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Linear Network Code for Erasure Broadcast
Channel with Feedback: Complexity and Algorithms

Ho Yuet Kwan, Kenneth W. Shum, Chi Wan Sung

Abstract—This paper investigates the construction of linear
network codes for broadcasting a set of data packets to a
number of users. The links from the source to the users are
modeled as independent erasure channels. Users are allowed to
inform the source node whether a packet is received correctly
via feedback channels. In order to minimize the number of
packet transmissions until all users have received all packets
successfully, it is necessary that a data packet, if successfully
received by a user, can increase the dimension of the vector
space spanned by the encoding vectors he or she has received
by one. Such an encoding vector is called innovative. To reduce
decoding complexity, sparse encoding vectors are preferred, since
the sparsity can be exploited when solving systems of linear
equations. Generating a sparsest encoding vector with large finite
field size, however, is shown to be NP-hard. An approximation
algorithm is constructed. For binary field, heuristic algorithms
are also proposed.

Index Terms—Erasure broadcast channel, network coding,
computational complexity.

I. INTRODUCTION

Broadcasting has been a challenging issue in telecommu-
nications. The challenge mainly comes from how a trans-
mitter can disseminate a common information content to all
users/receivers reliably and efficiently via a broadcast channel
which could be unstable and error-prone. More specifically,
one of the ultimate goal of broadcasting is to provide a trans-
mission scheme such that a common information content or a
set of packets can be disseminated with minimum number of
transmissions for a sender to complete the whole information
content dissemination for all users. This measure is commonly
called the completion time of a broadcast system.

Several classical approaches provide heuristic solutions to
the above issue. With user feedback, automatic repeat request
(ARQ) offers reliable retransmissions for the erased packets
due to channel impairments. However, such an approach
becomes inefficient when the number of users increases, as
the users may have entirely distinct needs for the erased
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packets. Reliable broadcasting can also be achieved without
user feedback by forward error correction. With the use of
erasure codes, a user can reconstruct the entire set of original
packets, provided that the number of erased packets is smaller
than a certain threshold. However, the amount of packets that
will be erased depends on the channel erasure probability,
which is time-varying and hard to predict. That limits the use
of erasure codes in broadcasting. To improve upon classical
approaches, the approach of linear network coding [1], [2] has
been shown to be a promising solution [3]–[6].

The idea of linear network coding for broadcasting is that
a transmitter broadcasts to K users encoded packets that are
obtained by linear combining the N original packets over the
finite field GF (q). An encoding vector specifies the coeffi-
cients for the linear combination. An encoded packet together
with a header which contains the corresponding encoding
vector is broadcasted to all users. It is said to be innovative
to a user if the corresponding encoding vector is not in the
subspace spanned by the encoding vectors already received by
that user. It is called innovative if it is innovative to all users
who have not yet received enough packets for decoding. It is
shown in [7] that an innovative packet can always be found
if q ≥ K. Once a user receives any N innovative packets,
he or she can decode the N original packets by Gauss-Jordan
elimination. Therefore, the generation of innovative packets
is vital. Clearly, if all the encoded packets are innovative,
the completion time can be minimized. Such a network-coded
broadcast scheme is clearly rate-optimal.

Linear network codes for broadcasting can be generated
with or without feedback. LT codes [8], Raptor codes [9]
and random linear network codes (RLNC) [10] can be used
without feedback. By suitably choosing design parameters,
innovative packets can be generated by those coding schemes
with high probability. LT codes and Raptor codes are generated
by an optimized degree distribution. However, they are mainly
designed for broadcasting a huge number of packets, and may
not be good choices when the number of packets is only
moderately large. With feedback, it is suggested in [7] the use
of Jaggi-Sanders algorithm [11], which is a general network
code generation method and is able to find innovative encoding
vectors for q ≥ K. However, its encoding and decoding com-
plexities are relatively high, as it is not specifically designed
for the broadcast application. Therefore, some heuristics have
been proposed [12]–[15]. It is suggested in [16] that encoded
packets should be instantly decodable, in the sense that a new
packet can be decoded once it is available at a receiver without
waiting for the complete reception of the full set of packets.
However, as an instantly decodable packet to all users may
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not exist, the completion time is in general larger than that
in a system without this extra requirement. With the idea
of instantly decodability, some works focus on minimizing
decoding delay, where a unit of decoding delay is defined as
that an encoded packet is successfully received by a user but
that packet is not innovative or not instantly decodable to him
or her [17]–[20].

The excellent performance of the linear network coding
approaches to broadcast encourages researchers to consider
its practicality. In fact, the decoding complexity of a linear
network code is an important issue in practice. One possible
way to reduce decoding complexity is to use sparse encoding
vectors. This sparsity property is important, as it can be ex-
ploited in the decoding process. For example, a fast algorithm
by Wiedemann for solving a system of sparse linear equations
can be used [21]. If the Hamming weight of each encoding
vector is at most w, the complexity for solving an N × N
linear system can be reduced from O(N3) using Gaussian
elimination to O(wN2). The Wiedemann algorithm is useful
when N is large. When N is moderate, we can implement
some sparse representation of matrices, so that even the usual
Gaussian elimination is used, the number of additions and
multiplications required can be reduced. For other fast methods
for solving linear equations over finite field, we refer the
readers to [22], [23].

Minimizing the completion time and reducing the decoding
complexity are equally important in linear network code design
for erasure broadcast channel. However, the innovativeness of
encoding vectors together with their sparsity has not been
thoroughly studied. Given the encoding vectors which have
been received by the users in a broadcast system, how can a
transmitter generate encoding vectors which are both sparse
and innovative is a challenging problem. In this paper, we
address the issue by developing a method called the Optimal
Hitting Method and its approximation version, called the
Greedy Hitting Method. Both of them are able to generate
sparse and innovative encoding vectors for q ≥ K. That
results in a significant reduction in decoding complexity when
compared with their non-sparse counterparts. Furthermore,
based on the greedy hitting method, we develop a suboptimal
procedure to improve the completion time performance for
q = 2, where the existence of innovative encoding vectors is
not guaranteed. Simulation results show that its performance
is nearly optimal.

The rest of this paper is organized as follows. We review
the literature on complexity in network coding in Section II. In
Section III, the system model is introduced. In Section IV, we
consider the innovativeness issue. We characterize innovative
encoding vectors by a linear algebra approach and prove that to
determine whether there exists an innovative vector for q = 2
is NP-complete. In Section V, the sparsity issue is considered.
After showing that K-sparse innovative vectors always exist if
q ≥ K, we investigate the problem of finding sparsest innova-
tive vectors, which we call the SPARSITY problem. SPARSITY
is proven to be NP-complete. In Section VI, we present
a systematic way to solve SPARSITY using binary integer
programming. A polynomial-time approximation algorithm is
also constructed. In Section VII, our algorithms are compared

with some other transmission schemes by simulations. Finally,
conclusions are drawn in Section VIII.

II. LITERATURE ON COMPLEXITY CLASSES OF NETWORK
CODING PROBLEMS

A considerable amount of research has been done on the
complexity issues in conventional coding theory (See the
survey in [24] for example). For instance, it is shown in [25]
and [26] that the problems of finding the weight distribution
and the minimum distance of linear codes are NP-hard. The
complexity issues in network coding are less well understood.

For linear network codes, Lehman and Lehman investigate
the complexity of a class of network coding problems in [27],
and proved that some of the problems are NP-complete.
Construction of linear network codes using a technique called
matrix completion is considered in [28], and the complexity
class of the matrix completion problem is studied in [29]. It
is shown in [30] that approximating the capacity of network
coding is also a hard problem.

To minimize encoding complexity, Langberg, Sprintson and
Bruck divide the nodes in a general network topology into
two classes. The nodes in one class forward packets without
any coding while the nodes in another class perform network
coding. The problem of minimizing the number of encoding
nodes is shown to be NP-complete in [31], [32].

El Rouayheb, Chaudhry and Sprintson study the complexity
of a related problem called index coding problem in [33]. They
consider the noiseless broadcast channel, and show that when
the coefficient field is binary, the problem of minimizing the
number of packet transmissions is NP-hard. A complementary
version of the index coding is studied in [34]. It is shown
that the complementary index coding is NP-hard, and even
obtaining an approximate solution is NP-hard.

In [35], Milosavljevic et al. studies a related system. The
users are interested in a common data file but only have partial
knowledge of the file. By interactively sending data to each
others through a noiseless broadcast channel, the users want to
minimize the total amount of data sent through the channel. It
is shown in [35] that the optimal rate allocations can be found
in polynomial time.

In this paper, the problem setting is similar, except that the
channel is modeled as an erasure broadcast channel, and we
focus on the innovativeness and sparsity aspects of generating
encoding vectors.

III. SYSTEM MODEL

Consider a single-hop broadcast system, in which there are
one transmitter and K users. The transmitter wants to send
a file to all users via a broadcast channel, which is modeled
as a discrete-time broadcast packet erasure channel. At each
time, the transmitter broadcasts a packet, which is an element
in GF (q). Each user either receives the packet successfully or
experiences a packet loss. In other words, the output symbol
of a user is either the same as the input symbol or an erasure
symbol. The K output symbols of the users are assumed to
be independent of one another.
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In this paper, we focus on transmission schemes with linear
network coding. The file is divided into N equal-size packets.
Each packet transmitted by the transmitter is obtained by
linearly combining the N packets, with coefficients drawn
from GF (q). An N -vector whose components are the N
coefficients is said to be the encoding vector of that packet. A
packet together with a header that contains the corresponding
encoding vector is broadcast to K users.

We assume that there is an error-free feedback channel
from each user to the transmitter. Upon receiving a packet
successfully, a user sends an acknowledgement (ACK) to the
transmitter without delay or error. The transmitter keeps track
of what each user has received. The next transmitted packet
depends on all the previous ACKs from the K users.

Given an encoding vector x = (x1, x2, . . . , xN )1 of dimen-
sion N over GF (q), the support of x, denoted by supp(x),
is the set of indices of the non-zero components in x, i.e.,

supp(x) , {i : xi ̸= 0}.

The Hamming weight of x is defined as the cardinality of
supp(x). An encoding vector that has Hamming weight less
than or equal to w is said to be w-sparse.

Note that a transmitted packet is useful to a user if its
corresponding encoding vector does not lie within the span
of all previously received encoding vectors of that user. We
say that such an encoding vector is innovative to that user. An
encoding vector that is innovative to all users is simply said to
be innovative. It is clear that a rate-optimal solution is to let
the transmitter always broadcast innovative packets, provided
that innovative encoding vectors always exist.

IV. THE INNOVATIVE ENCODING VECTOR PROBLEM

Suppose that user k, for k = 1, 2, . . . ,K, has already
received rk packets whose encoding vectors are linearly in-
dependent. Let Ck be the rk ×N encoding matrix of user k,
whose rows are the rk encoding vectors. Without loss of
generality, we assume that rk < N , for otherwise user k
can decode the file successfully and can be omitted from our
consideration. A vector x is innovative if it does not belong
to the row space of Ck for any k. The set of all innovative
encoding vectors, I, is given by

I , GF (q)N \
K∪

k=1

rowspace(Ck). (1)

Example: Let q = 2, K = 2, N = 4 and n = 2. The two
matrices C1 and C2 over GF (2) are given by

C1 =

[
1 1 0 0
0 0 1 0

]
, C2 =

1 0 0 1
0 1 0 1
0 0 1 1

 .

The row space of C1 consists of four vectors [0 0 0 0],
[1 1 0 0], [0 0 1 0], and [1 1 1 0]. The row space of C2

consists of the eight vectors that have even Hamming weight.

1Throughout this paper, all vectors are column vectors. For vector x, we
use parentheses and commas when its components are listed horizontally, i.e.,
(x1, x2, . . . , xN ).

There are six innovative encoding vectors, and they form the
set

I = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1),
(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)}.

It is well known that I is non-empty if the finite field size,
q, is larger than or equal to the number of users, K [7]. We
repeat the simple proof below for the sake of completeness.
We begin with a simple lemma, which will be used again in
a later section.

Lemma 1. Let A1,A2, . . . ,AK be finite subsets of a universal
set U . If K ≥ 2 and A1,A2, . . . ,AK contain a common
element, then

|A1 ∪ A2 ∪ . . . ∪ AK | < |A1|+ |A2|+ . . .+ |AK |.

Proof: Suppose x ∈ Ai for all i. Let A∗
i be the set Ai \

{x} for i = 1, 2, . . . ,K. By applying the union bound,

|A∗
1 ∪ A∗

2 ∪ . . . ∪ A∗
K | ≤ |A∗

1|+ |A∗
2|+ . . .+ |A∗

K |.

This implies

|A1∪A2∪. . .∪AK |−1 ≤ |A1|−1+|A2|−1+. . .+|AK |−1.

As K ≥ 2 by hypothesis, we obtain the inequality in the
lemma.

Theorem 2 ( [7]). If q ≥ K, then I is non-empty.

Proof: For k = 1, 2, . . . ,K, let Vk be the row space of
Ck. The subspace Vk consists of the qrk encoding vectors
which are not innovative to user k. Obviously the zero vector
is a common vector of these K subspaces. By Lemma 1,
the union of these K subspaces contains strictly less than∑K

k=1 q
rk vectors. Since K ≤ q, we have

∑K
k=1 q

rk ≤
KqN−1 ≤ qN . Therefore there exists at least one encoding
vector which is innovative to all users.

The condition q ≥ K cannot be improved for any prime
power q. The following example shows the non-existence of
innovative encoding vector for the case where K = q + 1.
Let U be the ambient space GF (q)N , and V be a subspace
of U with dimension N − 2. Let v1, . . . ,vN−2 be a basis
of V . The q2 cosets of V in U form the quotient space
U/V , and is isomorphic to a vector space over GF (q). Let
ϕ(u) : U → U/V be the canonical mapping from U to the
quotient vector space U/V . Because U/V has dimension 2
over GF (q), we can find q + 1 vectors in U/V such that
none of them is a scalar multiple of the others, i.e., they are
pairwise linearly independent. As ϕ is a surjective mapping,
we can choose vectors u1,u2, . . . ,uq+1 in U such that,
ϕ(u1), ϕ(u2), . . . , ϕ(uq+1) are pairwise linearly independent
in U/V . For k = 1, 2, . . . , q+1, define Ck as the (N−1)×N
matrix whose row vectors are v1, . . . ,vN−2, and uk. The row
spaces corresponding to the matrices Ck’s satisfy
(i) rank(Ck) = N − 1 for all k.
(ii) rowspace(Ci) ∩ rowspace(Cj) = V whenever i ̸= j.
(iii) For k = 1, 2, . . . , q + 1, the sets rowspace(Ck) \ V are
mutually disjoint.
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The number of elements in the union of the row spaces
Ck’s is

|V |+
q+1∑
k=1

|rowspace(Ck) \ V |

= qN−2 + (q + 1)(qN−1 − qN−2)

= qN .

Hence the rowspaces of Ck’s cover the whole vector space
GF (q)N . Any encoding vector we pick from GF (q)N is not
innovative to at least one user.

As an example, we consider the case q = 3 and K = 4 and
N = 3. If the encoding matrices are[

1 1 1
1 0 0

]
,

[
1 1 1
0 1 0

]
,

[
1 1 1
0 0 1

]
,

[
1 1 1
0 1 2

]
,

then we cannot find any innovative encoding vector.

The set of innovative encoding vectors, I, can be charac-
terized by the orthogonal complements of the row spaces of
Ck’s, which is also known as the null spaces of Ck’s. For
k = 1, 2, . . . ,K, let Vk be the row space of Ck. Denote the
orthogonal complement of Vk by V ⊥

k ,

V ⊥
k , {v ∈ GF (q)N : x · v = 0 for all x ∈ Vk},

where x · v is the inner product of x and v. We will use the
fact from linear algebra that a vector x is in Vk if and only if
x ·v = 0 for all v ∈ V ⊥

k . Let Bk be an (N − rk)×N matrix
whose rows form a basis of V ⊥

k . To see whether a vector x
is in Vk, it amounts to checking the condition Bkx = 0; if
Bkx = 0, then x ∈ Vk, and vice versa.

There are many different choices for the basis of the
orthogonal complement V ⊥

k . We can obtain one such choice
via the reduced row-echelon form (RREF) of Ck. Suppose we
have obtained the RREF of Ck by elementary row operations.
By appropriately permutating its columns, we can write it in
the following form:

[Irk |Ak]Pk, (2)

where Irk is the rk×rk identity matrix, Ak is an rk×(N−rk)
matrix over GF (q), and Pk is an N ×N permutation matrix.
(Recall that a permutation matrix is a square zero-one matrix
so that each column and each row contain exactly one “1”.)
We can take

Bk = [−AT
k |IN−rk ]P

T
k . (3)

The superscript T represents the transpose operator. It is
straightforward to verify that the product of the matrix in (2)
and BT

k is a zero matrix. Hence, the rows of Bk are orthogonal
to the rows of Ck, and form a basis of V ⊥

k .
In the appendix, we give another way of computing a basis,

which is suitable for incremental processing.
The following simple result characterizes the set of innova-

tive encoding vectors, I:

Theorem 3. Given C1,C2, . . . ,CK , an encoding vector x
belongs to I if and only if Bkx ̸= 0 for all k’s.

Proof: If Bkx ̸= 0, then x is not in Vk and therefore, is
innovative to user k. It is innovative if Bkx ̸= 0 for all k’s.

Conversely, if Bkx = 0 for some k, then x is in Vk, and
hence is not innovative to user k. Therefore, x ̸∈ I.

When the underlying finite field size is small, innovative
encoding vectors may not exist. For further investigation of
the existence of innovative encoding vectors, we formulate
the following decision problem:

Problem: IEVq

Instance: K matrices, C1,C2, . . . ,CK , over GF (q), each
of which has N columns.

Question: Is there an N -dimensional vector x over GF (q)
which does not belong to the row space of Ck for k =
1, 2, . . . ,K.

The following result shows that the decision problem is NP-
complete for q = 2.

Theorem 4. IEV2 is NP-complete.

Proof: The idea is to reduce the 3-SAT problem, well-
known to be NP-complete [36], to the IEV2 problem. Recall
that the 3-SAT problem is a Boolean satisfiability problem,
whose instance is a Boolean expression written in conjunctive
normal form with three variables per clause (3-CNF), and the
question is to decide if there is some assignment of TRUE and
FALSE vaules to the variables such that the given Boolean
expression has a TRUE value.

Let E be a given Boolean expression with n variables
x1, . . . , xn, and m clauses in 3-CNF. We want to reduce the
3-SAT problem to the IEV2 problem with N = n+1 packets
and K = m+ 1 users.

For the i-th clause (i = 1, 2, . . . ,m), we first construct a
3×(n+1) matrix Bi. If the j-th literal (j = 1, 2, 3) in the i-th
clause is xk, then let the k-th component in the j-th row of Bi

be one, and the other components be all zero. Otherwise, if
the j-th literal in the i-th clause is ¬xk, then let the k-th and
the (n+ 1)-st component in the j-th row of Bi be both one,
and the remaining components be all zero. Let Ci be a matrix
whose rows form a basis of the orthogonal complement of the
row space of Bi. We will use the fact that a vector v is in the
row space of Ci if and only if Biv = 0.

Consider an example with n = 4 Boolean variables. From
the clause ¬x1 ∨ ¬x2 ∨ x3, we get

Bi =

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 0

]
, Ci =

[
0 0 0 1 0
1 1 0 0 1

]
.

It can be verified that each row in Bi is orthogonal to the rows
in Ci, i.e., the row space of Ci is the orthogonal complement
of the row space of Bi.

For the extra user, user m+1, let Bm+1 be the 1× (n+1)
matrix [0n1], where 0n stands for the 1 × n all-zero vector.
The problem reduction can be done in polynomial time.

Let x = (x1, x2, . . . , xn) be a Boolean vector and x̂ =
(x, 1). Note that any solution x to a given 3-SAT problem
instance would cause the product Bjx̂ a non-zero vector for
j = 1, 2, . . . ,m and [0n1]x̂ ̸= 0. Therefore x̂ is not in the
row space of Cj for all j. Hence x̂ is also a solution to the
derived IEV2 problem.

Conversely, any solution to the derived IEV2 problem also
yields a solution to the original 3-SAT problem as well. Let
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c = (c1, c2, . . . , cn, cn+1) ∈ GF (2)n+1 be a solution to the
derived IEV2 problem. Note that we must have cn+1 = 1
because of Bm+1. Let i be an integer between 1 and m. Since
c is not in the row space of Ci, the product Bic is a non-zero
vector. Hence, if we assign TRUE to xk if ck = 1 and FALSE
to xk if ck = 0, for k = 1, 2, . . . , n, then the i-th clause will
have a TRUE value. Since this is true for all i, the whole
Boolean expression also has a TRUE value.

The problem IEV2 is clearly in NP, since it is efficiently
verifiable. Hence it is NP-complete.

From the above result, we know that it is difficult to
determine whether there exists an innovative vector for q = 2
with a general K. Apart from the problem of existence of
an innovative vector, it is also of interest in finding an N -
dimensional encoding vector that is innovative to as many
users as possible. We state the optimization problem as fol-
lows:

Problem: MAX-IEVq

Instance: K matrices Ck over GF (q), k = 1, 2, . . . ,K,
and each matrix has N columns.

Objective: Find an N -dimensional vector x over GF (q)
such that the number of users to whom x is innovative is
maximized.

The following result shows the hardness of finding approx-
imate solution to MAX-IEVq:

Theorem 5. There is no approximation algorithm for MAX-
IEVq with an approximation guarantee of 1− ϵM , assuming
P ̸= NP, where ϵM is a positive constant.

Proof: Given a Boolean expression in the 3-CNF form,
the problem of maximizing the number of clauses that have
TRUE values is commonly called the MAX-3-SAT problem.
Consider the same reduction described in the proof of Theo-
rem 4. It is clear that the number of clauses that have TRUE
values under a given Boolean vector x is the same as the
number of users to whom x̂ = (x, 1) is innovative, excluding
user m + 1. Therefore, the reduction is a gap-preserving
reduction from MAX-3-SAT to MAX-IEV2. The statement
then follows from [37, Corollary 29.8].

V. THE SPARSITY PROBLEM

Decoding complexity is one of the critical issues that
could determine the practicality of linear network coding in
broadcast erasure channels. One way to reduce the decoding
complexity is to generate sparse encoding vectors and apply
a decoding algorithm that exploits the sparsity of encoding
vectors at receivers. In this section, we focus on the sparsity
issues of innovative encoding vectors.

A. Existence of K-sparse innovative vector
In the previous section, it is found that innovative vectors

always exist if q ≥ K. In fact, we can prove a stronger
statement that K-sparse innovative vectors always exist under
the same condition.

Lemma 6. For k = 1, 2, . . . ,K, let fk(x) be a non-zero linear
polynomials in L variables

fk(x) , αk1x1 + αk2x2 + · · ·+ αkLxL, k = 1, 2, . . . ,K,

where the coefficients are elements in GF (q). If q ≥ K, we
can always find a vector x∗ = (x1, x2, . . . , xL) ∈ GF (q)L

such that fk(x∗) ̸= 0 for all k.

We first give a combinatorial proof, and then provide a
deterministic algorithm which finds x∗.

Proof: For k = 1, 2, . . . ,K, let Vk be the set of vectors
x in GF (q)L satisfying fk(x) = 0. The set Vk is a subspace
of dimension L−1. By Lemma 1, the cardinality of the union
of these K subspaces is strictly less than KqL−1 elements,
which in turn is less than or equal to the cardinality of the
whole space GF (q)L. Thus there exists at least one vector x∗

in GF (q)L such that fk(x∗) ̸= 0 for all k.
Now we give an algorithmic proof of Lemma 6. Let Sl,

where l = 1, . . . , L, be the index set such that k ∈ Sl if and
only if αkl ̸= 0. Since none of the linear polynomials fk(x)’s
are zero, we have

∪L
l=1 Sl = {1, 2, . . . ,K}. We distinguish

two cases:
Case 1: |Sl| = K for some l. We can simply let x∗

l = 1
and x∗

n = 0 for n ̸= l.
Case 2: |Sl| < K for all l. We assign values to the

variables iteratively. Suppose we have already assign x∗
t

to the variable xt, for t = 1, 2, . . . , l − 1. We note that
fk(x

∗
1, . . . , x

∗
t−1, xt, 0, . . . , 0) = 0 is a linear equation in

a single variable xt, and thus have only one solution. As
|Sl| < K ≤ q, the number of elements in GF (q) which satisfy
fk(x

∗
1, . . . , x

∗
t−1, xt, 0, . . . , 0) = 0 for some k ∈ Sl is strictly

less than q. We can choose x∗
t such that

fk(x
∗
1, x

∗
2, . . . , x

∗
t−1, x

∗
t , 0, 0, . . . , 0) ̸= 0

for all k ∈ Sl. Upon termination, it is guaranteed that
fk(x

∗
1, x

∗
2, . . . , x

∗
L) ̸= 0 for all k. We call this method

the Sequential Assignment (SA) algorithm. Its computational
complexity in terms of number of multiplications/divisions
over GF (q) is analyzed as follows: In this algorithm, there
are L iterations. In each iteration, we need to find an element
in GF (q) that is not a root of any of these K equations.
Consider the t-th iteration. For the k-th equation, we need
to compute αk,t−1x

∗
t−1 and add it to the accumulated sum∑t−2

j=1 αkjxj , which is stored for the next iteration. The root
of this equation can then be obtained by a division. Therefore,
the total complexity of SA is O(KL).

Example: Let

f1(x) , x1 + 2x2

f2(x) , x2 + 2x3

f3(x) , 2x1 + x3

be K = 3 linear polynomials over GF (3). We apply the algo-
rithm in Lemma 6 to find an assignment of x = (x1, x2, x3)
such that f1(x), f2(x) and f3(x) are all non-zero. First of
all, the three index sets are S1 = {1, 3}, S2 = {1, 2},
and S3 = {2, 3}. None of them has cardinality three. We
proceed as described in the second case. We assign an arbitrary
non-zero value to x1, say x1 = 1, and we can check that
f1(1, 0, 0) = 1, f2(1, 0, 0) = 0, f3(1, 0, 0) = 2.
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Next, we want to find x2 ∈ GF (3) such that

f1(1, x2, 0) = 1 + 2x2 ̸= 0, and
f2(1, x2, 0) = x2 ̸= 0.

It turns out that the only choice for x2 is x2 = 2. After x2 is
fixed, we search for x3 ∈ GF (3) such that

f2(1, 2, x3) = 2 + 2x3 ̸= 0

f3(1, 2, x3) = 2 + x3 ̸= 0.

The only choice for x3 is x3 = 0. Finally, we check that the
values of f1, f2 and f3 evaluated at x = (1, 2, 0),

f1(1, 2, 0) = 2. f2(1, 2, 0) = 1, f3(1, 2, 0) = 2

are all non-zero.
By Lemma 6, we prove the following theorem:

Theorem 7. If q ≥ K, there exists a K-sparse encoding vector
in I.

Proof: For k = 1, 2, . . . ,K, let bT
k be an arbitrary row

vector in Bk, and let nk be an arbitrary index such that the nk-
th component of bk is non-zero. Form a new index set N that
consists of all nk’s. The cardinality of N may be less than K
since the nk’s may not be distinct. Let bk(N ) be a truncated
vector of bk, which consists of only the components of bk

whose indices are in N . Its dimension is equal to |N | ≤ K.
Now we show that there exists a vector x ∈ I such that

the i-th component of x is equal to zero if i ̸∈ N . If the i-th
component of x is zero for all i ̸∈ N , then the inner product
of bk and x is the same as the inner product of bk(N ) and
x(N ). According to Theorem 3, x is in I if bk(N )·x(N ) ̸= 0
for all k’s. By Lemma 6, we can find such a vector x if q ≥ K.
Clearly, such a vector has N as its support, and is hence K-
sparse.

The above result shows that the minimum Hamming weight
of innovative vectors is bounded above by K, assuming
q ≥ K. This upper bound cannot be further reduced as
the following example shows: Consider a broadcast system
of K users and N packets, where N ≥ K. Suppose that
user k has received a set of uncoded packets Ak. Here we
regard Ak as a subset of {1, 2, . . . , N}. Furthermore, suppose
that the complement of the Ak’s are mutually disjoint, i.e.,
Ac

j ∩ Ac
k = ∅ for j ̸= k. In such a scenario, an innovative

packet must be a linear combination of at least K packets.
For example, let N = 4 and K = 3. If the encoding matrices
of the three users are[

1 0 0 0
0 1 0 0

]
,

1 0 0 0
0 0 1 0
0 0 0 1

 ,

0 1 0 0
0 0 1 0
0 0 0 1

 ,

then an innovative encoding vector must have Hamming
weight at least 3. For instance (1, 1, 1, 0) and (1, 1, 0, 1) are
innovative, but no vector with Hamming weight 2 or less is
innovative.

B. Sparsest Innovative Vectors

Theorem 7 shows that we can always find a K-sparse
innovative vector if q ≥ K. It serves as an upper bound on the

minimum Hamming weight of innovative vectors. To further
reduce the decoding complexity, it is natural to consider the
issue of finding a sparsest innovative encoding vector for given
Ck’s. In other words, we want to find a vector in I that has
the minimum Hamming weight for the case where q ≥ K. We
call this algorithmic problem SPARSITY. We state its decision
version formally as follows:

Problem: SPARSITY
Instance: A positive integer n and K matrices with N

columns, C1,C2, . . . ,CK , over GF (q), where q ≥ K.
Question: Is there a vector x ∈ I with Hamming weight

less than or equal to n?
Given all Ck’s, we can find a basis Bk’s of their corre-

sponding null spaces by the method mentioned in Section IV.
For k = 1, 2, . . . ,K, let bT

k,i be the i-th row of Bk. We define

b̃k , ∨N−rk
i=1 bk,i, (4)

where ∨ denotes the logical-OR operator applied component-
wise to the N − rk vectors, with each non-zero component
being regarded as a “1”. In other words, the j-th component
of b̃k is one if and only if the j-th column of Bk is nonzero.
We define B as the K×N matrix whose k-th row is equal to
b̃T
k . Note that B is a binary matrix and has no zero rows. For

a matrix A and a subset N of the column indices of A, let
A(N ) be the K × |N | submatrix of A, whose columns are
chosen according to N . We need the following lemma:

Lemma 8. LetN ⊆ {1, 2, . . . , N} be an index set and q ≥ K.
There exists an encoding vector x = (x1, x2, . . . , xN ) ∈ I
over GF (q) with supp(x) ⊆ N if and only if B(N ) has no
zero rows.

Proof: If B(N ) has no zero rows, then b̃k(N ) ̸= 0 for
all k’s. Furthermore, for all k’s, there must exist bk,j(N ) ̸= 0
for some j. By Lemma 6, we can find x(N ) ∈ GF (q)|N |

such that bk,j(N ) ·x(N ) ̸= 0 for all k’s. Let the components
of x whose indices do not belong to N be zero. Then by
Theorem 3, x ∈ I.

Conversely, if x is an innovative vector with xn = 0 for
n ̸∈ N , then B(N ) cannot have zero rows, for if row k of
B(N ) is a zero vector, then Bk(N ) is a zero matrix and the
k-th inequality in Theorem 3 cannot hold.

The NP-completeness of SPARSITY can be established by
reducing the hitting set problem, HITTINGSET, to SPARSITY.
Recall that a problem instance of HITTINGSET consists of a
collection C of subsets of a finite set U . A hitting set for C is
a subset of U such that it contains at least one element from
each subset in C . The decision version of this problem is to
determine whether we can find a hitting set with cardinality
less than or equal to a given value.

Problem: HITTINGSET
Instance: A finite set U , a collection C of subsets of U and

an integer n.
Question: Is there a subset S ⊆ U with cardinality less than

or equal to n such that for each C ∈ C we have C ∩ S ≠ ∅?
It is well known that HITTINGSET is NP-complete [36].
Example: Let U = {1, 2, 3, 4, 5},

C = {{1, 2, 3}, {2, 3, 4}, {4, 5}}
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and n = 2. We can check that the set {1, 4} is a hitting set of
size n = 2.

Theorem 9. SPARSITY is NP-complete.

Proof: We are going to reduce HITTINGSET to an in-
stance of SPARSITY via Karp-reduction [38]. Let the cardi-
nality of U be N . Label the elements of U by 1, 2, . . . , N .
We define C , {C1, C2, . . . , CK}, where K is the num-
ber of non-empty subsets in C . For k = 1, 2, . . . ,K,
form an N -vector bk ∈ GF (q)N with its i-th component
equal to one if i is in Ck and zero otherwise, i.e., bk

is the characteristic vector of Ck. Note that bk ̸= 0 and
C = {supp(b1), supp(b2), . . . , supp(bK)}. These bk’s cor-
respond to the degenerate form of Bk’s in Theorem 3 with
only one row in Bk. Let Ck be the encoding matrix of
user k, whose row space is the null space of Bk and I be
the innovative vector set defined in (1). In other words, any
instance of HITTINGSET can be represented as an instance of
SPARSITY in polynomial time.

It remains to show that there exists a hitting setH for C with
|H| ≤ n if and only if there exists an x ∈ I with Hamming
weight |supp(x)| ≤ n. Given the bk’s obtained via the above
reduction, suppose there exists x ∈ I with |supp(x)| ≤ n.
By Theorem 3, we must have bk · x ̸= 0 for all k’s, which
implies supp(bk)∩supp(x) ̸= ∅ for all k’s. The set supp(x) is
therefore a hitting set for the given instance. Conversely, given
a hitting set H for C with |H| ≤ n, by definition supp(bk)∩
H ≠ ∅ for all k’s. Therefore, B(H) has no zero rows. By
Lemma 8, there exists an x ∈ GF (q)N such that supp(x) ⊆
H. Hence, |supp(x)| ≤ n.

As SPARSITY is verifiable in polynomial time, SPARSITY
is in NP. Hence it is NP-complete.

Now we define the optimization version of SPARSITY as
follows:

Problem: MIN SPARSITY
Instance: A positive integer n and K matrices with N

columns, C1,C2, . . . ,CK , over GF (q), where q ≥ K.
Objective: Find a vector x ∈ I with minimum Hamming

weight.
The minimum Hamming weight among all innovative vec-

tors is called the sparsity number, and is denoted by ω. It
is easy to see that if a polynomial-time algorithm can be
found for solving the optimization version of SPARSITY, then
that algorithm can be used for solving the decision version
of SPARSITY in polynomial time as well. Therefore, MIN
SPARSITY is NP-hard.

On the other hand, if K is held fixed, then there exist
polynomial-time algorithms to solve MIN SPARSITY. It is
proven in [39] and Section V-A that a K-sparse vector exists in
I, if q ≥ K. By listing all vectors in GF (q)N with Hamming
weight less than or equal to K, we can use Theorem 3 to check
whether each of them is in I. For each K-sparse encoding vec-
tor, we compute the matrix product Bkx for k = 1, 2, . . . ,K.
Each matrix product takes O(NK) finite field operations. The
total number of finite field operations for each candidate x
is O(NK2). After checking all K-sparse encoding vectors,
we can then find one with minimum Hamming weight. The
number of non-zero vectors in GF (q)N with Hamming weight

no more than K is equal to
∑K

k=1

(
N
k

)
(q−1)k. For fixed K and

q, the summation is dominated by the largest term
(
N
K

)
(q−1)K

when N is large, which is of order O(NK). The brute-
force method can solve the problem with time complexity of
O(NK(NK2)). As K is held fixed, MIN SPARSITY can be
solved in polynomial time in N .

Let MIN HITTINGSET be the minimization version of the
hitting set problem, in which we want to find a hitting set
with minimum cardinality. The next result shows that MIN
SPARSITY can be solved via MIN HITTINGSET based on the
concept of Levin-reduction [38].

Theorem 10. MIN SPARSITY can be reduced to MIN HIT-
TINGSET via Levin-reduction.

Proof: Given an instance of MIN SPARSITY, we deter-
mine b̃k as in (4) for k = 1, 2, . . . ,K. Then we form the
following instance of MIN HITTINGSET:

U = {1, 2, . . . , N},
C = {supp(b̃1), supp(b̃2), . . . , supp(b̃K)}.

Let H be a solution to the above instance. Then B(H) has no
zero rows. By Lemma 8, there exists a vector x∗ ∈ I over
GF (q) with supp(x∗) ⊆ H. Such a vector x∗ can be found
by the SA algorithm in polynomial time.

We claim that there does not exist x′ ∈ I with Hamming
weight |supp(x′)| < |H|, and thus |supp(x∗)| must equal
|H|. Suppose there exists such a vector x′. Lemma 8 implies
that B(supp(x′)) has no zero rows, which in turn implies
that supp(x′) ∩ supp(b̃k) ̸= ∅ for all k’s. Then supp(x′)
would be a hitting set with cardinality strictly less than |H|.
A contradiction.

VI. NETWORK CODING ALGORITHMS

In this section, we present algorithms that generate sparse
innovative encoding vectors for q ≥ K. While for the binary
transmission cases (q = 2), finding an innovative encoding
vector may not always be possible, a modification of the
algorithm is also proposed for handling such cases.

A. The Optimal Hitting Method

For q ≥ K, we generate a sparest innovative vector in
two steps. First we find an index set N with minimum
cardinality, which determines the support of the innovative
encoding vector. This is accomplished by solving the hitting
set problem. Once N is found, the non-zero entries in the
vector can be obtained by the SA algorithm.

The hitting set problem can be exactly solved by binary
integer programming (BIP), formulated as follows:

ω = min
y

y1 + y2 + . . .+ yN ,

subject to

By ≥ 1,
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where

B =


b̃1

b̃2

...
b̃K


is a K × N binary matrix, y = (y1, y2, . . . , yN ) is an N -
dimensional binary vector, 1 is the K-dimensional all-one
vector, and the inequality sign is applied component-wise.

To solve the above problem, we can apply any algorithm for
solving BIP in general, for example the cutting plane method.
We refer the readers to [40] for more details on BIP.

Example: Let q = 3, K = 3 and N = 4, and the orthogonal
complements of V1, V2 and V3 be given respectively by the
row spaces of

B1 =

[
1 2 0 1
1 1 0 0

]
, B2 =

[
0 2 1 0

]
,

B3 =

[
0 0 1 1
1 0 0 2

]
.

The vectors b̃k, for k = 1, 2, 3, are

b̃1 = [1 1 0 1], b̃2 = [0 1 1 0], b̃3 = [1 0 1 1].

The corresponding instance of MIN HITTINGSET is:

U = {1, 2, 3, 4}, C = {{1, 2, 4}, {2, 3}, {1, 3, 4}}.

The solution to both MIN SPARSITY and MIN HITTINGSET
can be obtained by solving the following BIP:

min y1 + y2 + y3 + y4,

subject to

y1 + y2 + y4 ≥ 1, y2 + y3 ≥ 1, y1 + y3 + y4 ≥ 1,

y1, y2, y3, y4 ∈ {0, 1}.

One optimal solution is y1 = y2 = 1 and y3 = y4 =
0. That means, the sparsity number, ω, is equal to two and
N = {1, 2}. Furthermore, according to Lemma 8, a 2-sparse
innovative encoding vector can be found, for example, by the
SA algorithm.

We call the above procedure for generating an innovative
vector with minimum Hamming weight the Optimal Hitting
(OH) method. We summarize the algorithm as follows:

The Optimal Hitting method (OH):
Input: For k = 1, 2, . . . ,K, full-rank rk×N matrix Ck over
GF (q), where q ≥ K and 0 ≤ rk < N .
Output: x = (x1, x2, . . . , xN ) ∈ I with minimum Hamming
weight.
Step 0: Initialize x as the zero vector.
Step 1: For k = 1, 2, . . . ,K, obtain a basis of the null space
of Ck. Let Bk be the (N−rk)×N matrix over GF (q) whose
j-th row is the j-th vector in the basis.
Step 2: For k = 1, 2, . . . ,K, let b̃k be the component-wise
logical-OR operations to the N−rk row vectors of Bk. (Each
non-zero component of Bk are being regarded as a “1” when
taking the logical-OR operation.)
Step 3: Solve the corresponding MIN HITTINGSET as shown
in Theorem 10 and return H.

Step 4: For k = 1, 2, . . . ,K, choose a row vector from Bk,
say b̂T

k , such that supp(b̂k) ∩H ≠ ∅.
Step 5: Determine x(H) such that x(H) · b̂k(H) ̸= 0 for
k = 1, 2, . . . ,K, by the SA algorithm.

Example continued: We solve the hitting set problem in
Step 3 and obtain y = (1, 1, 0, 0). Hence, N = {1, 2}. In step
4, we choose

b̂1 = (1, 2, 0, 1), b̂2 = (0, 2, 1, 0) and b̂3 = (1, 0, 0, 2).

In Step 5, we obtain S1 = {1, 3} and S2 = {1, 2}. Note that
both |S1| and |S2| are not equal to 3. We next set x1 = 1, and
choose x2 such that

b̂1 · (1, x2, 0, 0) ̸= 0

b̂2 · (1, x2, 0, 0) ̸= 0.

We can choose x2 = 2 to satisfy these two inequalities
simultaneously. The vector x = (1, 2, 0, 0) is an innovative
encoding vector of minimum Hamming weight.

B. The Greedy Hitting Method

Step 2 in the OH method requires solving an NP-hard
problem. Therefore, some computationally efficient heuristics
should be considered in practice. It is well known that MIN
HITTINGSET can be solved efficiently and approximately by
the following greedy approach [41]:

• Repeat until all sets of C are hit:
– Pick the element that hits the largest number of sets

that have not been hit yet.
In Step 3 of the OH method, the above greedy algorithm can be
used to find approximate solutions. We call this modification
the Greedy Hitting (GH) method.

Theorem 11. The GH method is an Hn factor approximation
algorithm for MIN SPARSITY, where Hn is the n-th harmonic
number, defined as H(n) ,

∑n
k=1

1
k .

Proof: It is well known that the hitting set problem is
just a reformulation of the set covering problem. Therefore,
the greedy algorithm is an Hn factor approximation algorithm
for MIN HITTINGSET, as well as for the set covering problem
[37]. As shown in Theorem 10, MIN SPARSITY can be reduced
to MIN HITTINGSET, and the sparsity number is equal to the
cardinality of the minimum hitting set. Hence, GH is also an
Hn factor approximation algorithm for MIN SPARSITY.

Now we analyze the computational complexity of the GH
method. The computation of each Bk can be reduced to
the computation of the RREF of Ck, which takes O(N3)
arithmetic operations. However, if the encoding vectors are
ω-sparse, we can adopt the dual-basis approach in obtaining
Bk as in the appendix, and guarantee that each Bk can be
obtained in O(ωN2) times. The computational complexity
of Step 1 is thus O(ωKN2). Step 2 involves O(KN2)
operations. If Step 3 is solved by the greedy algorithm, then it
takes O(KN2) operations. Step 4 requires O(K) operations.
Step 5 involves the SA algorithm, which has a complexity of
O(K|H|). Since |H| ≤ N , the overall complexity of GH is
O(ωKN2).
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C. Solving Binary Equation Set for q = 2

The last step of the GH method involves solving a set of
linear inequalities over GF (q). However when q = 2, solving
a linear inequality of the form f(x) ̸= 0 is equivalent to
solving the linear equation f(x) = 1. Based on this fact,
we now propose a procedure which is called Solving Binary
Equation Set (SBES), which modifies the SA algorithm so
that it is applicable to the case where q = 2. Note that the
same idea can be applied to cases where q is a prime power
satisfying 2 < q < K.

The heuristic is as follows. We want to find x such that
Ax = 1, where A is the coefficient matrix of the system of
linear equations. The system may be inconsistent and has no
solution. Nevertheless, we can disregard some equations and
guarantee that at least rank(A) equations are satisfied.

Solving Binary Equation Set Procedure (SBES):
Input: A K ×N matrix B̂ over GF (2) and N , where N ⊆
{1, 2, . . . , N}.
Output: x = (x1, x2, . . . , xN ) ∈ GF (2)N with support in N .

Step 0: Assign z = (z1, z2, . . . , z|N |) as a zero vector.
Step 1: Delete columns of B̂ whose column indices are not in
N . Augment the resulting matrix by adding a K-dimensional
all-one column vector to the right-hand side. Let the resulting
matrix be denoted by Q.
Step 2: Compute the row echelon form (REF) of Q and call
it Q′.
Step 3: Delete all zero rows in Q′ and any row in Q′ if it has
a single “1” in the (|N |+1)-th entry. The resulting matrix is
called Q′′. Let the number of pivots in Q′′ be ν, and let p1,
p2, . . . pν be the column indices of the pivot in Q′′ listed in
ascending order.
Step 4: Execute elementary row operations in Q′′ so that Q′′

is transformed into its row-reduced echelon form.
Step 5: Set the variables associated with the non-pivot
columns to zero. For i = 1, 2, . . . , ν, assign zpi the value
of the i-th entry of the last column in Q′′.
Step 6: Assign values to the components of x such that
x(N ) = z, and xi = 0 if i ̸∈ N .

When applying the GH method to the case where q = 2, we
replace the SA algorithm in Step 5 of the GH method by the
SBES procedure. We call this modification GH with SBES.
Example: Consider q = 2, K = 4, N = 5, H = {1, 3} and

B̂ =


b̂T
1

b̂T
2

b̂T
3

b̂T
4

 =


1 1 0 1 0
1 1 1 0 1
1 0 0 1 1
0 0 1 0 0

 . (5)

We extract the first and third rows of B̂ and augment it by the
all-one column vector, 1,

Q =


1 0 1
1 1 1
1 0 1
0 1 1

 .

In Step 2, we compute the REF of Q

Q′ =


1 0 1
0 1 0
0 0 1
0 0 0

 .

The last row is an all-zero row, representing a redundant
equation. The second last row contains a one in the third
component, and zero elsewhere, implying that the original
system of linear equations cannot be solved. In order to get a
heuristic solution, we relax the system by deleting that row,
and obtain

Q′′ =

[
1 0 1
0 1 0

]
.

We have p1 = 1 and p2 = 2 in Step 3. The matrix Q′′ is
already in its RREF. By Step 5, z1 = q′′(1, 3) = 1 and z2 =
q′′(2, 3) = 0. Finally, we set x1 = z1 = 1, and x3 = z2 = 0.
So x = (1, 0, 0, 0, 0) and x is innovative to all except the last
user.

In this example, an innovative vector does exist, but GH
with SBES fails to find it. The main reason is that the hitting
set subproblem is formulated for the case where q ≥ K. When
q is small, there is no guarantee that a non-empty I must
consist of a vector with support restricted in H. Indeed, we
will skip the greedy hitting procedure and simply let H be the
index set of all packets, i.e., {1, 2, . . . , N}, then it is easy to
check that with the same input, the SBES procedure returns
x = (0, 0, 1, 1, 0), which is an innovative vector to all users.
We call this modification Full Hitting (FH) with SBES, for
the reason that the hitting set is chosen as the full index set
of the packets. In general, FH with SBES produces encoding
vectors that are innovative to more users than GH with SBES,
at the expense of higher Hamming weights.

The SBES procedure is indeed the Gauss-Jordan elimi-
nation. So the total complexity is O(NK2). Note that the
encoding vectors generated by GH with the SBES procedure
may not be innovative when K > q = 2; however they are
still innovative to a fraction of the K users.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our proposed methods via simu-
lations. We simulate a broadcast system in which a transmitter
broadcasts N equal-size packets to K users via a erasure
broadcast channel. The whole process is divided into two
phases. The transmitter sends all packets one by one without
network coding in the first phase. In the second phase, packets
are encoded by the encoding vectors generated by the methods
we concern and transmitted until all users received enough
packets for recovering the N packets. The transmitter encodes
packets based on the perfect feedback from the users. A user
acknowledges a packet if the packet is received successfully
and innovative to that user. The transmitter sets up K matrices
Ck, for k = 1, 2 . . . ,K, where Ck records the encoding
vectors of the encoded packets that have been acknowledged
by user k after those previous transmissions. Since the packets
are uncoded in the first phase, each row of Ck contains
exactly one nonzero component before the retransmission. In
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Fig. 2. The average delay for q = 2 and N = 32

our simulations, each simulation points involves 3000 random
realizations and we assume that N = 32 and Pe = 0.3.

First, we examine the completion time and average delay
of a two-phase broadcast system with different encoding
schemes. The completion time is defined, from a system
perspective, as the average of total number of transmissions
for the transmitter to complete an N -packet transmission for
all users. The average delay, from a user perspective, is defined
as the individual completion time averaged over all users.
We only consider the case where q = 2, since our proposed
methods always generate innovative vectors for q ≥ K and
are rate-optimal.

Figure 1 shows the completion time performance of the
broadcast system with GH with SBES, FH with SBES, the
maximum weight vertex search (MWVS) algorithm in [16],
where MWVS generates instantly decodable packets, and
binary random linear network code (RLNC). In the figure,
we include the minimum completion time performance of a
broadcast system in a erasure channel as a reference [5]. We

remark that the completion time curves of GH and FH with
a large finite field size are exactly the same as the optimal
curve shown in the figure. For q = 2, simulation results show
that GH and FH (with SBES) always outperform RLNC and
MWVS. More importantly, it is found that the completion time
performance of FH with SBES is nearly optimal.

Next, we consider the average delay performance. Accord-
ing to information theory, the best we can do in a (single-
user) erasure channel with erasure probability Pe is to have
N/(1 − Pe) ≈ 45.7 transmissions on average. As mentioned
before, GH and FH can achieve that limit when q ≥ K,
since they always generate innovative packets. Here we only
consider the case where q = 2. In Figure 2, the horizontal
line at 45.7 serves as a lower bound, which is not tight since
innovative vectors do not always exist. Again, both GH and
FH (with SBES) outperform RLNC and MWVS.

Intuitively, the delay performance of an encoding scheme is
related to its ability to generate innovative vectors. Thus it is
meaningful to examine how often the users may receive a non-
innovative packet generated by an encoding scheme before
they receive a complete set of packets, so that we have a
better understanding on its delay performance. We examine
the average number of non-innovative packets received by a
user for different schemes when q = 2 in Figure 3. We observe
that due to the random nature of RLNC, the average number
of received non-innovative packets per user does not depend
on the number of users in the system. This phenomenon
agrees with the result in Figure 2 where the average delay
performance of RLNC is independent of the number of users
as well. In Figure 3, it is found that an encoding scheme with
SBES always generates fewer non-innovative packets. It can be
interpreted that the idea of SBES is to attempt finding a binary
vector that is innovative to as many users as possible. Figure 3
also shows that FH with SBES generates the least amount of
non-innovative packets among all encoding schemes that we
considered. Note that the hitting set procedure in GH is the
source of sparsity of the encoding vectors. However it may
limit the choices for finding an innovative vector or solutions
to inequality sets in SBES. Therefore the performance of FH
is better.

Apart from the delay performance, we are also interested in
the decoding complexity of different schemes. As the sparsity
of encoding vectors may affect the decoding complexity, it is
of interest to know how sparse the encoding vectors generated
by different schemes could be. For RLNC with q = 2, since
we generate each component of an encoding vector with equal
probability of zero and one, the average Hamming weight
is N/2 = 16, which is not shown in Figure 4. For other
encoding schemes, it can be observed from Figure 4 that GH
and MWVS generate sparse encoding vectors whose average
Hamming weight is less than or around 6. The results of GH
can be attributed to the hitting set minimization. FH with
SBES tries to find vectors that are innovative to as many users
as possible, without explicit consideration of the Hamming
weight. Therefore, it can achieve a better delay performance
at the expense of less sparsity.

Next we evaluate the decoding complexity in terms of the
number of additions and multiplications performed. In our
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Fig. 3. The average number of non-innovative packets received by a user
for q = 2 and N = 32
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Fig. 6. The average total number of additions in decoding for q = 2 and
N = 32

simulations, an addition operation involving two non-zero
operands is counted. A multiplication operation is counted
when none of the two operands is 1 or 0. The decoding
algorithms in most of the previous work are basically Gauss-
Jordan elimination except the instantly decodable schemes in
[16], [19]. What we are proposing for decoding is also Gauss-
Jordan elimination, but implemented for sparse matrix. Fig-
ures 5 and 6 show the average total number of operations for
all users in the system with different schemes when q = 2 and
q = 101, respectively. In Figures 4, 5 and 6, we observe that,
in general, encoding vectors with larger average Hamming
weight results in higher decoding complexity. Figure 5 shows
that when q = 101, GH yields sparse innovative encoding
vectors that results in significant reduction in both the average
total number of additions and multiplications when compared
with RLNC. Although both GH and RLNC can offer delay-
optimal performance, GH involves fewer decoding operations,
hence is a preferable choice for the optimal delay performance.
In Figure 6, we examine the number of additions involved
for different schemes when q = 2. We observe that, with
instantly decodable MWVS, a receiver enjoys a low decoding
complexity at the expense of larger delay. Furthermore, it is
found that GH requires significantly fewer computations than
RLNC. Especially, the decoding computations involved in GH
with SBES is only 40 percent of the decoding computations
of RLNC, though GH with SBES outperform RLNC in delay
performance. As a result, GH is a good choice in terms of
both delay performance and decoding complexity for q = 2.
However if delay performance is the major concern, FH
with SBES, providing nearly optimal delay performance with
moderate decoding complexity, should be a good option. In
short, both GH and FH offer promising choices for the trade-
off between delay performance and decoding complexity in an
erasure broadcast system.

VIII. CONCLUSIONS

In this paper, we adopt the computational approach to study
the linear network code design problem for wireless broadcast
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systems. To minimize the completion time or to maximize
the information rate, the concept of innovativeness plays an
important role. While it is well known that innovative encoding
vectors always exist when the finite field size, q, is greater
than the number of users, K, we prove that the problem
of determining their existence over the binary field is NP-
complete. Its corresponding maximization version not only is
hard to solve, but also is hard to approximate. Nevertheless, we
propose a heuristic called FH with SBES, which is numerical
shown to be nearly optimal under our simulation settings.

Sparsity of a network code is another issue we have ad-
dressed. When q ≥ K, we show that the minimum Hamming
weight within the set of innovative vectors is bounded above
by K. To find a vector that achieves the minimum weight,
however, is proven to be NP-hard via the reduction from
the hitting set problem. An exact algorithm based on BIP
is described, and a polynomial-time approximation algorithm
based on the greedy approach is constructed.

The performance of our proposed algorithms has been
evaluated by simulations. When q ≥ K, our proposed algo-
rithm is rate-optimal and is effective in reducing decoding
complexity. When q = 2, our proposed algorithms are able to
strike a proper balance between completion time and decoding
complexity.

Acknowledgements: The authors would like to thank Prof.
Wai Ho Mow and Dr. Kin-Kwong Leung for their stimulating
discussions.

APPENDIX

In this appendix, we illustrate how to compute a basis of the
null space incrementally. In the application to the broadcast
system we consider in this paper, the rows of C are given
one by one. A row is revealed after an innovative packet is
received. Given an r × N matrix C over GF (q), recall that
our objective is to find a basis for the null space of C. The
idea is as follows. We first extend C to a non-singular N ×N
matrix by appending N − r row vectors. Let the resulting
square matrix be C̃. Let B̃ be the inverse of C̃. By the very
definition of matrix inverse, the last N − r columns of B̃ is a
basis for the null space of C.

We proceed by induction. The algorithm is initialized by
setting C̃ = B̃ = IN . We will maintain the property that
C̃−1 = B̃.

Suppose that the first r rows of C̃ are the encoding vectors
received by a user, and C̃ = B̃−1. We let cTi be the i-th row of
C̃ and bj be the j-th column of B̃. When a packet arrives, we
can check whether it is innovative by taking the inner product
of the encoding vector of the new packet, say w, with br+1,
br+2, . . . ,bN . According to Theorem 3, it is not innovative
if and only if all such inner products are zero.

Consider the case that w is innovative. Permute the columns
of B̃, if necessary, to ensure that wTbr+1 ̸= 0. This can
always be done, since w cannot be orthogonal to all the last
N − r columns of B̃. Permute the rows of C̃ accordingly, so
as to ensure that C̃−1 = B̃. Then, we modify C̃ by updating
its (r + 1)-st row to wT . This operation can be expressed
algebraically by

C̃←− C̃+ er+1(w − cr+1)
T ,

where er+1 is the column vector with the (r+1)-st component
equal to 1 and zero otherwise. The matrix er+1(w−cr+1)

T is
a rank-one matrix, with the (r+1)-st row equal to (w−cr+1)

T ,
and zero everywhere else. The inverse of C̃+er+1(w−cr+1)

T

can be computed efficiently by the Sherman-Morrison for-
mula [42] [43, p.18],

(C̃+ er+1(w − cr+1)
T )−1

= C̃−1 − C̃−1er+1(w − cr+1)
T C̃−1

1 + (w − cr+1)T C̃−1er+1

= C̃−1 − br+1(w − cr+1)
T C̃−1

wTbr+1

= C̃−1 −
br+1(w

T C̃−1 − eTr+1)

wTbr+1
. (6)

We have used the facts that C̃−1er+1 = br+1 and cTr+1C̃
−1 =

eTr+1 in the above equations. The denominator of the fraction
in (6) is a non-zero scalar by construction, so that division of
zero would not occur. We update B̃ by the expression in (6).
Note that if w is ω-sparse, the multiplication of wT and C̃−1

in (6) can be done in O(ωN) times.
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