, (11)

where H(x, y) is the bivariate distribution function of the pair, we obtain

V ar(X) = 2
∫ ∫
x≤y

F (x) (1− F (y)) dydx. (12)

Alternative versions and generalizations of (11) and (12) were presented in Bassan et al ([2], Section

2). Hence

V arR(k)
n = 2

∫ ∫
x≤y

G(F (x)) [1−G(F (y))] dydx

= 2
∫∫

0<F (x)≤F (y)<1
G(F (x)) [1−G(F (y))] dydx =

= 2
∫∫

0<F (x)≤F (y)<1

G(F (x)) (1−G(F (y)))
F (x) (1− F (y))

F (x) (1− F (y))dydx

≤ G(x0) (1−G(x0)
x0 (1− x0)

2
∫∫

0<F (x)≤F (y)<1
F (x) (1− F (y))dydx =

=
G(x0) (1−G(x0)

x0 (1− x0)
2
∫∫

x≤y
F (x) (1− F (y))dydx = σ2

n(k) · V arX1.
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We have an equality in (9) iff

x0(1− x0)G(F (x))(1−G(F (y))) = G(x0)(1−G(x0))F (x)(1− F (y))

on the set {x ≤ y : 0 < F (x) ≤ F (y) < 1} almost everywhere. This happens if both F (x) and F (y)

take on only one value x0 in the interval (0, 1), which characterizes two point distribution (10). 2

Tables 1 nad 2 provide values σ2
n(k) = sup

F

V arF R
(k)
n

V arF X1
and x0(k, n) describing the two point dis-

tribution attaining the bounds for 1 ≤ n ≤ 10 and 2 ≤ k ≤ 7. For comparison, we also present

the values of ratios V arF R
(k)
n /V arF X1 for the standard exponential, uniform distribution and Pareto

distribution Fα(x) = 1− x−α, x ≥ 1, with shape parameter α = 3. They represent distributions with

various tail behavior. For the exponential distribution, we have

V arER(k)
n /V arEX1 =

n

k2
, (13)

which can be found, e.g., in Nevzorov [10,p. 96].

By simple calculations, we also obtain

V arUR(k)
n /V arUX1 = 12

[(
k

k + 2

)n+1

−
(

k

k + 1

)2(n+1)
]

(14)

and

V arP R(k)
n /V arP X1 =

4
3

( k

k − 2
α

)n+1

−

(
k

k − 1
α

)2(n+1)
 (15)

for the uniform and Pareto distributions, respectively. For each entry (n, k), we present a column of

five values. The numbers assigned by E, U , P represent (13), (14), (15), respectively. The next value

assigned by B and printed in bold, provides the bound, and the last one is x0(k, n). For example, if

n = 4 and k = 5, the values for exponential, uniform and Pareto distributions are equal to:

V arER
(5)
4 /V arEX1 = 0, 160000,

V arUR
(5)
4 /V arUX1 = 0, 293148,

V arP R
(5)
4 /V arP X1 = 0, 068860,

respectively. Also, we have

σ2
4(5) = 1.059840,

x0(4, 5) = 0.631712.
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This means that the optimal variance bound for R
(5)
4 is

V arR
(5)
4 ≤ 1.059840 · σ2

and is attained by any two point distribution that assigns probability 0.631712 to the smaller value.

Analysis of the tables lead us to the following conclusions. The bounds become larger, if k is fixed

and n increases, and the same holds for the exponential and Pareto distributions which have infinite

right tails. For the uniform distributions with a finite right en, the kth records approach the right end

for increasing n and become less dispersed then. If k increases, then the variance ratios for the expo-

nential and Pareto distributions decrease, and the bounds behave similarly. Relations for the uniform

distributions are more complicated. If k is small, then uniform record values are least dispersed, and

Pareto ones have the greatest variances. For large k, the relative variances are ordered conversely. This

is closely related with the expected location of the kth records in the supports of the distributions and

the probability concentration in the respective regions. For instance, the Pareto distribution is more

concentrated on the left on the domain, where kth records with large k occur most likely. Therefore

these are less dispersed than the kth records with small indices. Note that for each particular distribu-

tion, and parameters n and k, the variance ratios are far from the bounds. It can be also observed that

x0(k, n) increases in n and decreases in k. The values correspond to the location of respective records

values in the domain of distributions. Splitting the domain into two parts remote from the possible

values of the record provides the maximal dispersion.

Remark 1 We have not proven that there exists a point x0 = x0(k, n) such that the function

f(x) =
G(x) (1−G(x))

x (1− x)

strictly increases in (0, x0) and strictly decreases in (x0, 1). This would imply that the maximum point

is unique and is easily determined by solving equation f ′(x) = 0. It is still the open problem, although

all the numerical examples confirm the hypothesis.
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Table 1: Extreme values of V arF R
(k)
n /V arF X1, 2 ≤ k ≤ 7, 1 ≤ n ≤ 5 and respective variance ratios for the

exponential, uniform and Pareto distributions.

k 2 3 4 5 6 7

n

1 E 0.250000 0,111111 0,062500 0,040000 0,027777 0,020408

U 0,629628 0,523128 0,418128 0,335400 0,272700 0,225084

P 0,235200 0,068340 0,031604 0,018068 0,011658 0,008134

B 1,037078 1,034055 1,166995 1,332005 1,509444 1,692976

x0 0,630973 0,384983 0,273331 0,211249 0,171969 0,144940

2 E 0,500000 0,222222 0,125000 0,080000 0,055555 0,040816

U 0,446508 0,456252 0,409824 0,354408 0,303672 0,260544

P 0,518688 0,130771 0,056653 0,031191 0,019639 0,013468

B 1,550262 1,049699 1,000852 1,039912 1,109983 1,194410

x0 0,864099 0,631401 0,482914 0,388173 0,323684 0,277257

3 E 0,750000 0,333333 0,187500 0,120000 0,083333 0,061224

U 0,281784 0,353844 0,357108 0,332880 0,300588 0,268092

P 1,016911 0,222436 0,090272 0,047864 0,029407 0,019823

B 2,714505 1,298755 1,056034 1,002071 1,008864 1,042249

x0 0,947486 0,777350 0,631599 0,525566 0,448018 0,389625

4 E 1,000000 0,444444 0,250000 0,160000 0,111111 0,081633

U 0,166896 0,257352 0,291756 0,293148 0,278952 0,258624

P 1,869351 0,354715 0,134850 0,068860 0,041283 0,027353

B 5,002766 1,741590 1,218672 1,059840 1,008134 1,000814

x0 0,979102 0,864287 0,736766 0,631712 0,549319 0,484472

5 E 1,250000 0,555555 0,312500 0,200000 0,138888 0,102040

U 0,095018 0,179760 0,228864 0,247836 0,248532 0,239520

P 3,299366 0,543044 0,193386 0,095101 0,055635 0,036234

B 9,408865 2,430987 1,475595 1,180121 1,062378 1,014421

x0 0,991573 0,916621 0,811330 0,713721 0,631785 0,564433
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Table 2: Extreme values of V arF R
(k)
n /V arF X1, 2 ≤ k ≤ 7, 6 ≤ n ≤ 10 and respective variance ratios for

the exponential, uniform and Pareto distributions.

k 2 3 4 5 6 7

n

6 E 1,500000 0,666666 0,375000 0,240000 0,166666 0,122449

U 0,052644 0,122112 0,174564 0,203736 0,215280 0,215664

P 5,662337 0,808286 0,269630 0,127695 0,072896 0,046664

B 17,860167 3,468883 1,838765 1,356583 1,157645 1,064191

x0 0,996593 0,948447 0,864381 0,777157 0,698939 0,631836

7 E 1,750000 0,777777 0,437500 0,280000 0,194444 0,142857

U 0,028608 0,081288 0,130452 0,164064 0,182688 0,190224

P 9,520640 1,178553 0,368262 0,167962 0,093561 0,058870

B 34,071324 5,013705 2,333652 1,592720 1,290344 1,142990

x0 0,998625 0,967971 0,902261 0,826302 0,753661 0,688671

8 E 2,000000 0,888888 0,500000 0,320000 0,222222 0,163265

U 0,015312 0,053280 0,095976 0,130068 0,152604 0,165180

P 15,760035 1,691620 0,495120 0,217475 0,118209 0,073109

B 65,205997 7,302645 2,997940 1,897557 1,461548 1,248567

x0 0,999451 0,980031 0,929401 0,864437 0,798288 0,736613

9 E 2,250000 1,000000 0,562500 0,360000 0,250000 0,186735

U 0,008112 0,034500 0,069744 0,101856 0,125904 0,141648

P 25,769919 2,398116 0,657462 0,278107 0,147507 0,089672

B 125,101063 10,687522 3,883387 2,284568 1,675101 1,381184

x0 0,999782 0,987521 0,948907 0,894078 0,834715 0,777074

10 E 2,500000 1,111111 0,625000 0,400000 0,277777 0,204082

U 0,004260 0,022128 0,050184 0,078960 0,102852 0,120264

P 41,721886 3,365750 0,864308 0,352088 0,182226 0,108886

B 240,528237 15,688761 5,059462 2,771702 1,936955 1,542041

x0 0,999914 0,992189 0,962965 0,917151 0,864475 0,811302
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