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Abstract Although biomedical statistics is part of

any scientific curriculum, a review of the current
scientific literature indicates that statistical data

analysis is an area that frequently needs improve-

ment. To address this, we here cover some of the
most common problems in statistical analysis, with

an emphasis on an intuitive, tutorial approach rather
than a rigorous, proof-based one. The topics covered

in this manuscript are whether to enter eyes or

patients into the analysis, issues related to multiple
testing, pitfalls surrounding the correlation coefficient

(causation, insensitivity to patterns, range confound-

ing, unsuitability for method comparisons), and when
to use standard deviation (SD) versus standard error

of the mean (SEM) ‘‘antennas’’ on graphs.
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Introduction

Why do we use statistics? In a perfect world, we

would simply conduct experiments and if we obtained

differences among our groups, we would conclude
that our manipulations caused an effect. However,

there is variability in the world, which is reflected in
our data. Because of this variability, we need a

method of determining which aspects of variations in

the data are due to true differences and which parts are
due to variability. This is why we use statistics, to help

us sort out the underlying sources of variability and to

aid us in correctly attributing experimental change
from random error, without bias. The purpose of this

primer is to provide a general overview to those

unfamiliar with basic statistical principles. Our aim is
to provide a fundamental understanding on how to use

these statistical tools appropriately to maximize

accuracy in data interpretation. The following is a
partial list of statistical concerns that commonly

contain errors as well as some suggestions on the

methods of overcoming these difficulties. A more
comprehensive review can be found, for instance, in

Strasak et al. [1]. Also recommended are Bland and

Altman’s series of tutorial-style editorials in the
British Medical Journal in 1996.

Eyes versus patients

Perhaps the most common statistical error in the

ophthalmic literature is the confusion between eyes
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and patients. Since one eye is good, two eyes are
better, correct? Correct when looking at a visual

scene, not necessarily correct when analyzing data.

The difficulty with including both eyes of a patient
into a data set is that the two eyes are not independent

of each other, since the data from the right and left

eyes are more highly correlated than are the data from
the two eyes of different subjects. However, includ-

ing both eyes has the benefit of increasing the sample

size and therefore the power of any statistical test that
is applied to the data. Should two eyes of a subject be

included into a data set and how does one avoid

confounding the statistical interpretations?
The most obvious case of when both eyes are

included is when the relevant comparison is between

the eyes (e.g., the affected vs. non-affected eyes in
patients). In this case, it is necessary to use both eyes,

and the statistical analysis only needs to account for

the fact that the data sets are correlated in some way.
However, when both eyes of a patient are included

because both eyes have the disease of interest or

when both eyes of a control subject are used, the non-
independence of the data must be addressed. This is

because the data sample has both independent

observations (from different subjects) and potentially
non-independent observations (for instance, in glau-

coma there is a high correlation of disease markers

between eyes) [2]. Since most statistical tests assume
the observations are independent, including non-

independent observations will increase the probabil-

ity of making a Type I error (concluding that there is
statistical significance among the groups when the

observed differences are due to chance). Therefore,

the more non-independent observations that are
included, the more likely it is that one will errone-

ously conclude that there are statistical differences

among the measures. To put it most simply, adding
the fellow eye data can nearly be the same as

duplicating each data point.

Newcombe and Duff [3] used computer simula-
tions to quantify the increase in the statistical error

rate from analyzing data sets that include both eyes of
individuals using unpaired (i.e., not accounting for

the two eyes) two-sample t-tests. They examined

statistical outcomes of two groups of subjects using
four methods: comparing the right eyes only; com-

paring the left eyes only; comparing the averaged

values of the right and left eyes; and including the
right and left eyes of all subjects. The simulations

were done 200 times for each method with a
statistical significance level of 0.05, which would

yield ‘significant differences’ 10 times out of 200 by

chance alone. For the four methods outlined above,
the simulation yielded ‘significant’ differences of 8,

6, 9, and 39, respectively, clearly highlighting the

error of including data from two eyes without
accounting for it. Of the remaining three approaches

to data management, the authors conclude that

methods 1–3 are all valid, but that method 3
(averaging the data from two eyes) is preferable,

because it includes more information and thus is

likely to reduce variability.
These simulation results emphasize that one needs

to be cautious when including two eyes of a subject.

However, as mentioned above, including both eyes
will increase the statistical power of a test, thereby

increasing the likelihood of detecting true significant

effects. Another method of dealing with this issue is
the use of regression techniques to parcel out the

independence of the eyes. There are different

approaches to this (e.g., the use of linear and logistic
regression models vs. the estimating equation

approach) [4–6] and they all serve to utilize the

entire data set. Glynn and Rosner [7] evaluated these
approaches using separate data from patients with RP

and from patients with glaucoma and provide guide-

lines for their use. They also pointed out that
additional correlations, such as multiple family

members within a data set, will require more complex

approaches to maintaining the independence of the
data.

Multiple measures and multiple comparisons

When analyzing electrophysiological and/or psycho-

physical data, it is not uncommon to have multiple
measures. For example, let’s imagine that we are

conducting a study on whether open-angle glaucoma

(OAG) has any effect on the electroretinogram
(ERG). A priori, we do not know which compo-

nent(s) of the ERG might be affected, so it is feasible
that we might examine a number of measures of full-

field flash and pattern ERG (e.g., scotopic amplitudes

and peak times, photopic amplitudes and peak times,
Naka–Rushton parameters, and P50 pattern ERG

amplitude). Furthermore, we might be interested in

comparing certain patient characteristics with our
ERG parameters to explore the possibility that these
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factors might have a strong relationship with our

dependent measures. Again, there are a variety of

parameters that we might examine here, such as age,
visual acuity, intraocular pressure, color vision

scores, visual field mean deviation, and cup/disk

ratio. All of these measures are worthwhile to
examine in this study, and all of them are legitimate

outcome measures for our question of interest. But,
once again, the possibility of greatly increasing Type

I errors rears its ugly head again.

It is sometimes the case that individuals faced with
this data set will simply run a whole series of t-tests
(e.g., control vs. OAG) comparing measure after

measure using a statistical significance level of 0.05
(see Table 1). Presumably, the assumption is that

since there are different parameters being examined,

there is no issue with using t-tests for each compar-
ison. The problem is, even if OAG has no effect on

the ERG, with this number of comparisons there will

be at least a few ERG parameters which appear to be

significantly different between the control and OAG

groups just by chance. Using the traditional level of
P = 0.05 to accept a significant difference, for every

twenty comparisons that are made, there will be, on

average, one significant difference identified in your
sample, even if there really is no true effect in the

population (see example in Table 1).
This is a difficult issue, since some statisticians

argue that it is acceptable to perform multiple com-

parisons on data sets, since it increases the likelihood
of detecting a statistical effect. And certainly this

approach is appropriate for generating hypotheses, to

be rigorously tested in subsequent finely targeted
experiments. However, more conservative approaches

suggest using tools to account for the number of

comparisons, such as using analysis of variance
(ANOVA) with post hoc comparisons (this involves

pair-wise comparisons only amongmeasures that have

Table 1 An illustration of the increase in Type I errors (erroneous significance effects) due to multiple testing

Measure Group 1, mean ± SD Group 2, mean ± SD P value (t test)

Age [years] 42 ± 23 54 ± 31 0.232

Acuity [logMAR] 0.49 ± 0.38 0.71 ± 0.54 0.203

Color score 70 ± 67 120 ± 60 0.0387*

IQ 105 ± 38 113 ± 30 0.526

MD [dB] 0.27 ± 1.0 0.71 ± 0.96 0.233

IOP [mm/Hq] 18 ± 5.6 17 ± 6.5 0.835

Dark-adapted 0.01 a-wave [lV] 12 ± 19 1.4 ± 22 0.164

Dark-adapted 0.01 b-wave [lV] 227 ± 51 250 ± 35 0.173

Dark-adapted 3.0 a-wave [lV] 251 ± 95 204 ± 72 0.137

Dark-adapted 3.0 b-wave [lV] 368 ± 118 322 ± 106 0.273

Dark-adapted 10.0 a-wave [lV] 265 ± 102 256 ± 103 0.805

Dark-adapted 10.0 b-wave [lV] 353 ± 86 360 ± 98 0.838

Light-adapted 3.0 ERG [lV] 47 ± 21 37 ± 18 0.176

Light-adapted 3.0 flicker ERG [lV] 20 ± 0.34 20 ± 0.58 0.755

Acuity [logMAR] 0.43 ± 0.63 0.39 ± 0.61 0.877

Acuity [logMAR] 0.5 ± 0.35 0.63 ± 0.44 0.371

EOG ratio 1.6 ± 0.27 1.9 ± 0.3 0.00559**

PERG amplitude [lV] 4.8 ± 3.5 4.7 ± 2.2 0.894

VEP amplitude [lV] 10 ± 10 12 ± 13 0.700

VEP peak time [ms] 102 ± 10 98 ± 12 0.245

A simulated hypothetical experiment comparing multiple measures for two groups (n = 15 per group). All values were randomly
drawn from normal distributions with roughly typical characteristics for each measure ‘‘tested’’. There should be approximately one
significant effect per 20 t-tests (5% = 1/20). This was the second simulation and it yielded one significant effect at the 5% level
(*, P\ 0.05) and one at the 1% level (**, P\ 0.01). Such a data set should either be avoided (since too many measures will diminish
the power) or be analyzed with recognition of multiple testing, e.g., using an ANOVA. In addition, another error in this table is the
use of differing significant digits for the different values: the same number of significant digits should be used throughout
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already been shown to have statistical significance)
and Bonferroni adjustments for multiple comparisons.

The Bonferroni adjustment is simple to understand and

to perform (the P value is adjusted for the number of
possible comparisons among the groups being com-

pared). A drawback to the Bonferroni adjustment is

that it can greatly diminish the likelihood of finding
significant differences even if a true effect is present.

However, there is a modified version (the Bonferroni–

Holm adjustment) which is less stringent and uses a
graduated series of P values to determine significance

[8]. This can be used as a reasonable compromise to

the problem of multiple comparisons.

Correlation coefficients and causation

Correlation coefficients are useful measures that

provide information about relationships between

measures but, unfortunately, they can easily be
misused. The most commonly used correlation coef-

ficients are the Pearson correlation coefficient (r) and
the Spearman rank order correlation (rs), which is

used for ranked pairs. Correlation coefficients are the
indicators of how much the variability in one

parameter corresponds to the variability in a second

parameter. In other words, the correlation coefficient
indicates how two measures covary. There is not any

implication about causality that can be derived from

calculating a correlation coefficient; it is not correct
to attribute cause-and-effect relationships between

variables based on significant correlation coefficients.

A rather obvious example of this fallacy is the strong
positive correlation between crime and ice cream

sales. Obviously, one would not conclude that

increased ice cream sales cause crime or conversely,
that crime causes an increase in ice cream sales. Most

likely, common factor(s), such as warmer weather

and longer days in summer, are responsible for the
strong correlation.

The interpretation of correlation coefficients

Typically, a Pearson correlation coefficient with an

r value of 0.60 would be considered significantly

Fig. 1 Strikingly different data relations can result in the same correlation coefficient. Furthermore, non-significant correlations do
not mean there exists no relationships within the data set, as shown in the examples in the bottom row
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different from zero (i.e., there is a significant relation-
ship), depending on the number of observations.

However, an r = 0.60 indicates that only 36% of the

variance in a is accounted for by the variance in b
(% variance accounted for is the square of the

correlation coefficient times 100). Although consid-

ered significant (depending on n), this is not an
impressive relationship between these variables. On

the other hand, even if a correlation coefficient is zero,

there can be some very strong structure in the data. The
bottom row of Fig. 1 demonstrates this—obviously

contrived, but it demonstrates the basic principle. The

point is that one must be careful in interpreting a
significant correlation coefficient, since a significant

relationship is not always a meaningful relationship.

The effects of range on correlation coefficients

There are other issues that need to be considered
when using correlation coefficients to evaluate data.

One is the concept of extreme values (e.g., the results

from a person with no visual function vs. the results
from a control observer). The size of the correlation

coefficient (and hence the strength of the implied

relationship) is directly related to the sample range. A
larger range will produce a larger r value, while a

narrower range will produce a smaller one. Therefore,

inclusion of extreme values will often elevate the size
of an r value, possibly erroneously. By way of

example consider Fig. 2.

Why is the issue of outliers significant? Is it
recommended that the outliers be ignored or removed

from the data set? Obviously, one cannot remove data

from the data set but must analyze the data present in
a series, regardless of where the values fall. However,

this information may sometimes be relevant when

interpreting the meaningfulness of the correlations
among measures. If it does appear that there are only

one or two sets of extreme data points that are

primarily important for the significance of the
correlation coefficients, it is possible that the rela-

tionship between the two measures may be not
meaningful in the ‘real’ world.

Correlation coefficients not suitable for test–retest
or instrument comparisons

Since correlation coefficients are often used to
examine the associations between two variables, it

has been assumed that they provide a valid method

for assessing test–retest goodness or can be used to

validate how well a new instrument replicates the
measurements of an older instrument. However, a

high correlation between two measures merely indi-

cates that they are related and, as Bland and Altman
[9] pointed out, it would be amazing if two methods

designed to measure the same quantity were not

related. Instead, what is required to assess test–retest
goodness is a measure of agreement, which correla-

tional measures do not provide. In addition, the

strength of the correlation coefficient depends on the
range of the two data sets compared, not just on the

association between the variables, since the correla-

tion is always normalized with respect to variance.
Figure 3 demonstrates an example of how the use of

the correlation coefficient can be misleading. Fig-
ure 3A demonstrates a test–retest assessment of an

acuity measure based on 74 eyes, where the corre-

lation coefficient is large (0.93) and there is a high
level of significance. In Fig. 3B, the correlation

coefficient is much lower and is not statistically

significant (the latter, in part, is due to the fact that
there are fewer data points). Closer inspection reveals

that the data set in Fig. 3B is just a subset of the data

Fig. 2 The effect of outliers on correlation coefficients. The
circles represent twenty data pairs for which the Pearson
correlation coefficient is 0.16, which is not significant at the
0.05 level (P = 0.490). When just two data points are added at
extreme positions (the two data points shown as crosses
without overlapping circles), the correlation coefficient is
increased to 0.46, which is statistically significant at the 0.05
level (P = 0.032)
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in Fig. 3A. Fig. 3B represents a blowup of the lower
left portion of Fig. 3A, comprising only eyes with

good vision. This illustrates that test–retest assess-

ment should not be based on the correlation coeffi-
cient, since just adding some very good scores and a

single very poor score nearly guarantees an impres-

sive correlation coefficient, independent of the qual-
ity of the measure being evaluated. The present

example is rather extreme, but the principle applies to

any comparison situation; in vision adding end-point
disease cases and control subjects will nearly always

lead to a—possibly irrelevant—significant correla-

tion. If these acuity data were quantified as logMAR
values, a better test–retest quality measure would be

the 95% confidence interval of the differences which

is actually a little lower in Fig. 3B (0.32 logMAR)
compared to Fig. 3A (0.44 logMAR) [9].

Graphing data: standard deviation versus standard
error of the mean

When graphing data, some investigators show the
range of their data using standard deviation values

while others use standard error of the mean values.

What is the difference between these and when
should each be used? The SD (standard deviation)

represents the spread of the data set. With increasing

sample size, it does not systematically change its
value, rather it becomes more correct in representing

the population spread. The SEM (or SE, standard

error of the mean) is given by the formula
(SEM = SD/Hn). Thus, the value of SEM decreases

with increasing sample size.

So, which measure is the appropriate one?
Naı̈vely, one could lean toward using SEM, because

it is smaller, and therefore the graphs look nicer. Or

one could be conservative and lean toward using SD,
since then one is certain to be on the safe side. One

could also (correctly) argue that it does not matter,

since the statistical outcome does not depend on the
size of an antenna in a graph. It does, however, affect

the ability to use ‘‘inference by eye’’ [10, 11]. One

glance at a figure should allow the reader to
determine to what degree the result is significant or

relevant. So, which measure (SD or SEM) is appro-

priate depends on the question asked or aspect to be
highlighted.

Figure 4A depicts a situation where the SD,

representing the spread of the population, is appro-
priate. Assume we have a single measure from a

patient—say, the ERG 3.0 b-wave amplitude—and

we want to assess whether it is ‘normal’. We will
compare it with the normal range (the control

mean ± 2!SDs), or the non-parametric equivalent

Fig. 3 Scatterplots showing the test–retest scores of a
measure, where the x-axis shows the results of test 1 and
the y-axis shows the results of the retest (test 2). Points on
the dashed line have the identical outcomes for the test and
retest; a good test method would have very similar outcomes
on test and retest. Evaluation of the test–retest quality using
the correlation coefficient, however, may lead to misleading
conclusions. In this example, there is a high correlation
coefficient for the data in A, and a lower correlation

coefficient in B, suggesting that the data in B represent a
poorer test method. In reality, the data in B are a subset of
the data in A (-0.7\VA1\-0.24); the correlation
coefficient is lower in B because it also depends on the
range of the compared data sets, not just on their
association. As a side note: when the x- and y-axes for
scatterplots cover an identical range (as here), they should be
square and not rectangular as offered by some software. This
makes ‘‘inference by eye’’ [10] easier
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(&the 95% confidence interval). In this example, as a

descriptive statistic, the SD is useful because it

provides information about the population distribu-
tion that would not be provided by the SEM (since

the latter is ‘‘confounded’’ by sample size).
Figure 4B illustrates the SEM as an inferential

statistic: it tells us how close the mean of a given

sample or sub-population is to the ‘‘real’’ population
mean. As an example, assume we have an experiment

with two groups, treated versus untreated. We want to

know whether the difference in the two means is
statistically significant. Plotting SEM ‘‘antennas’’

allows immediate inference by eye by applying

Cumming and Finch’s [10] rules of thumb. Assuming
similar variance in the two groups to be compared; if

the SEM antennas overlap, then there is no significant

difference. If the gap between the ends of the antennas
isC1!SEM bar, then the difference is significant at the

5% (0.05) level; if this gap C2!SEM bars, then the

difference is significant at the 1% level (0.01).
Figure 4C illustrates a situation where either SD or

SEM units can be used to describe the data. In this

case, we have a function derived from a model and
we want to assess how well it fits the data. We have

shown the data with SEM indicators, which give an

immediate indication of the goodness of fit of the
model: In the situation of a correct fit, only the mean

of every third data point would be off (away from the

curve) by more than the distance of one SEM bar
(because ± the SEM covers 67% of the likelihood of

the true population mean). If SEM indicators are

longer, this indicates that a common variance source
has not been factored out and therefore the model has

missed accounting for this.

Conclusions

Statistics are tools that allow us to make inferences

about our data. Every statistic is based on a series of

assumptions about how the data set is being used to
evaluate was derived. If these assumptions are

violated, then the statistic is no longer a valid

measure of the variability we are using it to assess
and it becomes invalid. Therefore, it is important that

investigators take the care with their data analysis

that they take setting up their research protocols and
obtaining their data. Statistics can greatly enhance

our ability to learn from our results but when not
carefully applied can also lead to misinterpretation.

This basic primer was designed to help researchers

avoid some common mistakes with data analysis.
Much more sophisticated summaries exist and should

be used for more complex topics.
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