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In order to model a magnetohydrodynamic �MHD� instability that strongly couples to external
conducting structures �walls and/or coils� in a fusion device, it is often necessary to combine a MHD
code solving for the plasma response, with an eddy current code computing the fields and currents
of conductors. We present a rigorous proof of the coupling schemes between these two types of
codes. One of the coupling schemes has been introduced and implemented in the CARMA code �R.
Albanese, Y. Q. Liu, A. Portone, G. Rubinacci, and F. Villone, IEEE Trans. Magn. 44, 1654 �2008�;
A. Portone, F. Villone, Y. Q. Liu, R. Albanese, and G. Rubinacci, Plasma Phys. Controlled Fusion
50, 085004 �2008�� that couples the MHD code MARS-F �Y. Q. Liu, A. Bondeson, C. M. Fransson,
B. Lennartson, and C. Breitholtz, Phys. Plasmas 7, 3681 �2000�� and the eddy current code CARIDDI

�R. Albanese and G. Rubinacci, Adv. Imaging Electron Phys. 102, 1 �1998��. While the coupling
schemes are described for a general toroidal geometry, we give the analytical proof for a cylindrical
plasma. �DOI: 10.1063/1.2959129�

I. INTRODUCTION

In a fusion device such as a tokamak, it is well known
that an unstable external kink mode, driven either by the
plasma current or pressure, produces an external magnetic
field perturbation, which induces stabilizing image currents
in the surrounding conducting structures, such as the vacuum
vessels made of low resistivity materials. The image cur-
rents, flowing in the conducting walls, can effectively reduce
the growth rate of the external kink mode, from the Alfvénic
time scale �microseconds� to the characteristic current decay
time of the wall, which is typically a few milliseconds in
present tokamaks, and a fraction of a second in ITER.1

As a result of slowing down of the mode growth rate,
additional stabilizing mechanisms or techniques can be ap-
plied to this mode, which is called a resistive wall mode
�RWM�, to make it completely stable. For instance, the
RWM can be stabilized by toroidal rotation of the plasma,2–4

or by active control using magnetic coils surrounding the
plasma.5–8 Complete suppression of the pressure driven
RWM helps maintain the plasma pressure above the no-wall
ideal beta limit, giving the possibility of operating a future
fusion power plant at higher power production and in steady
state.

Due to the strong coupling of the RWM to the external
conducting structures, modeling the stability and control of
this mode inevitably involves both magnetohydrodynamic
�MHD� calculations for the plasma and the eddy current cal-
culations for the conductors. While the plasma response can
often be modeled as a linear perturbation with a single

toroidal mode number n �n=1, 2, or 3 for typical RWM�, the
external conductors, both resistive walls and control coils for
feedback stabilization, normally have three-dimensional
�3D� features, which may significantly modify the 3D re-
sults. Accurate modeling of the conductors requires solving
3D eddy current problems, which are typically not consid-
ered in many free boundary MHD codes. For instance, in the
linear MHD codes MARS-F

9 or KINX,10 the resistive wall is
modeled as an axisymmetric thin shell, and the feedback
coils as an infinite number of current circuits along the tor-
oidal angle, to produce a single n field perturbation. For the
RWM simulations, it is often necessary to combine a MHD
code with a 3D eddy current code.

The eddy current problem �i.e., quasistatic Maxwell
equations�, with shell-like conductors, can be efficiently
solved in the integral formulation, where the unknown vari-
ables are the eddy current density in the conductors. Ex-
amples of this approach include the CARIDDI

11 and VALEN
12

codes. An alternative approach is to solve the Maxwell equa-
tions in differential form, and an efficient solver is possible
using the ungauged vector potential as the unknown.13

In this work, we describe and prove the coupling
schemes for integral eddy current solvers. More specifically,
we study the coupling scheme behind the CARMA code,14,15

which combines the MHD code MARS-F and the eddy current
code CARIDDI. We also propose and prove a new scheme that
can be beneficial in certain specific cases. These schemes can
be used to couple a generic MHD code with a generic eddy
current code. The schemes are described in a general toroidal
geometry in Sec. II, and their validity is rigorously shown for
a cylindrical plasma in Sec. III. Section IV summarizes the
results.a�Electronic mail: yueqiang.liu@ukaea.org.uk.
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II. COUPLING SCHEMES IN GENERAL
TOROIDAL GEOMETRY

We consider two ways to couple a MHD code and an
eddy current code. In the first approach, the MHD code com-
putes response matrices of the plasma �described below� that
are used as the input to the eddy current code, which subse-
quently solves the whole RWM �stability and control� prob-
lem without involving the MHD code anymore. We refer to
this approach as the forward coupling scheme.

In the second approach, referred to as the backward cou-
pling, the eddy current code computes response matrices of
the conducting structures that are used as input to the MHD
code, which subsequently solves the whole RWM problem
without involving the eddy current calculations anymore.

The basic assumptions, for these two coupling schemes
to work, are that �i� the MHD code uses the normal compo-
nent of the magnetic field �or flux� as the inhomogeneous
boundary condition to compute the plasma response field;
�ii� the computational boundary, which serves as the cou-
pling surface between the MHD code and the eddy current
code, can be the plasma boundary or an arbitrary surface
outside the plasma but inside all conductors surrounding the
plasma; �iii� the eddy current code solves the quasimagneto-
static Maxwell equations in the integral form, i.e., with the
solution variables being the eddy current density in the
conductors.

There might be approaches where the two codes are
coupled in an iterative manner. Normally these approaches
result in a less efficient computation, and sometimes have
trouble with numerical convergence for the eigenvalue.16 We
do not consider them in this work.

A. Forward coupling scheme from MHD to eddy
current formulation

This scheme has been described in detail in Refs. 14 and
15. Below we give a short description of the procedure, in
view of the analytical proof later on. We consider only the
RWM with a single toroidal mode number n.

�1� Choose M independent normal magnetic field perturba-
tions bN, e.g., M poloidal harmonics with a unit
amplitude. Using these normal fields as the inhomoge-
neous boundary condition at the coupling surface, solve
the MHD equations M times for the plasma response.

Find an M �M matrix KJ relating the tangential field bT,
at the inner side of the coupling surface, to the normal
field bN,

bT = KIbN. �1�

�2� Solve the same problem without the plasma �i.e.,

vacuum solution�, and find a similar matrix KJ vac,

bT
vac = KI vacbN. �2�

�3� Compute an equivalent surface current density Ieqv at the
coupling surface, which reproduces the same magnetic
field outside the coupling surface as that from the per-
turbed plasma current,

Ieqv = �0
−1�bT − bT

vac� = �0
−1�KI − KI vac�bN = FIbN. �3�

Note that since the perturbed field, as well as the equiva-
lent surface current, generally has two tangential compo-

nents, we define and compute two sets of matrices KJ and

KJ vac. These are full matrices with elements independent
of the poloidal angle.

�4� Using the Biot–Savart law either over the equivalent
surface current Ieqv or over the perturbed plasma current,
compute the normal field perturbation produced by the
plasma only,

bN
pl = HI Ieqv = HIFIbN = GIbN. �4�

�5� Since the total normal field bN consists of the plasma
contribution bN

pl and that from the external conductors
bN

ex, we may write

bN
ex = �EI − GI �bN, �5�

where EJ is the identity matrix.
�6� In the presence of the surface current on the coupling

surface, and without any additional voltage sources, the
eddy current code eventually solves a lumped circuit-
like system of equations,

RII + �LII + �U = 0, �6�

where RJ is the resistance matrix, I the eddy currents in

the conductors, � the growth rate of the mode, LJ the
self-inductance matrix of the conductors, U the magnetic
flux at the position of conductors, produced by the
equivalent surface current source Ieqv,

U = MI Ieqv. �7�

�7� Compute the inductance matrix between the conductor
eddy currents I and the produced normal field at the
coupling surface,

bN
ex = QI I . �8�

�8� Finally, combining Eqs. �7�, �3�, �5�, and �8� yields

U = MF�EI − GI �−1QI = LIplI , �9�

which, when substituted into the eddy current equation

�6�, effectively modifies the inductance matrix LJ to LJ

+LJpl, and the modification is caused by the plasma re-
sponse. Solving Eq. �6� as an eigenvalue problem gives
the growth rate of the RWM. Alternatively, adding a
voltage source for the active coils to the right-hand side
�RHS� of Eq. �6�, in combination with an appropriate
feedback law, allows investigation of the RWM feedback
stabilization.

The above procedure is designed for a linear plasma re-
sponse. If the MHD response occurs on a time scale much
slower than the Alfvén time, which is normally the case for

the RWM, we can compute a static response matrix LJpl ne-
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glecting the plasma inertia effect. In general cases, the matrix

LJpl should depend on the mode growth rate, hence we have
to solve a nonlinear eigenvalue problem.

B. Backward coupling scheme from eddy current
to MHD formulation

The description of the backward coupling procedure is
simpler than that of the forward one.

�1� Assuming M independent surface current distributions
Ieqv along the coupling surface, for a given growth rate �
�initial guess�, solve the eddy current problem for the
conductors as a driven problem

RII + �LII = − �MI Ieqv, �10�

where matrices RJ , LJ, and MJ have the same meaning as
that in Eqs. �6� and �7�. The solution of Eq. �10� can be
written as

I = − ��RI + �LI�−1MI Ieqv = WI Ieqv. �11�

�2� Using the Biot–Savart law, compute both the total nor-
mal and tangential magnetic fields just outside the cou-
pling surface, produced by the eddy currents I and the
equivalent surface currents Ieqv,

bN = SI1I + SI2Ieqv = �SI1W + SI2�Ieqv = SIIeqv, �12�

bT = PI1I + PI2Ieqv = �PI1W + PI2�Ieqv = PIIeqv. �13�

Note that the two tangential components of the surface
current Ieqv have to satisfy the divergence-free condition,
which helps us to express the magnetic fields in Eqs.
�12� and �13� via the toroidal component of the surface
current only. Hence, for a general toroidal case, we will
replace Ieqv in Eqs. �12� and �13� by its toroidal compo-

nent, and the matrices SJ and PJ are redefined accordingly.

Eventually, we obtain a single matrix SJ, and generally

two sets of matrices PJ, for the two tangential compo-
nents of the magnetic field.

�3� Use the relation

bT = PISI−1bN = TIbN �14�

as the boundary condition just inside the coupling sur-
face for the MHD code, and solve for a nonlinear eigen-
value problem for �. Note that the nonlinearity comes

from the boundary condition �14�, where the matrix TJ is
a function of � at the resistive wall time scale.

To make this procedure practical, we need to be able to

approximate the dependence of TJ��� by analytical functions.
This is possible as explained in the next section. A more
elegant approach is to try to derive a relation, which is linear
in �, between bN and bT. Indeed, a pure algebraic manipula-
tion of Eqs. �10�, �12�, and �13� gives

�SI2
−1 + ��SI2

−1SI1 − PI2
−1PI1�LI1

−1�LI − MI SI2
−1SI1�−1MI SI2

−1�bN

= �PI2
−1 + ��SI2

−1SI1 − PI2
−1PI1�LI1

−1

��LI − MI PI2
−1PI1�−1MI PI2

−1�bT, �15�

where

LI1 = �LI − MI SI2
−1SI1�−1RI − �LI − MI PI2

−1PI1�−1RI . �16�

This type of boundary condition leads to a linear eigenvalue
problem after the backward coupling to the MHD code.

The backward coupling can be slightly adapted to in-
clude the feedback coils. We demonstrate this by assuming a
simple current control logic,

I f = − KI fbs, �17�

where I f is the current in the active coils, bs the array of
sensor signals, which are �normal or tangential� magnetic

fields measured by coils outside the coupling surface, and KJ f

is the feedback gain, generally being a matrix.
With the inclusion of feedback coils, Eq. �10� becomes

RII + �LII = − �MI Ieqv − �MI fI f , �18�

where MJ f is the mutual inductance matrix between the active
coils and the wall. We can also compute the mutual induc-
tances between various currents and the sensor coils, which
give

bs = �MI 1I + MI 2Ieqv + MI 3I f� . �19�

Combining Eqs. �17� and �19�, and substituting into Eq. �18�,
we arrive at

RII + ��LI − MI f�EI + KI fMI 3�−1KI fMI 1�I

= − ��MI − MI f�EI + KI fMI 3�−1KI fMI 2�Ieqv. �20�

Equation �20� has the same form as Eq. �10�, hence all the
coupling steps following Eq. �10� remain the same with the
inclusion of the feedback coils.

III. ANALYTICAL PROOF IN CYLINDRICAL
GEOMETRY

The coupling procedures described in Sec. II are de-
signed for a general toroidal geometry. In the cylindrical
limit, we show rigorously that these procedures yield the
correct growth rate for the RWM. Moreover, this proof
serves as an explicit demonstration of how the coupling ma-
trices are computed—all the matrices described in Sec. II are
calculated here analytically. Though only a single wall is
considered, the proof can be extended with multiple walls
and feedback coils.

A. Equilibrium and stability

We choose a cylindrical plasma equilibrium with circular
cross section and step-like equilibrium current density J
�Shafranov equilibrium�.17 In the cylindrical coordinate
�r ,� ,z�, we assume J=Jzẑ, where

072516-3 An analytical demonstration of coupling schemes… Phys. Plasmas 15, 072516 �2008�

Downloaded 10 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Jz�r� = �J0, r � r0

0, r � r0
� , �21�

where r0�a is the width of the current channel, and a is the
plasma minor radius. The poloidal equilibrium field is com-
puted as

B��r� = �
1

2
�0J0r , r � r0

1

2
�0J0

r0
2

r
, r � r0

� . �22�

Assuming a constant toroidal field Bz�r�=B0, we obtain
the safety factor q

q = �q0, r � r0

q0
r2

r0
2 , r � r0 � , �23�

where q0=2B0 / �R�0J0�; R is an equivalent major radius for
a torus.

This equilibrium has been extensively used for analytical
study of the RWM stability and control.18–21

The equation governing the ideal kink stability of a gen-
eral, zero pressure, cylindrical equilibrium is well known.22

We list some key steps in the derivation here, which are
relevant to our further discussions on the coupling schemes.

Assuming a single mode perturbed magnetic flux func-
tion

��r,�,z� = ��r�eim�−inz/R, �24�

in large aspect ratio approximation, we can write the per-
turbed field as

b = � � ��ẑ� =
1

r

��

��
r̂ −

��

�r
�̂ . �25�

The perturbed current density is

j =
1

�0
� � b = −

1

�0
	ẑ��

2 � +
in

R
���
 . �26�

Consider the perturbed momentum equation

	�v = − �p + J � b + j � B , �27�

where 	 is the plasma density. Applying the �� operator to
both sides of Eq. �27�, and taking the z component, we arrive
at the torque balance equation

��
2 � −

�0m

B��m − nq�
dJz

dr
� = i�

�0r

B��m − nq�
� � �	v� · ẑ .

�28�

For an incompressible plasma, the perturbed velocity v
can be expressed as

v = � � �
ẑ� , �29�

where 
 can be related to � via Faraday’s law for an ideal
plasma

�b = � � �v � B� . �30�

We obtain


 = − i�
r

B��m − nq�
� . �31�

Substituting Eqs. �31� and �29� into Eq. �28�, we arrive
at

��
2 � −

�0m

B��m − nq�
dJz

dr
� = − �2 �0r

B��m − nq��	��
2 r�

B��m − nq�

+
d	

dr

d

dr
	 r�

B��m − nq�
� . �32�

For the Shafranov equilibrium, assuming also a step
function for the plasma density profile, Eq. �32� becomes the
same as the vacuum equation for �,

��
2 � = 0 �33�

in the plasma regions 0�r�r0 and r0�r�a. Integrating
Eq. �32� across r=r0 gives the jump condition for �

 r����
�


r0

+
2m

m − nq0
= ���A�2 q0

2

�m − nq0�2 r��

�


r0−
, �34�

where �A=��0	0R /B0; 	0 is the density at the plasma center.
The jump condition �34�, combined with the vacuum-

like solution of Eq. �33� inside the plasma, gives the growth/
damping rate of the ideal kink mode without the wall,22

���A�2 =
2

q0
2 �m − nq0��� − �m − nq0�� , �35�

where ��sgn�m�.
In the presence of a resistive wall, at r=rw�a, we have

another jump condition for �

 r����
�


rw

= 2��w, �36�

where �w is defined as the field penetration time for the m
=1 mode, �w=�0rwd /2,  is the wall conductivity, and d
the wall thickness. Equations �34� and �36�, together with the
solution of the Laplace equation �33� in both the plasma and
the vacuum regions, determine the growth rate of the RWM,

�

m − nq0
−

1

1 −
��w

��w + �
	 r0

rw

2� =

���A�2

2

q0
2

�m − nq0�2 ,

�37�

where �= �m�.
Equation �37� is the dispersion relation of the RWM sta-

bility with the plasma inertia. At rw=� or �w=0, we recover
the no-wall ideal kink growth rate, Eq. �35�. At �w=�, we
obtain the growth rate of the ideal kink with an ideal wall. At
�A=0�	0=0�, we get the RWM growth rate without the
plasma inertia

��w = − �
1 − ��m − nq0�

1 − ��m − nq0� − �r0/rw�2� . �38�

Note that since normally at the resistive wall time scale,
��w is the order of unity, and �A��w, ��A�1, and the RHS
of Eq. �37� �the correction due to the plasma inertia� can be
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neglected. This is exactly the approximation made in our
forward coupling scheme, when we compute the static
plasma response matrices.

B. Forward coupling

In the following, we try to follow the steps listed in Sec.
II A, which lead to the recovering of the RWM growth rate
satisfying Eq. �37�. The difference is that instead of matrices,
we will have scalars because of a single poloidal mode num-
ber. However, we still use matrix-like notations as in the
previous section.

For a given total normal field at the coupling surface r
=rv ,a�rv�rw, as the boundary condition, the field solution
within the coupling surface �i.e., the plasma response� is

� =��pl	 r

r0

�

+ �ex	 r

rv

�

, r � r0

�pl	 r

r0

−�

+ �ex	 r

rv

�

, r0 � r � rv

���rv
= �0,

� , �39�

where �0 corresponds to the inhomogeneous boundary
condition.

At the coupling surface,

�0 = �pl	 r0

rv

�

+ �ex, �40�

where the first term on the RHS represents the plasma con-
tribution and the second term represents the contribution
from the external conductors �the wall in this case�.

Substitution of the solution �39� into the jump condition
�34� gives

�

m − nq0
−

�pl

�pl + �ex�r0/rv�� =
��0�A�2

2

q0
2

�m − nq0�2 , �41�

where �0 is an assumed mode growth rate. For a static re-
sponse, we let �0=0.

Let �pl�r0 /rv��=GI�0 and �ex= �EI−GI ��0. Equation �41�
leads to a condition for GI ,

GI

GI + �EI − GI ��r0/rv�2�
=

�

m − nq0
−

��0�A�2

2

q0
2

�m − nq0�2 � C ,

�42�

from which GI is calculated.

Let us consider the problem of invertibility of �EI−GI �,
which is essential in computing the final coupling matrix LIpl

�Eq �9��. From Eq. �42�, we calculate

EI − GI =
1 − C

1 − C�1 − �r0/rv�2��
. �43�

Equations �42� and �37� show that, at the exact solution,
i.e., when �0=� �including the plasma inertia effect� or �A

=0 �neglecting the plasma mass�,

C =
1

1 −
��w

��w + �
	 r0

rw

2� . �44�

This means that C=1 is equivalent to the condition of ��w

=0. Consequently, as soon as we are considering massless
plasma, or our initial guess for the growth rate is close
enough to the true value with inclusion of the inertial effect,

�EI−GI � is not invertible if and only if the RWM is at the
exact stability margin. In this case, the plasma perturbation
does not cause any eddy currents in the external conductors.
Since this occurs only at a peculiar equilibrium condition

�see Eq. �38��, we conclude that �EI−GI � is generally invert-
ible. The invertibility does not depend on the radial position
of the coupling surface. We also notice, from Eqs. �43� and

�44�, that �EI−GI � does not approach infinity �i.e., LIpl does
not vanish� if ��w�0 and rv�rw.

With the same boundary condition, the vacuum solution
in step 2 of the forward coupling procedure is simple,

�vac = �0	 r

rv

�

, 0 � r � rv. �45�

Thus, the equivalent surface current at the coupling sur-
face r=rv is computed as

Ieqv = ��0
−1�b� − b�

vac��rv
=

2�

�0rv
GI�0. �46�

This gives us an explicit expression for the FI matrix as de-
fined in Eq. �3�,

FI = −
2i

��0
GI . �47�

It is easy to check that the field produced by the current �46�,
outside the coupling surface r�rv, is exactly the same as
that produced by the perturbed plasma current,

�plasma = �pl	 r

r0

−�

, r � rv. �48�

Now we consider the circuit equation for the eddy cur-
rent in the wall, Eq. �6�. The resistance and the self-
inductance �per unit length� of the wall are

RI =
1

d
, LI =

�0rw

2�
. �49�

Without the plasma correction, the wall eddy current decay
rate is

� = − LI−1RI = −
�

�w
, �50�

where �w is again defined as �w=�0rwd /2.

The matrix QI from Eq. �8� is calculated as

QI =
bN

ex

I
=

im�ex/rv

�rw/rv���exLI
−1

=
i�0

2�
	 rv

rw

�−1

. �51�

Finally, the matrix MI is calculated by using Eq. �46� and
noting that
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U = �pl	 r0

rw

�

= G�0	 rv

rw

�

, �52�

which gives us

MI =
�0rv

2�
	 rv

rw

�

. �53�

Combining Eqs. �53�, �47�, �43�, and �51�, we obtain an
explicit form of the plasma correction to the inductance ma-

trix LIpl,

LIpl = MI FI�EI − GI �−1QI =
�0rw

2�
	 r0

rw

2� C

1 − C
. �54�

We give two comments on the property of LIpl. �i� LIpl is
independent of the choice of radial position rv for the cou-
pling surface, as it should be. �ii� When the plasma inertia is

included, Eq. �54� shows that LIpl is a rational function of
��0�A�2. The specific structure of this rational function can be
used for constructing the frequency-dependent response ma-
trices in the toroidal computations.

Substituting Eqs. �54� and �49� into Eq. �6�, we derive

C =
1

1 −
��w

��w + �
	 r0

rw

2� . �55�

This, combined with the definition of C in Eq. �42�, gives the
dispersion relation for the RWM growth rate. This dispersion
relation is identical to that for the true growth rate of the
RWM �37� if �0=�. Without the plasma inertia, Eq. �55�
already determines the true growth rate of the RWM. With
the plasma inertia, an iterative process over �0 is required in
order to find the true growth rate.

C. Backward coupling

In the cylindrical limit, the solution to Eq. �10�, with
coefficients determined by Eqs. �49� and �53�, is

I = − 	 rv

rw

�+1 ��w

��w + �
Ieqv = WI Ieqv. �56�

The total field outside the coupling surface is

� = �w	 r

rw

�

+ �eqv	 r

rv

−�

, rv � r � rw, �57�

where

�w =
�0rw

2�
I, �eqv =

�0rv

2�
Ieqv. �58�

This gives

�bN�rv+ =
im

rv
���rv+ =

i�0

2�
�1 − 	 rv

rw

2� ��w

��w + �
�Ieqv = SIIeqv,

�59�

�bT�rv+ = −  ��

�r


rv+
=

�0

2
�1 + 	 rv

rw

2� ��w

��w + �
�Ieqv = PIIeqv.

�60�

Hence

 bT

bN


rv+
= PISI−1 =

�

i

��w + � + ��w�rv/rw�2�

��w + � − ��w�rv/rw�2� , �61�

 rv��

�


rv+
= − �

��w + � + ��w�rv/rw�2�

��w + � − ��w�rv/rw�2� . �62�

Note that SI is invertible as long as rv�rw and ��w�0. It is
trivial to check that Eq. �15� yields the same expression �61�.

Now we solve the MHD eigenvalue problem in the
plasma region, with the boundary condition

 rv��

�


rv−
=  rv��

�


rv+
, �63�

as defined in Eq. �62�.
The solution has the form

� = ��pl	 r

r0

�

+ �ex	 r

rv

�

, r � r0

�pl	 r

r0

−�

+ �ex	 r

rv

�

, r0 � r � rv
� , �64�

which should satisfy the jump condition �34� at r=r0.
The above boundary and the jump conditions are suffi-

cient to derive the equation for the RWM growth rate,

�

m − nq0
−

1

1 −
��w

��w + �
	 r0

rw

2� =

���A�2

2

q0
2

�m − nq0�2 ,

�65�

which is identical to the RWM dispersion relation �37�.
In contrast to the forward coupling scheme, where we

solve eventually a linear eigenvalue problem if the plasma
inertia is neglected, in the backward coupling we generally
have to solve a nonlinear eigenvalue problem �in the plasma
region� even without the plasma inertia. This is because the
response of the conducting structures is essentially
frequency-dependent at the frequency range for the RWM.
On the other hand, Eqs. �59� and �60� show that the fre-
quency dependence of the coupling matrices on the growth
rate �or frequency� can be approximated again by rational
functions. It is also possible to achieve a linear eigenvalue
problem by computing a linear boundary condition of type
�15�, which requires a somewhat heavy manipulation of the
system matrices in the eddy current solver.

IV. SUMMARY AND DISCUSSIONS

We presented two possible schemes that can be used to
couple a MHD code and an eddy current code. We demon-
strated, in cylindrical geometry, rigorously how and why
these schemes work. The forward coupling scheme has been
implemented in the CARMA code, and numerical simulations
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show that this scheme works well for studying the RWM
stability and control, in the presence of 3D conducting
structures.14

There are both advantages and drawbacks for these two
schemes. The forward coupling scheme allows solution of a
linear eigenvalue problem if we assume a static plasma re-
sponse. However, a dynamic response may be necessary if
the plasma is close to the ideal pressure limit, so that the
inertial effect cannot be neglected, or if the toroidal plasma
rotation is included. Nevertheless, in the framework of ideal
MHD, this scheme allows us to compute the plasma response
matrices for different toroidal mode numbers separately, and
then investigate easily the geometrical coupling of these
modes due to 3D conductors. The feedback implementation
is also straightforward for this scheme.

The backward coupling scheme always requires comput-
ing dynamic response matrices from the conductors, and
hence makes the eigenvalue problem generally nonlinear.
Rational function approximation should be a useful tool to
simplify the problem. The nonlinearity can be eliminated by
computing a linear boundary condition with respect to the
growth rate, at the expense of heavy manipulation of the
system matrices in the eddy current code. The obvious ad-
vantage of the backward coupling scheme is that the plasma
inertial effects, the rotation effects, as well as possible ad-
vanced kinetic effects can all easily be included in the study,
since the final system of equations are solved in the plasma
region. A drawback of this scheme is that we cannot study
the geometrical coupling effects of different n’s, thus the
response of 3D structures always needs to be decomposed in
the Fourier harmonics along the toroidal angle of the torus.
However, this scheme is more suitable to couple an eddy
current code to a nonlinear MHD code, since the conductor
response is still linear, and therefore does not need to be
recomputed during the nonlinear time stepping of the MHD
equations.

It is also possible to combine the forward and the back-
ward coupling schemes to obtain a new scheme that further
modularizes the whole computation. For instance, one can

compute the coupling matrix FI��� �for the toroidal compo-
nent of the surface current� from Eq. �3�, using the MHD

code, and compute the coupling matrix SI��� �defined for the
toroidal component of the surface current� from Eq. �12�.
Then solve the following nonlinear eigenvalue problem:

FI���SI��� = EI �66�

to obtain the growth rate of the RWM. It is straightforward to
check analytically, using Eqs. �47�, �43�, and �59�, that this
procedure yields the correct eigenvalue.

This combined scheme avoids solving a nonlinear eigen-
value problem in either the MHD or the eddy current codes.
Instead, the two codes only compute coupling matrices.
However, for an efficient solution of Eq. �66�, it is desirable

to produce the analytical dependence of FI and SI on � in a
matrix-wise �i.e., not element-wise� manner. Moreover, nu-

merical tests are needed to check whether the computed ei-
genvalue from Eq. �66� is sensitive to the rational function

approximation of FI��� and SI���.
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